Guarded vs. Unguarded Iteration

Sergey Goncharov^a Lutz Schröder^a Christoph Rauch^a Maciej Piróg^b

^aFriedrich-Alexander-Universität Erlangen-Nürnberg

^bKU Leuven

IFIP WG 1.3 Meeting, Binz 2017

1

Goncharov/Schröoder/Rauch/Piróg: Guarded vs. Unguarded Iteration

Introduction

- Guarded recursion:
 - Restrict recursive calls to appear under guarding operations (e.g. actions)
 - Obtain unique solutions
- Unguarded recursion:
 - Demand solutions to arbitrary recursive equations
 - Give up uniqueness
 - Instead impose equational laws
 - which are automatic under uniqueness
- Here: Unify guarded and unguarded iteration of side-effecting programs/processes
 - Side-effect = monad
 - Monads with guarded iteration = iterative monads
 - Monads with unguarded iteration = Elgot monads
 - Show (more or less) that

every Elgot monad is a quotient of an iterative monad

(FOSSACS 2017)

Guarded Recursion

Prevalent in process algebra; e.g.

$$P = a.P + b.P$$

has a unique solution because both recursive calls are guarded, i.e. appear under action prefixing.

What about

$$P = a.0 + P$$
 ?

- Semantics generates no transitions from +P
- ► Hence *P* = *a*.0

Try

$$P = Q +_{1/2} a.P$$
 $Q = P +_{1/2} b.Q$

Monads

- Monads formalize side-effecting functions $f: X \rightarrow TY$, e.g.
 - nondeterministic ($TX = \mathcal{P}X$)
 - partial (TX = X + 1)
 - state-based ($TX = S \rightarrow S \times X$)
- T is a type constructor for computations, with operations
 - $\eta: X \to TX$ (unit): Return a value
 - $(f: X \to TY) \mapsto (f^*: TX \to TY)$ (lifting): Chain computations
- Kleisli category of $T : \mathbf{C} \to \mathbf{C}$ has

morphisms $X \rightarrow Y = \mathbf{C}$ -morphisms $X \rightarrow TY$

- Laws for * guarantee identity / associativity laws

model guarded recursion:

- Module for monad *T*:
 - Type constructor M (think 'terms with a guard on top')
 - ▶ lifting $(-)^{\circ}$: Hom $(X, TY) \rightarrow$ Hom(MX, MY)
- ▶ Idealized monad = module-to-monad morphism $M \rightarrow T$
- $f: X \to T(Y+X)$ guarded \iff factors through Y + M(Y+Y)
- ► T completely iterative ⇔ every guarded f : X → T(X + Y) has a unique solution f[†] : X → TY:

$$f^{\dagger} = [\eta, f^{\dagger}]^{\star} f.$$

• Examples: Infinite term monads $v\gamma.((-) + \Sigma\gamma)$.

(Complete) Elgot monad T:

- ▶ Distinguishes solution f^{\dagger} for every $f : X \rightarrow T(Y + X)$
- Solutions are in general non-unique
- Quasi-equational laws (dual to Bloom/Esik)

Examples:

- ► Least fixpoints in cpo-enriched Kleisli-categories, e.g. $T = P, (-) + 1, S \rightarrow P(S \times (-)), ...$
- Extensions with free operations

Axioms for Iteration

Codiagonal:

Axioms for Iteration, cont'd

Naturality:

Adding Free Operations

Given

- monad T of effects
- functor Σ defining free operations

form

$$T^{\nu}_{\Sigma} = \nu \gamma. T((-) + \Sigma \gamma)$$

 \rightarrow side-effecting processes; e.g.

$$(\mathcal{P}_{\omega_1})_{\mathcal{A}}^{\nu} = \nu \gamma. \mathcal{P}_{\omega_1}((-) + \mathcal{A} \times \gamma)$$

is the denotational domain for countably branching processes.

- T_{Σ}^{ν} is a monad (Uustalu 2003)
- T_{Σ}^{ν} is completely iterative (Piróg/Gibbons MFPS 2014)
- T_{Σ}^{ν} inherits Elgotness from T (Goncharov/Rauch/LS MFPS 2015)

Abstractly guarded monad: Given coproduct injection $\sigma : Z \hookrightarrow Y$, distinguish (abstractly) σ -guarded Kleisli morphisms $X \rightarrow_{\sigma} TY$, satisfying

$$\begin{array}{l} \text{(trv)} \quad \frac{f: X \to TY}{(T \text{ in}_1) \circ f: X \to_2 T(Y+Z)} \quad \text{(wkn)} \quad \frac{f: X \to_{\sigma} TY}{f: X \to_{\sigma\theta} TY} \\ \text{(cmp)} \quad \frac{f: X \to_2 T(Y+Z) \quad g: Y \to_{\sigma} TV}{[g,h] \diamond f: X \to_{\sigma} TV} \\ \text{(sum)} \quad \frac{f: X \to_{\sigma} TZ \quad g: Y \to_{\sigma} TZ}{[f,g]: X+Y \to_{\sigma} TZ} \end{array}$$

- Trivial guardedness: only immediately terminating definitions are guarded
- Total guardedness: everything is guarded
- Guardedness in idealized monads, when generalized to

 $f: X \to T(Y + X)$ inr-guarded $\iff f$ factors through T(Y + M(Y + X))

T abstractly guarded:

- ► *T* preiterative \iff *T* has solution f^{\dagger} for every inr-guarded $f : X \to T(Y + X)$
- ► *T* iterative ⇔ guarded morphisms have *unique* solutions

Laws have abstractly guarded versions;

- laws are automatic for guarded iterative monads
- T Elgot \iff T totally guarded preiterative & satisfies all laws.

Axioms for Abstractly Guarded Iteration

Naturality:

Codiagonal:

Axioms for Guarded Iteration, cont'd

Uniformity:

Axioms for Guarded Iteration, cont'd

Dinaturality (Variant 2):

Iteration-congruent retraction $\rho : T \hookrightarrow S : v$

- ▶ guarded monad morphism ho: T
 ightarrow S
- $\rho f = \rho g$ implies $\rho f^{\dagger} = \rho g^{\dagger}$.
- morphisms $v_X : SX \to TX$ (not necessarily natural) such that

1.
$$\rho_X v_X = id$$

2.
$$f: X \rightarrow_{\sigma} SY$$
 implies $v_Y f: X \rightarrow_{\sigma} TY$.

Transfer Theorem For *T* guarded pre-iterative and iteration-congruent retraction $\rho : T \stackrel{\leftarrow}{\longrightarrow} S : v$,

$$f^{\ddagger} := \rho \, (\nu f)^{\dagger}$$

defines an iteration operator on S that inherits all laws from T.

Theorem

Elgot monads =

totally guarded iteration-congruent retracts of guarded iterative monads.

Proof: ' \supseteq ': Immediate from transfer theorem.

' \subseteq ': Every Elgot monad S is an iteration-congruent retract of its coalgebraic transform

$$S^{v} = v \gamma. S(-+\gamma).$$

Example

For the process algebra monad $S = v\gamma . \mathcal{P}_{\omega 1}((-) + A \times \gamma)$:

$$S^{\nu} = \nu\gamma. S((-) + \{\delta\} \times \gamma) \cong \nu\gamma. \mathcal{P}_{\omega 1}((-) + (A + \{\delta\}) \times \gamma).$$

Conclusions

- Abstract notion of guardedness
 - subsumes standard guardedness as well as unguardedness
- Elgot monads = models of side-effecting unguarded iteration
- Have shown that

every Elgot monad is an iteration-congruent retract of a guarded iterative monad,

i.e.

unguarded iteration arises by quotienting guarded iteration.

- Further results and applications:
 - Dinaturality follows from the other axioms
 - Simplified proof of Elgotness of T^ν_Σ
 - Sandwich theorem:

Elgot monads are stable under sandwiching between adjoint functors

► Elgot monads are the (-)^{*v*}-algebras that cancel delays

• Quotienting Capretta's monad $v\gamma$. $X + \gamma$ (partiality/delay)

Monads for infinite traces