One Eilenberg Theorem to Rule Them All

Stefan Milius

joint work with Jiří Adámek, Liang-Ting Chen, Henning Urbat

January 11, 2017

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

Categorical perspective:

 $\operatorname{Id} \xrightarrow{\eta} T \xleftarrow{\mu} T^2$

- Automata via algebras and coalgebras.
- Languages via initial algebras and final coalgebras.
- Algebra via Lawvere theories and monads.

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

Categorical perspective:

 $\operatorname{Id} \xrightarrow{\eta} T \xleftarrow{\mu} T^2$

- Automata via algebras and coalgebras.
- Languages via initial algebras and final coalgebras.
- Algebra via Lawvere theories and monads.

Our goal: Categorical Algebraic Language Theory!


```
\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \quad \cong \quad \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array}\right)
```



```
\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \quad \cong \quad \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array}\right)
```

Pseudovariety of monoids

A class of finite monoids closed under quotients, submonoids and finite products.

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \quad \cong \quad \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array}\right)$$

Variety of languages

For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under

- ∪, ∩, (−)⁰
- derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of monoids

A class of finite monoids closed under quotients, submonoids and finite products.

Weaker closure properties:

- Only ∪, ∩Pin 1995
- Only ∪ Polák 2001
- Only ⊕ Reutenauer 1980
- Fewer monoid morphisms Straubing 2002
- Fixed alphabet, no preimages
 Gehrke, Grigorieff, Pin 2008

Weaker closure properties:

- Only ∪, ∩Pin 1995
- Only ∪ Polák 2001
- Only ⊕ Reutenauer 1980
- Fewer monoid morphisms Straubing 2002
- Fixed alphabet, no preimages
 Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages
 Reutenauer 1980
- Infinite wordsWilke 1991, Pin 1998
- Ordered wordsBedon et. al. 1998, 2005
- Ranked treesAlmeida 1990, Steinby 1992
- Binary treesSalehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

Weaker closure properties:

- Only ∪, ∩Pin 1995
- Only ∪ Polák 2001
- Only ⊕ Reutenauer 1980
- Fewer monoid morphisms Straubing 2002
- Fixed alphabet, no preimages
 Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages
 Reutenauer 1980
- Infinite wordsWilke 1991, Pin 1998
- Ordered words
 Bedon et. al. 1998, 2005
- Ranked treesAlmeida 1990, Steinby 1992
- Binary treesSalehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

This talk

A General Variety Theorem that covers them all!

General Variety Theorem

=

Monads

+

Duality

General Variety Theorem

=

Monads

Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Bojańczyk, DLT 2015

General Variety Theorem

=

Monads

+

Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Bojańczyk, DLT 2015

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

Gehrke, Grigorieff, Pin, ICALP 2008

Adámek, Milius, Myers, Urbat, FoSSaCS 2014, LICS 2015

General Variety Theorem = + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Monads

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

Fix a monad T on a locally finite variety \mathcal{D} (with finitely many sorts).

Fix a monad T on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

 Σ : free finite object of \mathcal{D} ("alphabet")

O: finite object of \mathcal{D} ("object of outputs")

Fix a monad T on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

 Σ : free finite object of \mathcal{D} ("alphabet")

O: finite object of \mathcal{D} ("object of outputs")

Languages of finite words: free monoid monad

$$T\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

Fix a monad T on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

 Σ : free finite object of \mathcal{D} ("alphabet")

O: finite object of \mathcal{D} ("object of outputs")

Languages of finite words: free monoid monad

$$T\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

• Languages of finite and infinite words: free ω -semigroup monad

$$\mathsf{T}(\Sigma,\emptyset) = (\Sigma^+,\Sigma^\omega) \text{ on } \mathbf{Set}^2 \quad \text{and} \quad O = (\{0,1\},\{0,1\}).$$

Fix a monad T on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

 Σ : free finite object of \mathcal{D} ("alphabet")

O: finite object of \mathcal{D} ("object of outputs")

Languages of finite words: free monoid monad

$$\mathbf{T}\Sigma = \Sigma^* \text{ on } \mathbf{Set} \quad \text{and} \quad O = \{0,1\}.$$

• Languages of finite and infinite words: free ω -semigroup monad

$$\mathsf{T}(\Sigma,\emptyset) = (\Sigma^+,\Sigma^\omega) \text{ on } \mathsf{Set}^2 \quad \mathsf{and} \quad O = (\{0,1\},\{0,1\}).$$

• Weighted languages ($\mathcal{D} = \text{vector spaces}$), tree languages ($\mathcal{D} = \mathbf{Set}^3$), cost functions ($\mathcal{D} = \text{posets}$), . . .

Algebraic recognition

Definition

A language $L: T\Sigma \to O$ is **recognizable** if it factors through some finite quotient algebra of the free **T**-algebra $\mathbf{T}\Sigma = (T\Sigma, \mu_{\Sigma})$.

$$\begin{array}{ccc}
T\sum & \xrightarrow{L} & O \\
\exists e & & \\
* & & \exists p
\end{array}$$

Languages of finite words: free monoid monad

$$T\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

Recognizable languages = regular languages of finite words

Algebraic recognition

Definition

A language $L: T\Sigma \to O$ is **recognizable** if it factors through some finite quotient algebra of the free **T**-algebra $\mathbf{T}\Sigma = (T\Sigma, \mu_{\Sigma})$.

$$\begin{array}{ccc}
T\sum & \xrightarrow{L} & O \\
\exists e & & \\
* & & \exists p
\end{array}$$

ullet Languages of finite and infinite words: free ω -semigroup monad

$$\mathsf{T}(\Sigma,\emptyset) = (\Sigma^+,\Sigma^\omega) \text{ on } \mathbf{Set}^2 \quad \text{and} \quad O = (\{0,1\},\{0,1\}).$$

Recognizable languages = regular ∞ -languages

General Variety Theorem = + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Monads

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

• Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \stackrel{\simeq}{\longrightarrow} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \stackrel{\simeq}{\longrightarrow} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

 $\widehat{\Sigma^*} = (\text{inverse}) \text{ limit of all finite quotient monoids } e : \Sigma^* \to M.$

Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \stackrel{\simeq}{\longrightarrow} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

$$\widehat{\Sigma^*} = (\text{inverse}) \text{ limit of all finite quotient monoids } e : \Sigma^* \to M.$$

• Dual boolean algebra (Pippenger 1997):

$$Reg(\Sigma) = regular languages over \Sigma.$$

Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \stackrel{\simeq}{\longrightarrow} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

$$\widehat{\Sigma^*} = (\text{inverse}) \text{ limit of all finite quotient monoids } e : \Sigma^* \to M.$$

• Dual boolean algebra (Pippenger 1997):

$$Reg(\Sigma) = regular languages over \Sigma.$$

• This generalizes from $T\Sigma = \Sigma^*$ to arbitrary monads T!

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	\mathcal{D}	\mathcal{D}
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

Monad T on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	${\cal D}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

• $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \mathsf{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now O := (dual of 1), with 1 the free one-generated object in C.

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \mathsf{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	${\cal D}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T}:\widehat{\mathcal{D}}\to\widehat{\mathcal{D}}$ is the *profinite monad* of ${f T}$
- Now O := (dual of 1), with 1 the free one-generated object in C. $Rec(\Sigma) \cong \widehat{\mathcal{D}}(\widehat{T}\Sigma, O)$

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \mathsf{Pro}(\mathcal{D}_f)$$

$\mathcal C$	${\cal D}$	${\cal D}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now $O := (\mathsf{dual} \ \mathsf{of} \ \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in \mathcal{C} .

$$\mathsf{Rec}(\Sigma) \cong \widehat{\mathcal{D}}(\widehat{T}\Sigma, O) \cong \mathcal{C}(\mathbf{1}, (\mathsf{dual}\ \mathsf{of}\ \widehat{T}\Sigma)) \cong$$

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \mathsf{Pro}(\mathcal{D}_f)$$

$\mathcal C$	${\cal D}$	${\cal D}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now $O := (\text{dual of } \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in C.

$$\mathsf{Rec}(\Sigma) \;\cong\; \widehat{\mathcal{D}}(\widehat{\mathcal{T}}\Sigma, \mathit{O}) \;\cong\; \left. \mathcal{C}(\mathbf{1}, (\mathsf{dual of } \widehat{\mathcal{T}}\Sigma)) \;\cong\; \left| \mathsf{dual of } \widehat{\mathcal{T}}\Sigma \right| \right.$$

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \mathsf{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	\mathcal{D}
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\widehat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\widehat{T}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now $\mathcal{O} := (\mathsf{dual} \ \mathsf{of} \ \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in \mathcal{C} . $\mathsf{Rec}(\Sigma) \cong \widehat{\mathcal{D}}(\widehat{T}\Sigma, \mathcal{O}) \cong \mathcal{C}(\mathbf{1}, (\mathsf{dual} \ \mathsf{of} \ \widehat{T}\Sigma)) \cong \mathsf{dual} \ \mathsf{of} \ \widehat{T}\Sigma$
- Thus $\mathbf{Rec}(\Sigma)$ can be viewed as an object of $\mathcal{C}!$

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array}\right)$$

Variety of languages

For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under

- \bullet \cup , \cap , $(-)^{\complement}$
- derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of monoids

A class of finite monoids closed under quotients, submonoids and finite products.

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under

- ∪, ∩, (−)⁰
- derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under

- \bullet \cup , \cap , $(-)^{\complement}$
- derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in $\mathcal C$ closed under

derivatives

$$x^{-1}Ly^{-1}=\{w:xwy\in L\}$$

• preimages of free **T**-algebra morphisms $f: \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e.

$$(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$$

$$\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

derivatives (?)

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free **T**-algebra morphisms $f: \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e.

$$(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$$

$$\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$$

Pseudovariety of **T**-algebras

Derivatives: Monoid Case

• Consider the unary operations $\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$

Derivatives: Monoid Case

- Consider the unary operations $\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$
- For a language $\Sigma^* \xrightarrow{L} \{0,1\}$,

$$x^{-1}Ly^{-1} = (\Sigma^* \xrightarrow{\chi(-)y} \Sigma^* \xrightarrow{L} \{0,1\}).$$

Derivatives: Monoid Case

- Consider the unary operations $\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$
- $\bullet \ \ \text{For a language} \ \Sigma^* \xrightarrow{L} \{0,1\},$

$$x^{-1}Ly^{-1} = (\Sigma^* \xrightarrow{x(-)y} \Sigma^* \xrightarrow{L} \{0,1\}).$$

• For any surjective map $e: \Sigma^* \to A$,

e carries a quotient monoid of $\Sigma^* \iff \text{all } \Sigma^* \xrightarrow{x(-)y} \Sigma^* \text{ lift along } e.$

$$\begin{array}{c|c}
\Sigma^* & \xrightarrow{x(-)y} & \Sigma^* \\
e & & \downarrow e \\
A - - - - - - A
\end{array}$$

Derivatives: General Case

Definition

Unary presentation $\mathbb{U} = \{ T\Sigma \xrightarrow{u} T\Sigma \}$: for any quotient $e : T\Sigma \twoheadrightarrow A$,

e carries a quotient **T**-algebra of **T** $\Sigma \iff$ all $u \in \mathbb{U}$ lift along e.

$$\begin{array}{ccc} T\Sigma \stackrel{u}{\longrightarrow} T\Sigma \\ e & & \downarrow e \\ A - -_{\stackrel{}{=}} \rightarrow A \end{array}$$

Derivatives: General Case

Definition

Unary presentation $\mathbb{U} = \{ T\Sigma \xrightarrow{u} T\Sigma \}$: for any quotient $e : T\Sigma \twoheadrightarrow A$,

e carries a quotient **T**-algebra of **T** $\Sigma \iff$ all $u \in \mathbb{U}$ lift along e.

$$\begin{array}{ccc}
T\Sigma & \xrightarrow{u} & T\Sigma \\
e \downarrow & & \downarrow e \\
A - - & \rightarrow A
\end{array}$$

Definition

For a language $T\Sigma \xrightarrow{L} O$ and $T\Sigma \xrightarrow{u} T\Sigma$ in \mathbb{U} , we have the **derivative**

$$u^{-1}L := (T\Sigma \xrightarrow{u} T\Sigma \xrightarrow{L} O).$$

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free **T**-algebra morphisms $f: \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e.

$$(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$$

$$\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

- derivatives: for all $u \in \mathbb{U}$, $L \in V_{\Sigma} \Rightarrow u^{-1}L \in V_{\Sigma}$.
- preimages of free **T**-algebra morphisms $f: \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e. $(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$

$$\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$$

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

A class of finite **T**-algebras closed under quotients, subalgebras and finite products.

How to prove the theorem?

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

A class of finite **T**-algebras closed under quotients, subalgebras and finite products.

How to prove the theorem?

Dualize!

Applications

$$\mathcal{C}^{op} \cong \hat{\mathcal{D}} \qquad \mathbf{T} \qquad \mathbb{U} \qquad \cdots$$

General Variety Theorem

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Applications

$$\mathcal{C}^{op} \cong \hat{\mathcal{D}} \qquad \mathbf{T} \qquad \mathbb{U} \qquad \cdots$$

General Variety Theorem

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

More than a dozen variety

theorems known in the literature.

Some results covered by the General Variety Theorem

Languages of finite words:

- \cup , \cap , $(-)^{\complement}$ Eilenberg 1976
- Only ∪, ∩ Pin 1995
- Only ∪
 Polák 2001
- Only ⊕
 Reutenauer 1980
- Fewer monoid morphisms
 Straubing 2002
- Fixed alphabet, no preimages
 Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages
 Reutenauer 1980
- Infinite wordsWilke 1991, Pin 1998
- Ordered wordsBedon et. al. 1998, 2005
- Ranked treesAlmeida 1990, Steinby 1992
- Binary treesSalehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

Applications

$$\mathcal{C} \cong \hat{\mathcal{D}} \qquad \qquad \mathbf{T} \qquad \qquad \mathbb{U} \qquad \qquad \cdots$$

General Variety Theorem

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

More than a dozen variety

theorems known in the literature.

Applications

$$\mathcal{C} \cong \hat{\mathcal{D}} \qquad \qquad \mathbf{T} \qquad \qquad \mathbb{U} \qquad \qquad \cdots$$

General Variety Theorem

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

More than a dozen variety theorems known in the literature.

New results, e.g. extending work of Gehrke, Grigorieff, Pin (2008) from finite words to infinite words, trees, cost functions,

Eilenberg = Monads + Duality

Eilenberg = **Monads** + **Duality**

 Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

General Reiterman Theorem: pseudovarieties vs. profinite equations
 Chen, Adámek, Milius, Urbat, FoSSaCS 2016

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences
 Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations
 Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?
 Salamanca 2016, Ballester-Bolinches, Cosme-Llopez, Rutten 2015,
 Behle, Krebs, Reifferscheid 2011

Eilenberg = **Monads** + **Duality**

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations
 Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?
 Salamanca 2016, Ballester-Bolinches, Cosme-Llopez, Rutten 2015,
 Behle, Krebs, Reifferscheid 2011
- Nominal Stone duality and data languages ??
 Gabbay, Litak, Petrişan 2011

Eilenberg = **Monads** + **Duality**

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences
 Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations
 Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?
 Salamanca 2016, Ballester-Bolinches, Cosme-Llopez, Rutten 2015,
 Behle, Krebs, Reifferscheid 2011
- Nominal Stone duality and data languages ??
 Gabbay, Litak, Petrişan 2011
- Monadic second order logic for a monad ?

