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Behavioural Equivalences

Behavioural equivalences (bisimilarity, trace equivalence, ...)
relate states with the same behaviour

o Comparing a system with its specification
@ Minimizing the state space
@ Analysis of model transformations

e Verification of cryptographic protocols (are two protocols
equivalent from the point of view of an external observer,
a.k.a. the attacker?)
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Behavioural Metrics

Finding a quantitative notion of behavioural equivalence ...

@ Do not insist on the exact same behaviour.
@ Measure the behavioural distance between two states.

@ Make statements such as “the behaviour of two states differs
only by £”.

~» behavioural metrics
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Behavioural Metrics

Let X be a set, R§° = Rg U {o0}. A pseudo-metric is a function
d: X x X = Rg° where for all x,y,z € X:

Q d(x,x) =0 (identity) (metric if (d(x,y) =0=x =y))

Q d(x,y) = d(y,x) (symmetry)

@ d(x,z) < d(x,y)+ d(y,z) (triangle inequality)
A (pseudo-)metric space is a pair (X, d) where X is a set and d is
a (pseudo-)metric on X.

A non-expansive function f: X — Y between two (pseudo-)metric
spaces (X, dx), (Y, dy) satisfies for x,y € X

dx(x,y) > dy(f(x),f(y))
~ BarbaraKoénig  Behavioural Metrics — A Coalgebraic Approach 5




Metric Transition Systems

Let (X, d;) be a metric space. A metric transition system is a tuple
M = (S,7,[]), where S is a set of states, 7 C S x S is a transition
relation and every state s is assigned an element [s] € X.

t
o (i
0.4 07 05 a a 1

Metric space X = [0, 1] with Euclidean metric.




Metric Transition Systems

Lifting a metric space (X, d) to (Psin(X), d’): for Xi, Xo C X:

d"( Xy, Xo) = in d(x,y), in d(x,
1,0 = mexsl. ey i dsyll, ey mip élesy)

@ For each element x (in X, X2) take the closest element y in
the other set and measure the distance d(x, y)

@ Take the maximum of all such distances.




Metric Transition Systems




_ it Bl Bivelres o Vs Bepls el Eexlles ok Sees e i Gomlmer
Metric Transition Systems

Xl @; X2
~ BarbaraKoénig  Behavioural Metrics — A Coalgebraic Approach 8
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Metric Transition Systems

Xl@; X2
~ BarbaraKoénig  Behavioural Metrics — A Coalgebraic Approach 8




Metric Transition Systems

Compute the smallest fixed-point of

d(s, t) = max{ d([s], [t]), d"(r(s),7(¢))}

d(2,5) =01 d(3,6)=03

d(2,6) = 0.6




Metric Transition Systems

Compute the smallest fixed-point of

d(s, t) = max{ d([s], [t]), d"(r(s),7(¢))}

d(s, t) = max{0,0.3} = 0.?
s

d(2,5) =01 d(3,6)=03

d(2,6) = 0.6
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Probabilistic Transition Systems

A probabilistic transition system is a tuple P = (S, T, p.), where S
is a set of states, T C S is the set of terminal states and every
state s ¢ T is assigned a probability distribution ps: S — [0, 1].

Studied by Larsen/Skou [Larsen and Skou, 1989], van
Breugel /Worrell [van Breugel and Worrell, 2005] (again simplified)



Probabilistic Transition Systems

Terminal state: 4

What is the distance between states 1 and 2?7 ~~ distance e




Probabilistic Transition Systems

Compute the smallest fixed-point of

1 fseT,t¢ Tors¢g T, teT
d(s,t)=4{ 0 ifs,teT
d”(ps, p:) otherwise

What does it mean to compute the distance between two
probability distributions ps, ps on a metric space?
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Transportation Problem & Duality [Villani, 2009]

Interpret ps as supply and p; as

Lift metric to prob. distr, | demand. Transporting a uni
along a distance d costs d.

1 0 0 What is the minimal possible
Ps T T 1 T cost?
,E,
A B - ¢ @ transport E from A to B:
Pt ¢ ¢ 1 i cost 3.4 =1
: : ° transpo rt 3 from Ato C:
. cost 1-3 =1
distances between states 22
probabilities of states Overall cost: % (= distance
dP(p57 Pt))
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Transportation Problem & Duality [Villani, 2009]

Alternative: you have a logistics firm and handle transportation.
You do this by setting a price (per unit) for locations A, B, C
(pra,prg, prg). You buy and sell for this price at every location.
Your prices have to satisfy: prg — prap < d(A, B) (otherwise you
do not get the contract).

1 0 0 You want to maximize your
D T T . T profit. Which prices do you set?
5]
A -2 B 7§7 C ~ pra =0, prg =3, prc =1
Pt i ¢ 1 ¢ oyouget:%-%—kl-%:%
% % @ youpay: 0-1=0
3
distances between states Profit: 3
probabilities of states
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Transportation Problem & Duality [Villani, 2009]

Duality in transportation theory (Kantorovich-Rubinstein duality)

The following values coincide for a metric d: X x X — [0, 1] and
two probability distributions p,q: X — [0, 1]:

The minimum of >°,  P(x,y) - d(x,y)

for all probability distributions P: X x X — [0,1] (couplings,
indicating transport from x to y), such that > -y P(x,y) = p(x),
> wex P(x,y) = q(y) (marginal distributions are p, q)

The maximum of | ¥y.cx F(x) - p(x) — Yyex F(x) - 4(x)

for all nonexpansive functions : X — [0, 1]




Generalization of Metric Transition Systems

This leads to the following questions:

@ Are these metrics canonical/natural in some way?

@ How can we define other metric transition systems (with
different branching types)?

@ Are there generic methods to compute metrics?

~» use coalgebra, a general theory of behavioural equivalences, to
answer these questions.

Coalgebra offers a toolbox from which transition systems with
different branching types can be constructed and analyzed.



Functors

Typical examples of functors
o (finite) powerset functor Pgn(X) ={Y | Y C X, Y finite}
@ probability distribution functor
D(X) ={p: X = [0,1] | Xoyex P(x) = 1}
@ product functor F(X) = A x X (for a fixed set X)

e coproduct functor (disjoint union) F(X) = X + B (for a fixed
set B)

@ combinations of these functors

The functor defines the branching type of the transition system:
powerset functor ~» non-determinism

probability distribution functor ~» probabilistic branching
product functor ~» labelling

coproduct functor ~» termination, exceptions, failure



Coalgebras & Coalgebra Homomorphisms

Transition systems are now called coalgebras:

Coalgebra & Coalgebra Homomorphism

Let F be a given functor. A coalgebra is a function a: S — F(S)
(where S is the state set).

A coalgebra homomorphism between two coalgebras a.: S — F(S),
B:S"— F(S') is a function f: S — S’ satisfying F(f)oa = fof.

5 F(S)
fl lF(f)

s —F(s)

Coalgebra homomorphisms are functions between transition
systems that preserve branching. They correspond to functional
bisimulations.
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Coalgebras & Coalgebra Homomorphisms

Our examples can be represented as coalgebras in the following
way:

a: S — X xP(S)

where X is a fixed metric space.

B:S—=D(S)+1

where 1 is a singleton set (1 = {4/}), representing termination.




Coalgebras & Coalgebra Homomorphisms

Final Coalgebra

The final colgebra w: Q — F(Q) is a coalgebra such that there is a
unique coalgebra homomorphism from any other coalgebra into w.

The final coalgebra can be considered as the universe of all
possible behaviours. The mapping into the final coalgebra maps a
state to its behaviour.

Final coalgebras do not necessarily exist, but they exist for our
example functors. E.g., for the finite powerset functor: take all
possible transition systems and quotient by bisimilarity.

Final coalgebras are useless for algorithmic purposes. But they
induce a canonical notion of behavioural equivalence (two states
are equivalent if they are mapped to the same state in the final
coalgebra).
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Coalgebras in (Pseudo-)Metric Spaces

Idea:
e Define metric transition systems as coalgebras in PMet (the
category of pseudo-metric spaces and non-expansive functions)

e Lift existing functors on Set to functors on PMet (transform
metric on S to metric on F(S))

@ Pseudo-metric on the final coalgebra should be a metric (since
all states in the final coalgebra have different behaviour)
Existing results:

@ Final coalgebra result by Rutten for contractive functors
[Rutten, 1998]

@ Theory of probabilistic distances
[van Breugel and Worrell, 2005]
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Coalgebras in (Pseudo-)Metric Spaces

Our idea: general methods for lifting a functor F to metric spaces

~» Wasserstein lifting, Kantorovich lifting

We need one parameter: an evaluation function (algebra)

ev: F(R®) — Ry
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Coalgebras in (Pseudo-)Metric Spaces

Let d: X x X — RY° be a pseudo-metric and t;, t> € F(S):

deF(tl, tr) = inf{ev(F(d)(t)) | t € F(S x S), F(m;)(t) = t;}
Let d: X x X — R3° be a pseudo-metric and t;, t> € F(S):

d' (11, t2) = sup{de(ev(F(f)(t2)), ev(F(f)(t2))) |
f: (X,d) — (Rg°, de) non-expansive}

where de(x,y) = |x — y| for x,y € RE°.
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Coalgebras in (Pseudo-)Metric Spaces

Results

o d'f, d*F are both pseudo-metrics (for the Wasserstein lifting
we need some constraints on the evaluation function and weak
pullback preservation)

o d'F < gif
There are cases where d'F < d+f  ie., the
Kantorovich-Rubinstein duality does not necessarily hold.

@ Non-expansive functions and isometries (distance-preserving
functions) are preserved by lifting.

@ The Wasserstein lifting preserves metrics (if the infimum is
always a minimum).
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Coalgebras in (Pseudo-)Metric Spaces

Several standard metrics can be recovered by lifting. In each of

these cases the Kantorovich-Rubinstein duality holds.

functor | evaluation fct. resulting metric
Prin ev(R C R§°) = maxR | Hausdorff
D ev(p: R§® — [0,1])

= erRg° x - p(x) | Kantorovich
X+Y | ev(x e RF) =x distance on disjoint union
X xY | ev(x,y) = max{x,y} | maximum of distances
XxXY |evix,y)=x+y sum of distances

Last three cases: bifunctor lifting

25
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Computing Distances in Coalgebras

Compute metrics in a coalgebraic setting

Given a coalgebra in a.: S — F(S) compute its associated metric
d: S xS — R as the smallest fixed-point of:

d(s, t) = d" (a(s), a(t))

where df is an appropriate lifting (preserving isometries and
metrics).

If we compute the metric d,, for the final coalgebra w, we obtain a
final coalgebra in the category of (pseudo-)metric spaces.

If we compute the pseudo-metric d, for any other coalgebra «, we
obtain the pseudo-metric induced by the coalgebra homomorphism
f from « into the final coalgebra w, i.e.,

da(s, t) = du(f(s), f(t))
_ Behavioural Metrics — A Coalgebraic Approach 26



Trace Metrics

Ideas:

@ Work with coalgebras that model both implicit and explicit
branching
Coalgebras of the form a: S — F(T(S))
(F: explicit branching, T — monad: implicit branching)
Example: F(S) =2 x ST, T(S) = Psin(S)
(non-deterministic automata)

@ How to obtain the “right” notion of behavioural equivalence
(here: trace equivalence)?
First determinize the coalgebra, obtaining a coalgebra

a = F(us) o Ar(s) o T(a): T(S) = F(T(S))

where A\: TF = FT is a distributive law and p is the
multiplication of the monad.

Then determine behavioural equivalences, behavioural metrics,
etc. on the determinized coalgebra.
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Trace Metrics

Formally: embed Set into an Eilenberg-Moore category

Eilenberg-Moore category EM(T) of a monad T

@ Objects: algebras a: T(S) — S
with ao us = ids, ao Ta=ao us.
@ Arrows: Algebra homomorphisms

Embedding from Set to EM(T): S+ pus: T(T(S)) = S

o Lift the monad T to a monad T on PMet (under certain
conditions monad lift to monads).

o Lift the distributive law (i.e., natural transformation) to
PMet.

o Lift the functor F to PMet and then to EM(T) (using the
lifted distributive law).

@ Determinize the coalgebra and compute behavioural distances
in EM(T).

~ arbaraKonig  Behavioural Metrics - A Coalgebraic Approach 28
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Trace Metrics

Summary:

mal
o)
<
e
o
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.
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Trace Metrics
Examples for trace metrics, obtained by defining suitable
evaluation functions:

@ Non-deterministic automata:
We obtain the usual ultrametric on words, lifted to languages:

d(Ly, Lp) = ™!

where L1, L, CX* 0 < ¢ <1 and w is the shortest word such
that w € L1, w & Ly (or vice versa).

@ Probabilistic automata:
We obtain the total variation distance:

Aprop) =5 3 Ipa(w) = palw)
wer*

where p1, p2: £* — [0, 1] are weighted languages.



~ Motivation: Behavioural Equivalences & Metrics Examples Coalgebra Coalgebras in Metric Spaces Trace Metrics Conclusion
Conclusion

Other issues
@ Logical characterization of distances
@ A fibrational view on behavioural metrics

@ Quantitative linear-time/branching-time spectrum
[Fahrenberg et al., 2011]

e Distances different from real numbers (monoids, quantales,
...) [Fahrenberg and Legay, 2013]

@ Directed metrics (simulation distances) [de Alfaro et al., 2009]

e Algorithms (polynomial-time [Chen et al., 2012], on-the-fly
[Bacci et al., 2013], ...)
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