Behavioural Metrics – A Coalgebraic Approach

Barbara König

Universität Duisburg-Essen, Germany

Joint work with Paolo Baldan, Filippo Bonchi, Henning Kerstan

Overview

- 1 Motivation: Behavioural Equivalences & Metrics
- 2 Examples: Metric and Probabilistic Transition Systems
- Coalgebra: A General Framework for Transition Systems and Behavioural Equivalences
- 4 Coalgebras in Metric Spaces
- 5 Trace Metrics

6 Conclusion

Behavioural Equivalences

Behavioural equivalences (bisimilarity, trace equivalence, ...) relate states with the same behaviour

Applications

- Comparing a system with its specification
- Minimizing the state space
- Analysis of model transformations
- Verification of cryptographic protocols (are two protocols equivalent from the point of view of an external observer, a.k.a. the attacker?)

Behavioural Metrics

Finding a quantitative notion of behavioural equivalence ...

- Do not insist on the exact same behaviour.
- Measure the behavioural distance between two states.
- Make statements such as "the behaviour of two states differs only by ε ".

 \rightsquigarrow behavioural metrics

Behavioural Metrics

Pseudo-metric space

Let X be a set, $\mathbb{R}_0^{\infty} = \mathbb{R}_0 \cup \{\infty\}$. A pseudo-metric is a function $d: X \times X \to \mathbb{R}_0^{\infty}$ where for all $x, y, z \in X$:

• d(x,x) = 0 (identity) (metric if $(d(x,y) = 0 \Rightarrow x = y)$)

2
$$d(x,y) = d(y,x)$$
 (symmetry)

3
$$d(x,z) \le d(x,y) + d(y,z)$$
 (triangle inequality)

A (pseudo-)metric space is a pair (X, d) where X is a set and d is a (pseudo-)metric on X.

Non-expansive function

A non-expansive function $f: X \to Y$ between two (pseudo-)metric spaces $(X, d_X), (Y, d_Y)$ satisfies for $x, y \in X$

$$d_X(x,y) \geq d_Y(f(x),f(y))$$

Metric transition system [de Alfaro et al., 2009] (slightly simplified)

Let (X, d_r) be a metric space. A metric transition system is a tuple $M = (S, \tau, [\cdot])$, where S is a set of states, $\tau \subseteq S \times S$ is a transition relation and every state s is assigned an element $[s] \in X$.

Hausdorff metric (metric on finite sets)

Lifting a metric space (X, d) to $(\mathcal{P}_{fin}(X), d')$: for $X_1, X_2 \subseteq X$:

$$d^{H}(X_{1}, X_{2}) = \max\{ \max_{x \in X_{1}} \min_{y \in X_{2}} d(x, y), \max_{y \in X_{2}} \min_{x \in X_{1}} d(x, y) \}$$

- For each element x (in X₁, X₂) take the closest element y in the other set and measure the distance d(x, y)
- Take the maximum of all such distances.

Example: Hausdorff metric X_2 X_1

Distance of states in a metric transition system

Compute the smallest fixed-point of

$$d(s,t) = \max\{ d_r([s],[t]), d^H(\tau(s),\tau(t)) \}$$

Distance of states in a metric transition system

Compute the smallest fixed-point of

$$d(s,t) = \max\{ \ d_r([s],[t]), \ d^H(\tau(s),\tau(t)) \}$$

Probabilistic Transition Systems

Probabilistic transition system

A probabilistic transition system is a tuple P = (S, T, p), where S is a set of states, $T \subseteq S$ is the set of terminal states and every state $s \notin T$ is assigned a probability distribution $p_s \colon S \to [0, 1]$.

Studied by Larsen/Skou [Larsen and Skou, 1989], van Breugel/Worrell [van Breugel and Worrell, 2005] (again simplified)

Probabilistic Transition Systems

Terminal state: 4

What is the distance between states 1 and 2? \rightsquigarrow distance ε

Probabilistic Transition Systems

Distance of states in a probabilistic transition system

Compute the smallest fixed-point of

$$d(s,t) = \begin{cases} 1 & \text{if } s \in T, t \notin T \text{ or } s \notin T, t \in T \\ 0 & \text{if } s, t \in T \\ d^P(p_s, p_t) & \text{otherwise} \end{cases}$$

What does it mean to compute the distance between two probability distributions p_s , p_t on a metric space?

Transportation Problem & Duality [Villani, 2009]

Interpret p_s as supply and p_t as demand. Transporting a unit along a distance d costs d.

What is the minimal possible cost?

transport ¹/₂ from A to B: cost ¹/₂ · ¹/₂ = ¹/₄
transport ¹/₂ from A to C: cost 1 · ¹/₂ = ¹/₂
Overall cost: ³/₄ (= distance d^P(p_s, p_t))

Transportation Problem & Duality [Villani, 2009]

Alternative: you have a logistics firm and handle transportation. You do this by setting a price (per unit) for locations A, B, C (pr_A, pr_B, pr_B) . You buy and sell for this price at every location. Your prices have to satisfy: $pr_B - pr_A \leq d(A, B)$ (otherwise you do not get the contract).

You want to maximize your profit. Which prices do you set? $\rightarrow pr_A = 0$, $pr_B = \frac{1}{2}$, $pr_C = 1$

• you get:
$$\frac{1}{2} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{3}{4}$$

• you pay: $0 \cdot 1 = 0$

Profit: $\frac{3}{4}$

Transportation Problem & Duality [Villani, 2009]

Duality in transportation theory (Kantorovich-Rubinstein duality) The following values coincide for a metric $d: X \times X \rightarrow [0, 1]$ and two probability distributions $p, q: X \rightarrow [0, 1]$:

The minimum of
$$\sum_{x,y} P(x,y) \cdot d(x,y)$$

for all probability distributions $P: X \times X \to [0, 1]$ (couplings, indicating transport from x to y), such that $\sum_{y \in X} P(x, y) = p(x)$, $\sum_{x \in X} P(x, y) = q(y)$ (marginal distributions are p, q)

The maximum of $|\sum_{x \in X} f(x) \cdot p(x) - \sum_{x \in X} f(x) \cdot q(x)|$ for all nonexpansive functions $f: X \to [0, 1]$

Generalization of Metric Transition Systems

This leads to the following questions:

- Are these metrics canonical/natural in some way?
- How can we define other metric transition systems (with different branching types)?
- Are there generic methods to compute metrics?

 \rightsquigarrow use coalgebra, a general theory of behavioural equivalences, to answer these questions.

Coalgebra offers a toolbox from which transition systems with different branching types can be constructed and analyzed.

Functors

Typical examples of functors

- (finite) powerset functor $\mathcal{P}_{fin}(X) = \{Y \mid Y \subseteq X, Y \text{ finite}\}$
- probability distribution functor $\mathcal{D}(X) = \{ p \colon X \to [0,1] \mid \sum_{x \in X} p(x) = 1 \}$
- product functor $F(X) = A \times X$ (for a fixed set X)
- coproduct functor (disjoint union) F(X) = X + B (for a fixed set B)
- combinations of these functors

The functor defines the branching type of the transition system:

- $\bullet\,$ powerset functor $\rightsquigarrow\,$ non-determinism
- probability distribution functor \rightsquigarrow probabilistic branching
- product functor \rightsquigarrow labelling
- coproduct functor \rightsquigarrow termination, exceptions, failure

Coalgebras & Coalgebra Homomorphisms

Transition systems are now called coalgebras:

Coalgebra & Coalgebra Homomorphism

Let F be a given functor. A coalgebra is a function $\alpha \colon S \to F(S)$ (where S is the state set).

A coalgebra homomorphism between two coalgebras $\alpha \colon S \to F(S)$, $\beta \colon S' \to F(S')$ is a function $f \colon S \to S'$ satisfying $F(f) \circ \alpha = \beta \circ f$.

Coalgebra homomorphisms are functions between transition systems that preserve branching. They correspond to functional bisimulations.

Coalgebras & Coalgebra Homomorphisms

Our examples can be represented as coalgebras in the following way:

Metric transition systems

$$\alpha\colon S\to X\times\mathcal{P}(S)$$

where X is a fixed metric space.

Probabilistic transition systems

$$\beta \colon S \to \mathcal{D}(S) + 1$$

where 1 is a singleton set (1 = { $\sqrt{}$ }), representing termination.

Coalgebras & Coalgebra Homomorphisms

Final Coalgebra

The final colgebra $\omega \colon \Omega \to F(\Omega)$ is a coalgebra such that there is a unique coalgebra homomorphism from any other coalgebra into ω .

The final coalgebra can be considered as the universe of all possible behaviours. The mapping into the final coalgebra maps a state to its behaviour.

Final coalgebras do not necessarily exist, but they exist for our example functors. E.g., for the finite powerset functor: take all possible transition systems and quotient by bisimilarity.

Final coalgebras are useless for algorithmic purposes. But they induce a canonical notion of behavioural equivalence (two states are equivalent if they are mapped to the same state in the final coalgebra).

Idea:

- Define metric transition systems as coalgebras in **PMet** (the category of pseudo-metric spaces and non-expansive functions)
- Lift existing functors on **Set** to functors on **PMet** (transform metric on *S* to metric on *F*(*S*))
- Pseudo-metric on the final coalgebra should be a metric (since all states in the final coalgebra have different behaviour)

Existing results:

- Final coalgebra result by Rutten for contractive functors [Rutten, 1998]
- Theory of probabilistic distances [van Breugel and Worrell, 2005]

Our idea: general methods for lifting a functor F to metric spaces

 \rightsquigarrow Wasserstein lifting, Kantorovich lifting

Evaluation function

We need one parameter: an evaluation function (algebra)

$$\mathit{ev} \colon \mathit{F}(\mathbb{R}^\infty_0) o \mathbb{R}^\infty_0$$

Wasserstein lifting

Let
$$d: X \times X \to \mathbb{R}_0^\infty$$
 be a pseudo-metric and $t_1, t_2 \in F(S)$:

$$d^{\downarrow F}(t_1, t_2) = \inf \{ ev(F(d)(t)) \mid t \in F(S \times S), F(\pi_i)(t) = t_i \}$$

Kantorovich lifting

Let $d: X \times X \to \mathbb{R}_0^\infty$ be a pseudo-metric and $t_1, t_2 \in F(S)$:

$$egin{aligned} d^{\uparrow F}(t_1,t_2) &= \sup\{d_e(ev(F(f)(t_1)),ev(F(f)(t_2))) \mid \ f \colon (X,d)
ightarrow (\mathbb{R}_0^\infty,d_e) ext{ non-expansive} \} \end{aligned}$$

where $d_e(x, y) = |x - y|$ for $x, y \in \mathbb{R}_0^{\infty}$.

Results

- d^{↑F}, d^{↓F} are both pseudo-metrics (for the Wasserstein lifting we need some constraints on the evaluation function and weak pullback preservation)
- $d^{\uparrow F} \leq d^{\downarrow F}$

There are cases where $d^{\uparrow F} < d^{\downarrow F}$, i.e., the

Kantorovich-Rubinstein duality does not necessarily hold.

- Non-expansive functions and isometries (distance-preserving functions) are preserved by lifting.
- The Wasserstein lifting preserves metrics (if the infimum is always a minimum).

Several standard metrics can be recovered by lifting. In each of these cases the Kantorovich-Rubinstein duality holds.

functor	evaluation fct.	resulting metric
$\mathcal{P}_{\mathit{fin}}$	$ev(R\subseteq \mathbb{R}_0^\infty)=\max R$	Hausdorff
\mathcal{D}	$ev(p\colon \mathbb{R}_0^\infty o [0,1])$	
	$=\sum_{x\in\mathbb{R}_{0}^{\infty}}x\cdot p(x)$	Kantorovich
X + Y	$ev(x \in \mathbb{R}_0^\infty) = x$	distance on disjoint union
$X \times Y$	$ev(x,y) = \max\{x,y\}$	maximum of distances
$X \times Y$	ev(x,y) = x + y	sum of distances

Last three cases: bifunctor lifting

Computing Distances in Coalgebras

Compute metrics in a coalgebraic setting

Given a coalgebra in $\alpha \colon S \to F(S)$ compute its associated metric $d \colon S \times S \to \mathbb{R}_0^\infty$ as the smallest fixed-point of:

$$d(s,t) = d^{\mathsf{F}}(\alpha(s),\alpha(t))$$

where d^F is an appropriate lifting (preserving isometries and metrics).

If we compute the metric d_{ω} for the final coalgebra ω , we obtain a final coalgebra in the category of (pseudo-)metric spaces.

If we compute the pseudo-metric d_{α} for any other coalgebra α , we obtain the pseudo-metric induced by the coalgebra homomorphism f from α into the final coalgebra ω , i.e.,

$$d_{\alpha}(s,t) = d_{\omega}(f(s),f(t))$$

Ideas:

• Work with coalgebras that model both implicit and explicit branching

Coalgebras of the form $\alpha: S \to F(T(S))$ (*F*: explicit branching, *T* – monad: implicit branching) Example: $F(S) = 2 \times S^{\Sigma}$, $T(S) = \mathcal{P}_{fin}(S)$ (non-deterministic automata)

 How to obtain the "right" notion of behavioural equivalence (here: trace equivalence)?
 First determinize the coalgebra, obtaining a coalgebra

 $\alpha^{\#} = F(\mu_{S}) \circ \lambda_{T(S)} \circ T(\alpha) \colon T(S) \to F(T(S))$

where $\lambda: TF \Rightarrow FT$ is a distributive law and μ is the multiplication of the monad.

Then determine behavioural equivalences, behavioural metrics, etc. on the determinized coalgebra.

Formally: embed Set into an Eilenberg-Moore category

Eilenberg-Moore category $\mathcal{EM}(T)$ of a monad T

- Objects: algebras a: T(S) → S with a ∘ µ_S = id_S, a ∘ Ta = a ∘ µ_S.
- Arrows: Algebra homomorphisms

Embedding from **Set** to $\mathcal{EM}(T)$: $S \mapsto \mu_S \colon T(T(S)) \to S$

- Lift the monad T to a monad \overline{T} on **PMet** (under certain conditions monad lift to monads).
- Lift the distributive law (i.e., natural transformation) to **PMet**.
- Lift the functor F to PMet and then to \$\mathcal{E}M(\overline{T})\$ (using the lifted distributive law).
- Determinize the coalgebra and compute behavioural distances in *EM*(*T*).

Summary:

Examples for trace metrics, obtained by defining suitable evaluation functions:

• Non-deterministic automata:

We obtain the usual ultrametric on words, lifted to languages:

$$d(L_1,L_2)=c^{|w|}$$

where $L_1, L_2 \subseteq \Sigma^*$, 0 < c < 1 and w is the shortest word such that $w \in L_1$, $w \notin L_2$ (or vice versa).

• Probabilistic automata:

We obtain the total variation distance:

$$d(p_1,p_2) = rac{1}{2} \cdot \sum_{w \in \Sigma^*} |p_1(w) - p_2(w)|$$

where $\textit{p}_1,\textit{p}_2\colon \Sigma^* \to [0,1]$ are weighted languages.

Conclusion

Other issues

- Logical characterization of distances
- A fibrational view on behavioural metrics
- Quantitative linear-time/branching-time spectrum [Fahrenberg et al., 2011]
- Distances different from real numbers (monoids, quantales, ...) [Fahrenberg and Legay, 2013]
- Directed metrics (simulation distances) [de Alfaro et al., 2009]
- Algorithms (polynomial-time [Chen et al., 2012], on-the-fly [Bacci et al., 2013], ...)

- Bacci, G., Bacci, G., Larsen, K. G., and Mardare, R. (2013). On-the-fly exact computation of bisimilarity distances. In *Proc. of TACAS '13*, pages 1–15. Springer. LNCS/ARCoSS 7795.
- Chen, D., van Breugel, F., and Worrell, J. (2012).
 On the complexity of computing probabilistic bisimilarity.
 In *Proc. of FOSSACS '12*, pages 437–451. Springer.
 LNCS/ARCoSS 7213.
- de Alfaro, L., Faella, M., and Stoelinga, M. (2009).
 Linear and branching system metrics.
 IEEE Transactions on Software Engineering, 25(2).
- Fahrenberg, U. and Legay, A. (2013).
 Generalized quantitative analysis of metric transition systems.
 In *Proc. of APLAS '13*, pages 192–208. Springer.
 LNCS 8301.
- Fahrenberg, U., Legay, A., and Thrane, C. (2011).

Motivation: Behavioural Equivalences & Metrics Examples Coalgebra Coalgebras in Metric Spaces Trace Metrics Conclusion

The quantitative linear-time-branching-time spectrum. In *Proc. of FSTTCS '11*, volume 13 of *LIPIcs*, pages 103–114. Schloss Dagstuhl – Leibniz Center for Informatics.

- Larsen, K. G. and Skou, A. (1989).
 Bisimulation through probabilistic testing (preliminary report).
 In Proc. of POPL '89, pages 344–352. ACM.
 - Rutten, J. (1998).
 - Relators and metric bisimulations.
 - In Proc. of CMCS '98 (Workshop on Coalgebraic Methods in Computer Science), number 11 in ENTCS, pages 252–258.
- van Breugel, F. and Worrell, J. (2005).
 Approximating and computing behavioural distances in probabilistic transition systems.
 Theoretical Computer Science, 360:373–385.
- 🔋 Villani, C. (2009).

Optimal Transport – Old and New, volume 338 of *A Series of Comprehensive Studies in Mathematics*. Springer.