Nominal Automata with Name Binding

Lutz Schröder^a Dexter Kozen^b Stefan Milius^a Thorsten Wißmann^a

^aFriedrich-Alexander-Universität Erlangen-Nürnberg

^bCornell University

IFIP WG 1.3 Meeting, Eindhoven 2016

Introduction

- Languages/expressions/automata over infinite alphabets
 - Need to bind letters to variables
 - Test for equality and inequality
 - Local vs. global freshness
 - Membership, emptyness typically decidable
 - Inclusion, universality often undecidable under local freshness
- Here: introduce regular nondeterministic nominal automata
 - Automaton model over nominal sets
 - Explicit name binding
 - Two semantics:
 - Global freshness: = session automata, NKA
 - Local freshness: = name-dropping non-spontaneous NOFAs
 - Inclusion decidable

Finite Memory Automata (FMA) / Register Automata

[Kaminski/Francez FOCS 1990]

- Finite state space
- Fixed set of registers to store letters
- \blacktriangleright \rightarrow infinite set of configurations
- Nondeterministic transitions:
 - Read locally fresh name into register, or
 - Read letter equalling the one stored in a given register
 - Extension: nondeterministically update register
- 'First letter is never seen again' is acceptable
- 'Last letter has not been seen before' acceptable using nondeterministic update
- 'All letters are distinct' is not acceptable (but its complement is)
- Inclusion, universality undecidable

[Bollig et al. DLT 2013]

- Like session automata but read globally fresh names into registers
- 'All letters are distinct' acceptable
- Universal language not acceptable
- Inclusion decidable

[Kaminski/Tan 2006]

- Like FMA but check only equality and inequality w.r.t. finite set of constants
- 'Last letter has been seen before' acceptable
- 'Second letter distinct from first' not acceptable
- Decidable inclusion problem

- A fixed set of names
- ► G group of finite permutations of A
- ► G-set = set X with action of G
- $A \subseteq \mathbb{A}$ support of $x \in X$ if $Fix(A) \subseteq fix(x)$
- X nominal set if every $x \in X$ has finite support
- Then, every x has a least support supp(x)
- E.g. \mathbb{A}^n , $\mathcal{P}_{fs}(X)$.
- X orbit-finite if X/G is finite
 - = finitely presentable in lfp category Nom

[Bojanczyk/Klin/Lasota LICS 2011]

- Orbit-finite set of states
- Equivariant set of transitions $q \xrightarrow{a} q'$, $a \in \mathbb{A}$
- Equivariant sets of initial / final states
- States \approx configurations of finite-state models
- NOFAs = FMA with nondeterministic update

[Gabbay/Ciancia FOSSACS 2011]

- Regular expressions + va.r 'bind a in r'
- Semantics: languages over v-strings [Kozen et al. ICALP 2012]
- On closed expressions: equivalent to original global freshness semantics
- E.g. (va. a)* = 'all letters distinct'

Regular Nondeterministic Nominal Automata (RNNA)

- Orbit-finite set of states
- Initial state, equivariant set of final states
- Transitions:
 - $q \xrightarrow{a} q'$ free transition
 - $q \xrightarrow{|a|} q'$ bound transition
- |a is va. a with never-ending scope
- Transitions closed under α , finitely branching up to α
 - ▶ Implies e.g. $q \xrightarrow{|a|} q' \Longrightarrow \operatorname{supp}(q') \subseteq \operatorname{supp}(q) \cup \{a\}$
- Bar strings = strings over $\overline{\mathbb{A}} = \mathbb{A} \cup \{ |a| | a \in \mathbb{A} \}$
- Bar strings / $\alpha \cong v$ -strings / α
- Literal language $L_0(A) \subseteq \overline{\mathbb{A}}^*$
- Bar language $L_{\alpha}(A) = L_0(A)/\alpha$

Coalgebra

NOFAs are coalgebras for

$$FX = 2 \times \mathcal{P}_{fs}(\mathbb{A} \times X).$$

RNNAs are coalgebras for

$$NX = 2 \times \mathcal{P}_{ufs}(\mathbb{A} \times X) \times \mathcal{P}_{ufs}(\mathbb{A}]X)$$

where [A]X is abstraction

$$[\mathbb{A}]X = (\mathbb{A} \times X)/\sim$$

with \sim being α -equivalence

$$(a,x) \sim (b,y) \iff (ca) \cdot x = (cb) \cdot x$$
 for fresh c .

 $L_0(A)$ need not be closed under α :

$$\rightarrow s() \xrightarrow{|a|} t(a) \xrightarrow{|b|} u(a,b)$$

A name-dropping if for $N \subseteq \text{supp}(q)$ have restriction $q|_N$ s.t.

- $supp(q|_N) = N$
- $q|_N$ behaves like q as far as possible.

Theorem Name-dropping is w.l.o.g. and ensures closure under α

E.g. above, add $u(\perp, b)$

- ► = NFA over Ā
- \cong regular expr. over $\overline{\mathbb{A}}$
 - e.g. (|a)*a 'all letters distinct except the last two'
- Session automata (on closed bar languages)

From bar NFA A to name-dropping RNNA \overline{A} :

States

$$(q, \pi \operatorname{Fix} N)$$

for $N \subseteq \operatorname{supp}(q)$

From RNNA A to bar NFA A_0 :

- Pick $\mathbb{A}_0 \subseteq A$ s.t. $|\text{supp}(q)| \leq |\mathbb{A}_0|$ for all q
- ▶ States of A_0 = states q of A s.t. supp $(q) \subseteq \mathbb{A}_0$
- ▶ Need one extra name $* \notin \mathbb{A}_0$ for bound transitions in A_0

To check $L_{\alpha}(A) \not\subseteq L_{\alpha}(B)$ for bar NFA A, B

- run A nondeterministically vs. determinization of \overline{B} (literally)
- look for acceptance in A and rejection in \overline{B}

Uses exponential space (hence terminates) because only names from *A* appear new on the right.

In fact: para-PSPACE

Essentially known for session automata

Apply operator

$$D(L) = \{w \mid [w]_{\alpha} \in L\}$$

to $L_{\alpha}(A)$.

- Obtain local freshness semantics as quotient of global freshness, e.g.
 - |a|b: all two-letter words
 - |a|ba: all words of form *aba* with $a \neq b$
 - $(|a)^*|b(|a)^*b$: last letter has been seen before
 - ► $|a(|b)^*a$: first letter never seen again except at the end
- Equivalent to name-dropping non-spontaneous NOFAs
- Strictly contains FSUBAs (without constants)
- Inclusion remains decidable (allow matching a with |a)

