

$$
\begin{aligned}
& \text { Modeling and reasoning } \\
& \text { with } \mathcal{I} \text {-polynomial data types }
\end{aligned}
$$

Peter Padawitz, TU Dortmund, Germany
Monday $11^{\text {th }}$ April, 2016

Road map

- Some examples that motivated this approach
- I-polynomial types 10
- Signatures 11
- Terms and coterms 12
- Σ-algebras and Σ-functors 19
- Term folding und state unfolding 26
- From constructors to destructors and backwards 30
- Iterative equations 35
- Typed theories 38

The next steps:

- First-order and modal formulas
- Congruences and invariants
- Induction and coinduction
- Varieties and covarieties
- Term monads and coterm comonads

Some examples that motivated this approach
∞ points to the carrier set of a standard model of the respective signature.

Constructive signatures

- Natcos \mathbb{N}

$$
\begin{aligned}
S=\{\text { nat }\}, \quad \mathcal{I}=\emptyset, \quad F=\{ & \text { zero }: 1 \rightarrow \text { nat } \\
& \text { succ }: \text { nat } \rightarrow \text { nat }\}
\end{aligned}
$$

- $\operatorname{Lists}(X, Y)$ C $X^{*} \times I$

$$
\begin{aligned}
S=\{\text { list }\}, \quad \mathcal{I}=\{X, Y\}, \quad F=\{ & \text { nil }: Y \rightarrow \text { list } \\
& \text { cons }: X \times \text { list } \rightarrow \text { list }\}
\end{aligned}
$$

- $\operatorname{List}(X)=_{\text {def }} \operatorname{Lists}(X, 1)$ © X^{*},
alternatively:

$$
S=\{\text { list }\}, \quad \mathcal{I}=\left\{X, \mathbb{N}_{>1}\right\}, \quad F=\left\{[\ldots]: X^{*} \rightarrow \text { list }\right\}
$$

- Bintree (X) co binary trees of finite depth with node labels from X

$$
\begin{aligned}
S=\{\text { btree }\}, \quad \mathcal{I}=\{X\} \quad F=\{ & \text { empty: } 1 \rightarrow \text { btree }, \\
& \text { bjoin }: \text { btree } \times X \times \text { btree } \rightarrow \text { btree }\}
\end{aligned}
$$

- Tree (X, Y) co finitely branching trees of finite depth with node labels from X and edge labels from Y

$$
\begin{aligned}
S=\{\text { tree }, \text { trees }\}, \mathcal{I}=\{X, Y\}, \quad F=\{ & j \text { oin }: X \times \text { trees } \rightarrow \text { tree }, \\
& \text { nil }: 1 \rightarrow \text { trees }, \\
& \text { cons }: Y \times \text { tree } \times \text { trees } \rightarrow \text { trees }\} .
\end{aligned}
$$

- $\operatorname{Reg}(B S)$ cor regular expressions over $B S$

$$
\begin{aligned}
S=\{r e g\}, \mathcal{I}=\{B S\}, \quad F=\{ & \text { par }: r e g \times r e g \rightarrow r e g, & & \text { (parallel composition) } \\
& \text { seq }: r e g \times r e g \rightarrow r e g, & & \text { (sequential composition) } \\
& \text { iter }: r e g \rightarrow r e g, & & \text { (iteration) } \\
& \text { base }: B S \rightarrow r e g\} & & \text { (embedding of base sets) }
\end{aligned}
$$

- CCS(Act) Calculus of Communicating Systems

$$
\begin{array}{rlrl}
S= & \{ & \text { proc }\}, \quad \mathcal{I}=\{\text { Act }\}, & \\
F= & \{\text { pre }: \text { Act } \rightarrow \text { proc }, & & \text { (prefixing by an action) } \\
& \text { cho }: \text { proc } \times \text { proc } \rightarrow \text { proc }, & & \text { (choice) } \\
& \text { par : proc } \times \text { proc } \rightarrow \text { proc }, & & \text { (parallelism) } \\
& \text { res }: \text { proc } \times \text { Act } \rightarrow \text { proc }, & & \text { (restriction) } \\
& \text { rel }: \text { proc } \times \text { Act Act } \rightarrow \text { proc }\} . & \text { (relabelling) }
\end{array}
$$

Destructive signatures

- coNat $\cos \mathbb{N} \cup\{\infty\}$

$$
S=\{\text { nat }\}, \quad \mathcal{I}=\emptyset, \quad F=\{\text { pred }: \text { nat } \rightarrow 1+\text { nat }\}
$$

- $\operatorname{coList}(X) \omega X^{*} \cup X^{\mathbb{N}}(\operatorname{coList}(1) \widehat{=} \operatorname{coNat})$

$$
S=\{\text { list }\}, \quad \mathcal{I}=\{X\}, \quad F=\{\text { split }: \text { list } \rightarrow 1+X \times \text { list }\}
$$

- coBintree (X) binary trees of finite or infinite depth with node labels from X

$$
S=\{\text { btree }\}, \quad \mathcal{I}=\{X\}, \quad F=\{\text { split }: \text { btree } \rightarrow 1+\text { btree } \times X \times \text { btree }\}
$$

- coTree (X, Y) finitely or infinitely branching trees of finite or infinite depth with node labels from X and edge labels from Y

$$
\begin{aligned}
S=\{\text { tree }\}, \quad \mathcal{I}=\{X, Y\}, \quad F=\{ & \text { root }: \text { tree } \rightarrow X, \\
& \text { subtrees }: \text { tree } \rightarrow \text { etrees }, \\
& \text { split }: \text { etrees } \rightarrow 1+Y \times \text { tree } \times \text { etrees }\} .
\end{aligned}
$$

- $\operatorname{FB} \operatorname{Tr} e e(X, Y)$ canitely branching trees of finite or infinite depth with node labels from X and edge labels from Y

$$
\begin{aligned}
S=\{\text { tree }\}, \quad \mathcal{I}=\left\{X, Y, \mathbb{N}_{>1}\right\}, \quad F=\{ & \text { root : tree } \rightarrow X \\
& \text { subtrees : tree } \left.\rightarrow(Y \times \text { tree })^{*}\right\}
\end{aligned}
$$

- Inftree (X, Y) finitely branching trees of infinite depth with node labels from X and edge labels from Y

$$
\begin{aligned}
S=\{\text { tree }\}, \quad \mathcal{I}=\left\{X, Y, \mathbb{N}_{>1}\right\}, \quad F=\{ & \text { root : tree } \rightarrow X \\
& \text { subtrees : tree } \left.\rightarrow(Y \times \text { tree })^{+}\right\}
\end{aligned}
$$

- DAut $(X, Y) \propto Y^{X^{*}}=$ behaviors of deterministic Moore automata with input from X and output from Y

$$
\begin{aligned}
S=\{\text { state }\}, \quad \mathcal{I}=\{X, Y\}, \quad F=\{ & \delta: \text { state } \rightarrow \text { state } e^{X} \\
& \beta: \text { state } \rightarrow Y\}
\end{aligned}
$$

- $\operatorname{Acc}(X)=_{\text {def }} \operatorname{DAut}(X, 2) \mathcal{P}(X) \cong 2^{X^{*}}=$ behaviors of deterministic acceptors of languages over X
- $\operatorname{Stream}(X)=\operatorname{def}^{\operatorname{DAut}}(1, X) \propto X^{\mathbb{N}}$

$$
\begin{aligned}
S=\{\text { stream }\}, \quad \mathcal{I}=\{X\}, \quad F=\{ & \text { head }: \text { stream } \rightarrow X \\
& \text { tail }: \text { stream } \rightarrow \text { stream }\}
\end{aligned}
$$

alternatively:

$$
S=\{\text { stream }\}, \quad \mathcal{I}=\{X, \mathbb{N}\}, \quad F=\left\{\text { get }: \text { stream } \rightarrow X^{\mathbb{N}}\right\}
$$

- Infbintree (X) © ∞ binary trees of infinite depth with node labels from X

$$
\begin{aligned}
S=\{\text { btree }\}, \quad \mathcal{I}=\{X\}, \quad F=\{ & \text { root }: \text { btree } \rightarrow X \\
& \text { left, right }: \text { btree } \rightarrow \text { btree }\}
\end{aligned}
$$

- PAut $(X, Y) \cos (1+Y)^{X^{*}}=$ partial automata

$$
\begin{aligned}
S=\{\text { state }\}, \quad \mathcal{I}=\{X, Y\}, \quad F=\{ & \delta: \text { state } \rightarrow(1+\text { state })^{X} \\
& \beta: \text { state } \rightarrow Y\}
\end{aligned}
$$

- $\operatorname{NAut}(X, Y) \propto\left(Y^{*}\right)^{X^{*}}=$ behaviors of non-deterministic image finite automata

$$
\begin{aligned}
S\{\text { state }\}, \quad \mathcal{I}=\left\{X, Y, \mathbb{N}_{>1}\right\}, \quad F=\{ & \delta: \text { state } \rightarrow\left(\text { state }^{*}\right)^{X} \\
& \beta: \text { state } \rightarrow Y\}
\end{aligned}
$$

- WAut $(X, Y, C M) \cos \left((C M \times Y)^{*}\right)^{X^{*}}=$ behaviors of $C M$-weighted automata

$$
\begin{aligned}
S=\{\text { state }\}, \quad \mathcal{I}=\left\{X, Y, C M, \mathbb{N}_{>1}\right\}, \quad F=\{ & \delta: \text { state } \rightarrow\left((\text { state } \times C M)^{*}\right)^{X} \\
& \beta: \text { state } \rightarrow Y\}
\end{aligned}
$$

- $\operatorname{SAut}(X, Y) c\left(([0,1] \times Y)^{*}\right)^{X^{*}}=$ behaviors of stochastic automata

$$
\begin{aligned}
& S=\{\text { state }\}, \quad \mathcal{I}=\left\{X, Y,[0,1], \mathbb{N}_{>1}\right\}, \quad F=\left\{\delta: \text { state } \rightarrow\left((\text { state } \times[0,1])^{*}\right)^{X},\right. \\
& \beta: \text { state } \rightarrow Y \text { \}. }
\end{aligned}
$$

- Proctree $(A c t)$ coses trees whose edges are labelled with actions

$$
S=\{\text { tree }\}, \quad \mathcal{I}=\left\{\text { Act }, \mathbb{N}_{>1}\right\}, \quad F=\left\{\delta: \text { tree } \rightarrow(\text { Act } \times \text { tree })^{*}\right\}
$$

- Class (\mathcal{I}) cohaviors of a class with n methods

$$
\begin{aligned}
S & =\{\text { state }\}, \quad \mathcal{I}=\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, E_{1}, \ldots, E_{n}\right\} \\
F & =\left\{m_{i}: \text { state } \rightarrow\left(\left(\text { state } \times Y_{i}\right)+E_{i}\right)^{X_{i}} \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

I-polynomial types

Let S be a finite set and \mathcal{I} be a set of nonempty sets (of indices), implicitly including the one-element set $1=\{\epsilon\}$, the two-element set $2=\{0,1\}$ and the n-element set $[n]=\{1, \ldots, n\}$ for all $n>1.1,2$ and $[\mathrm{n}]$ are omitted in the listings of index sets of sample signatures.

The set $\mathcal{T}(S, \mathcal{I})$ of \mathcal{I}-polynomial types over S is inductively defined as follows:

- $S \cup \mathcal{I} \subseteq \mathcal{T}(S, \mathcal{I})$.
- For all $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I}), \coprod_{i \in I} e_{i}, \prod_{i \in I} e_{i} \in \mathcal{T}(S, \mathcal{I})$.

For alle $I \in \mathcal{I}, n>1$ and $e, e_{1}, \ldots, e_{n} \in \mathcal{T}(S, \mathcal{I})$ we use the following short notations:

$$
\begin{aligned}
e_{1} \times \cdots \times e_{n} & ={ }_{\text {def }} \quad \prod_{i \in[n]} e_{i}, \\
e_{1}+\cdots+e_{n} & ={ }_{\text {def }} \coprod_{i \in[n]} e_{i}, \\
e^{I} & ={ }_{\text {def }} \prod_{i \in I} e, \\
e^{n} & ={ }_{\text {def }} \quad e^{[n]}, \\
e^{+} & ={ }_{\text {def }} e+\coprod_{n>1} e^{n}, \\
e^{*} & ={ }_{\text {def }} 1+e^{+} .
\end{aligned}
$$

Signatures

A signature $\Sigma=(S, \mathcal{I}, F)$ consists of sets S and \mathcal{I} as above and a finite set F of typed function symbols ("operations") $f: e \rightarrow e^{\prime}$ with $e, e^{\prime} \in \mathcal{T}(S, \mathcal{I})$. $f: e \rightarrow e^{\prime} \in F$ is a constructor if $e^{\prime} \in S$ and a destructor if $e \in S$.
Σ is constructive if F consists of constructors and for all $s \in S, \mathcal{I}$ implicitly contains $\{s\}$ and $\{f \in F \mid \operatorname{ran}(f)=s\}$.
Σ is destructive if F consists of destructors and for all $s \in S, \mathcal{I}$ implicitly contains $\{s\}$ and $\{f \in F \mid \operatorname{dom}(f)=s\}$.

Terms and coterms

$A \multimap B$ denotes the set of partial functions from A to B.
$L \subseteq A^{*}$ is prefix closed if for all $w \in A^{*}$ and $a \in A$, wa $\in L$ implies $w \in L$.
A deterministic tree is a partial function $f: A^{*} \multimap B$ with prefix closed domain.
f may be written as a kind of record:

$$
t_{f}=f(\epsilon)\left\{x \rightarrow t_{\lambda w . f(x w)} \mid x \in \operatorname{def}(t) \cap A\right\}
$$

f is well-founded if there is $n \in \mathbb{N}$ with $|w| \leq n$ for all $w \in \operatorname{def}(t)$, intuitively: all paths emanating from the root are finite.
$\operatorname{dtr}(A, B)$ denotes the set of all deterministic trees from A^{*} to B. $w d \operatorname{tr}(A, B)$ denotes the set of all wellfounded trees of $\operatorname{dtr}(A, B)$.

Let $\Sigma=(S, \mathcal{I}, F)$ be a signature, V be an S-sorted set,

$$
\begin{aligned}
E L_{\Sigma} & =\bigcup \mathcal{I} \cup\{\text { sel }\}, & \text { (edge labels) } \\
N L_{\Sigma, V} & =\bigcup \mathcal{I} \cup V \cup\{t u p\} . & \text { (node labels) }
\end{aligned}
$$

Let Σ be constructive.
The set $C T_{\Sigma}(V) \Sigma$-terms over V is the greatest $\mathcal{T}(S, \mathcal{I})$-sorted set M of subsets of $d \operatorname{tr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ with the following properties: Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

- $M_{I}=I$.
- For all $s \in S$ and $t \in M_{s}, t \in V_{s}$ or $t=c\left\{\right.$ sel $\left.\rightarrow t^{\prime}\right\}$ for some $c: e \rightarrow s \in F$ and $t^{\prime} \in M_{e}$.
- For all $t \in M_{\prod_{i \in I} e_{i}}$ and $i \in I, t=\operatorname{tup}\left\{i \rightarrow t_{i} \mid i \in I\right\}$ for some $t_{i} \in M_{e_{i}}$.
- For all $t \in M_{\amalg_{i \in I} e_{i}}, t=i\left\{\right.$ sel $\left.\rightarrow t^{\prime}\right\}$ for some $i \in I$ and $t^{\prime} \in M_{e_{i}}$.

Terms with their respective types.

The elements of $C T_{\Sigma}=_{\text {def }} C T_{\Sigma}(\emptyset)$ are called ground Σ-terms.
$T_{\Sigma}(V)={ }_{\text {def }} C T_{\Sigma}(V) \cap w d t r\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ is the least $\mathcal{T}(S, \mathcal{I})$-sorted set M of subsets of $d \operatorname{tr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ with (1) and the following properties:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $s \in S, V_{s} \subseteq M_{s}$.
- For all $c: e \rightarrow s \in F$ and $t \in M_{e}, c\{$ sel $\rightarrow t\} \in M_{s}$.
- For all $t_{i} \in M_{e_{i}}, i \in I, \operatorname{tup}\left\{i \rightarrow t_{i} \mid i \in I\right\} \in M_{\Pi_{i \in I} e_{i}}$.
- For all $i \in I$ and $t \in M_{e_{i}}, i\{$ sel $\rightarrow t\} \in M_{\amalg_{i \in I} e_{i}}$.
$T_{\Sigma}={ }_{d e f} T_{\Sigma}(\emptyset)$.

Let Σ be destructive.
The set $D T_{\Sigma}(V)$ of Σ-coterms over V is the greatest $\mathcal{T}(S, \mathcal{I})$-sorted set M of subsets of $\operatorname{dtr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ with (1), (4), (5) and the following property:

- For all $s \in S$ and $t \in M_{s}$ there is $x \in V_{s}$ and for all $d: s \rightarrow e \in F$ there is $t_{d} \in M_{e}$ with $t=x\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\}$.

Coterms with their respective types.

The elements of $D T_{\Sigma}=_{\text {def }} D T_{\Sigma}(1)$ are called ground Σ-coterms.

Examples

$\operatorname{Stream}(\mathbb{N})$-coterm that represents the stream of natural numbers

$\operatorname{Acc}(\{x, y, z\})$-coterm that represents an acceptor of all words over $\{x, y, z\}$ containing x or z
$\operatorname{co}_{\Sigma}(V)={ }_{\text {def }} D T_{\Sigma}(V) \cap w d \operatorname{tr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ is the least $\mathcal{T}(S, \mathcal{I})$-sorted set M of subsets of $\operatorname{dtr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ with (1), (8), (9) and the following property:

- For all $s \in S, x \in V_{s}, d: s \rightarrow e \in F$ and $t_{d} \in M_{e}, x\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\} \in M_{s}$. (11)
$c o T_{\Sigma}={ }_{\text {def }} \operatorname{co} T_{\Sigma}(1)$.

The set $T_{\Sigma}(V)$ of well-founded Σ-terms over V, however, is defined as if Σ were constructive:
$T_{\Sigma}(V)$ is the least $\mathcal{T}(S, \mathcal{I})$-sorted set M of subsets of $d \operatorname{tr}\left(E L_{\Sigma}, N L_{\Sigma, V}\right)$ with (1), (6), (8), (9), but the following property instead of (7):

- For all $s \in S, d: s \rightarrow e \in F$ and $t_{d} \in M_{e}, \epsilon\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\} \in M_{s}$.

Type compatible $\mathcal{T}(S, \mathcal{I})$-sorted sets

A $\mathcal{T}(S, \mathcal{I})$-sorted set A is type compatible if for all $I \in \mathcal{I}$,

- $A_{I}=I$,
- for all $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$
- there are

$$
\pi=\left(\pi_{i}: A_{\prod_{i \in I} e_{i}} \rightarrow A_{e_{i}}\right)_{i \in I} \quad \text { and } \quad \iota=\left(\iota_{i}: A_{e_{i}} \rightarrow A_{\coprod_{i \in I} e_{i}}\right)_{i \in I}
$$

such that $\left(A_{\prod_{i \in I} e_{i}}, \pi\right)$ is a product and $\left(A_{\amalg_{i \in I} e_{i}}, \iota\right)$ is a sum or coproduct of $\left(A_{e_{i}}\right)_{i \in I}$.

Let A be type compatible, $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.
(1) For all $a \in A_{\coprod_{i \in I} e_{i}}$ there are unique $i \in I$ and $b \in A_{e_{i}}$ such that $\iota_{i}(b)=a$.
(2) For all $a, b \in A_{\prod_{i \in I} e_{i}}, a=b$ if for all $i \in I, \pi_{i}(a)=\pi_{i}(b)$.

Let A, B be type compatible $\mathcal{T}(S, \mathcal{I})$-sorted sets.
A $\mathcal{T}(S, \mathcal{I})$-sorted function $h: A \rightarrow B$ is type compatible if for all $I \in \mathcal{I}$,

- $h_{I}=i d_{I}$,
- for all $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I}), h_{\prod_{i \in I} e_{i}}=\prod_{i \in I} h_{e_{i}}$ and $h_{\amalg_{i \in I} e_{i}}=\coprod_{i \in I} h_{e_{i}}$.

Set ${ }^{S, \mathcal{I}}$ denotes the subcategory of $\operatorname{Set} t^{\mathcal{T}(S, \mathcal{I})}$ with type compatible $\mathcal{T}(S, \mathcal{I})$-sorted sets as objects and type compatible $\mathcal{T}(S, \mathcal{I})$-sorted functions as morphisms.
$e \in \mathcal{T}(S, \mathcal{I})$ induces the projection functor $F_{e}:$ Set ${ }^{S}, \mathcal{I} \rightarrow$ Set that maps every object and morphism of $S e t^{S, \mathcal{I}}$ to its respective e-component.

Lifting S-sorted to $\mathcal{T}(S, \mathcal{I})$-sorted relations
Let $A=\left(A_{e}\right)_{e \in \mathcal{T}(S, \mathcal{I})}$ be a type compatible $\mathcal{T}(S, \mathcal{I})$-sorted set, $n>0$ and $R_{s} \subseteq A_{s}^{n}$ for all $s \in S$.
For all $I \in \mathcal{I}, R_{I}={ }_{\text {def }} \Delta_{I}^{n}$ and for all $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$,

$$
\begin{aligned}
& R_{\prod_{i \in I} e_{i}}={ }_{\text {def }}\left\{\left(a_{1}, \ldots, a_{n}\right) \in A_{\prod_{i \in I} e_{i}}^{n} \mid \forall i \in I:\left(\pi_{i}\left(a_{1}\right), \ldots, \pi_{i}\left(a_{n}\right)\right) \in R_{e_{i}}\right\}, \\
& R_{\mathbb{U}_{i \in I} e_{i}}={ }_{\text {def }}\left\{\left(\iota_{i}\left(a_{1}\right), \ldots, \iota_{i}\left(a_{n}\right)\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in R_{e_{i}}, i \in I\right\} \subseteq A_{\amalg_{\Psi_{E I} e_{i}}} .
\end{aligned}
$$

Let $\Sigma=(S, \mathcal{I}, F)$ be a signature.
A Σ-algebra $\mathcal{A}=(A, O P)$ consists of a type compatible $\mathcal{T}(S, \mathcal{I})$-sorted set A and an F-sorted set

$$
O p=\left(f^{\mathcal{A}}: A_{e} \rightarrow A_{e^{\prime}}\right)_{f: e \rightarrow e^{\prime} \in F}
$$

of functions.
Let \mathcal{A}, \mathcal{B} be Σ-algebras. A type compatible $\mathcal{T}(S, \mathcal{I})$-sorted function $h: \mathcal{A} \rightarrow \mathcal{B}$ is a Σ-homomorphism if for all $f: e \rightarrow e^{\prime} \in F$,

$$
h_{e^{\prime}} \circ f^{A}=f^{B} \circ h_{e} .
$$

$A l g_{\Sigma}$ denotes the subcategory of $S e t^{S, \mathcal{I}}$ with Σ-algebras as objects and Σ-homomorphisms as morphisms.

If Σ is constructive, then $C T_{\Sigma}(V)$ is a Σ-algebra:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $c: e \rightarrow s \in C, t \in C T_{\Sigma}(V)_{e}, c^{C T_{\Sigma}(V)}(t)={ }_{\text {def }} c\{$ sel $\rightarrow t\}$.
- For all $t_{i} \in C T_{\Sigma}(V)_{e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(t u p\left\{i \rightarrow t_{i} \mid i \in I\right\}\right)=_{d e f} t_{k}$.
- For all $i \in I$ and $t \in C T_{\Sigma}(V)_{e_{i}}, \iota_{i}(t)=_{\text {def }} i\{$ sel $\rightarrow t\}$.
$T_{\Sigma}(V)$ is a Σ-subalgebra of $C T_{\Sigma}(V)$.

If Σ is destructive, then $D T_{\Sigma}(V)$ is a Σ-algebra:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $d: s \rightarrow e \in D, x \in V_{s}$ and $t_{d}^{\prime} \in D T_{\Sigma}(V)_{e}, d^{\prime}: s \rightarrow e^{\prime} \in D$,

$$
d^{D T_{\Sigma}(V)}\left(x\left\{d \rightarrow t_{d}^{\prime} \mid d^{\prime}: s \rightarrow e^{\prime} \in D\right\}\right)==_{\operatorname{def}} t_{d} .
$$

- For all $t_{i} \in D T_{\Sigma}(V)_{e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(t u p\left\{i \rightarrow t_{i} \mid i \in I\right\}\right)=_{d e f} t_{k}$.
- For all $i \in I$ and $t \in D T_{\Sigma}(V)_{e_{i}}, \iota_{i}(t)=_{\text {def }} i\{$ sel $\rightarrow t\}$. $\cos _{\Sigma}(V)$ is a Σ-subalgebra of $D T_{\Sigma}(V)$.

Let $e \in \mathcal{T}(S, \mathcal{I}), I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.
$\left\{c_{i}: A_{e_{i}} \rightarrow A_{e} \mid i \in I\right\}$ is a set of constructors for e if $\left[c_{i}\right]_{i \in I}: \coprod_{i \in I} A_{e_{i}} \rightarrow A_{e}$ is iso. $\left\{d_{i}: A_{e} \rightarrow A_{e_{i}} \mid i \in I\right\}$ is a set of destructors for e if $\left\langle d_{i}\right\rangle_{i \in I}: A_{e} \rightarrow \prod_{i \in I} A_{e_{i}}$ is iso.

- The injections of A for a sum type form a set of constructors for this type.
- The projections of A for a product type form a set of destructors for this type.
- If Σ is constructive and \mathcal{A} is initial in $A l g_{\Sigma}$, then for all $s \in S$, $\left\{f^{\mathcal{A}} \mid f: e \rightarrow s \in F\right\}$ is a set of constructors for s.
- If Σ is destructive and \mathcal{A} is final in $A l g_{\Sigma}$, then for all $s \in S,\left\{f^{\mathcal{A}} \mid f: s \rightarrow e \in F\right\}$ is a set of destructors for s.

Let $\Sigma=(S, \mathcal{I}, F)$ be a constructive signature.
Σ induces the functor $H_{\Sigma}:$ Set $^{S} \rightarrow$ Set S :
For all $A, B \in S e t^{S}, h \in \operatorname{Set}^{S}(A, B)$ and $s \in S$,

$$
\begin{aligned}
H_{\Sigma}(A)_{s} & =\coprod_{f: e \rightarrow s \in F} A_{e}, \\
H_{\Sigma}(h)_{s} & =\coprod_{f: e \rightarrow s \in F} h_{e} .
\end{aligned}
$$

For all $s \in S$ and $f: e \rightarrow s \in F$,

Let $\Sigma=(S, \mathcal{I}, F)$ be a destructive signature.
Σ induces the functor $H_{\Sigma}:$ Set $^{S} \rightarrow$ Set S :
For all $A, B \in S e t^{S}, h \in \operatorname{Set}^{S}(A, B)$ and $s \in S$,

$$
\begin{aligned}
H_{\Sigma}(A)_{s} & =\prod_{f: s \rightarrow e \in F} A_{e} \\
H_{\Sigma}(h)_{s} & =\prod_{f: s \rightarrow e \in F} h_{e}
\end{aligned}
$$

For all $s \in S$ and $f: s \rightarrow e \in F$,

$$
\begin{aligned}
& H_{\text {NAut }(X, Y)}(A)_{\text {state }}=\left(A_{\text {state }}^{*}\right)^{X} \times Y, \\
& H_{\text {WAut }(X, Y, C M)}(A)_{\text {state }}=\left(\left(A_{\text {state }} \times C M\right)^{*}\right)^{X} \times Y, \\
& H_{\text {SAut }(X, Y)}(A)_{\text {state }}=\left(\left(A_{\text {state }} \times[0,1]\right)^{*}\right)^{X} \times Y . \\
& \mathcal{W}_{\text {fin }}(A, C M)=\{f: A \rightarrow C M| | \operatorname{supp}(f) \mid<\omega\}, \\
& \mathcal{D}_{\text {fin }}(A)=\left\{f: A \rightarrow[0,1]| | \operatorname{supp}(f) \mid<\omega, \sum f(\text { supp }(f))=1\right\} . \\
& \\
& B_{\text {NAut }(X, Y)}(A)_{\text {state }}=\mathcal{P}_{\text {fin }}\left(A_{\text {state }}\right)^{X} \times Y, \\
& B_{\text {WAut }(X, Y, C M)}(A)_{\text {state }}=\mathcal{W}_{\text {fin }}\left(A_{\text {state }}, C M\right)^{X} \times Y, \\
& C_{S A u t(X, Y)}(A)_{\text {state }}=\left(\left\{\left(\left(a_{i}, p_{i}\right)\right)_{i=1}^{n} \in\left(A_{\text {state }} \times[0,1]\right)^{*} \mid \sum_{i=1}^{n} p_{i}=1\right\}\right)^{X} \times Y, \\
& B_{\text {SAut }(X, Y)}(A)_{\text {state }}=\mathcal{D}_{\text {fin }}\left(A_{\text {state }}\right)^{X} \times Y .
\end{aligned}
$$

Do exist surjective natural transformations

$$
\begin{aligned}
\tau_{1}: H_{N A u t(X, Y)} & \rightarrow B_{\operatorname{NAut}(X, Y)}, \\
\tau_{2}: H_{W A u t}(X, Y, C M) & \rightarrow B_{\text {WAut }(X, Y, C M)}, \\
\tau_{3}: C_{S A u t(X, Y)} & \rightarrow B_{S A u t(X, Y)}
\end{aligned}
$$

and an injective natural transformation $\tau_{4}: C_{S A u t(X, Y)} \rightarrow H_{S A u t(X, Y)}$?

Let $\Sigma=(S, \mathcal{I}, C)$ be a constructive signature, $\mathcal{A}=(A, O p)$ be a Σ-algebra, V be an S-sorted set of "variables" and $g: V \rightarrow A$ be an S-sorted valuation of V.

The extension of g,

$$
g^{*}: T_{\Sigma}(V) \rightarrow A,
$$

is the $\mathcal{T}(S, \mathcal{I})$-sorted function that is inductively defined as follows:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

- $g_{I}^{*}=i d_{I}$.
- For all $s \in S$ and $x \in V_{s}, g_{s}^{*}(x)=g_{s}(x)$.
- For all $c: e \rightarrow s \in F$ and $t \in T_{\Sigma}(V)_{e}, g_{s}^{*}(c\{s e l \rightarrow t\})=c^{\mathcal{A}}\left(g_{e}^{*}(t)\right)$.
- For all $t_{i} \in T_{\Sigma}(V)_{e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(g_{\prod_{i \in I} e_{i}}^{*}\left(\left\{t u p \rightarrow t_{i} \mid i \in I\right\}\right)\right)=g_{e_{k}}^{*}\left(t_{k}\right)$.
- For all $k \in I$ and $t \in T_{\Sigma}(V)_{e_{k}}, g_{\amalg_{i \in I} e_{i}}^{*}(k\{\operatorname{sel} \rightarrow t\})=\iota_{k}\left(g_{e_{k}}^{*}(t)\right)$.

Intuitively, g^{*} evaluates each wellfounded Σ-term over V in \mathcal{A}.

Theorem FREE

g^{*} is the only Σ-homomorphism from $T_{\Sigma}(V)$ to \mathcal{A} that satisfies (2):

The restriction of g^{*} to ground terms does not depend on g and is denoted by

$$
\text { fold } \mathcal{A}^{\mathcal{A}}: T_{\Sigma} \rightarrow \mathcal{A} .
$$

Since g^{*} is the only Σ-homomorphism from $T_{\Sigma}(V)$ to \mathcal{A} that satisfies (2), fold ${ }^{\mathcal{A}}$ is the only Σ-homomorphism from T_{Σ} to \mathcal{A}, i.e., T_{Σ} is initial in Alg_{Σ}.
\mathcal{A} is reachable (or generated) if fold ${ }^{\mathcal{A}}$ is epi.
\mathcal{A} is equationally consistent if fold ${ }^{\mathcal{A}}$ is mono.

Let $\Sigma=(S, \mathcal{I}, D)$ be a destructive signature, $\mathcal{A}=(A, O p)$ be a Σ-algebra, V be an S-sorted set of "colors" and $g: A \rightarrow V$ be an S-sorted coloring of A.
The coextension of g,

$$
g^{\#}: A \rightarrow D T_{\Sigma}(V),
$$

is the $\mathcal{T}(S, \mathcal{I})$-sorted function that is inductively defined as follows:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

- $g_{I}^{\#}=i d_{I}$.
- For all $s \in S$ and $a \in A_{s}, g_{s}^{\#}(a)=g_{s}(a)\left\{d \rightarrow g_{e}^{\#}\left(d^{\mathcal{A}}(a)\right) \mid d: s \rightarrow e \in D\right\}$.
- For all $a \in A_{\Pi_{i \in I} e_{i}}, g_{\prod_{i \in I} e_{i}}^{\#}(a)=\operatorname{tup}\left\{i \rightarrow g_{e_{i}}^{\#}\left(\pi_{i}(a)\right) \mid i \in I\right\}$.
- For all $k \in I$ and $a \in A_{e_{k}}, g_{\amalg_{i \in I} e_{i}}^{\#}\left(\iota_{k}(a)\right)=k\left\{\right.$ sel $\left.\rightarrow g_{e_{k}}^{\#}(a)\right\}$.

Intuitively, g \# unfolds each "state" $a \in A$ into the Σ-coterm that represents the "behavior" of a w.r.t. \mathcal{A}.
In particular, the coextension $i d_{A}^{\#}: A \rightarrow D T_{\Sigma}(A)$ "runs" (the destructors of) \mathcal{A} on its arguments.

Theorem COFREE

$g^{\#}$ is the only Σ-homomorphism from \mathcal{A} to $D T_{\Sigma}(V)$ that satisfies (5):

The restriction of $g^{\#}$ to ground coterms does not depend on g and is denoted by

$$
\text { unfold }^{\mathcal{A}}: \mathcal{A} \rightarrow D T_{\Sigma} .
$$

Since $g^{\#}$ is the only Σ-homomorphism from \mathcal{A} to $D T_{\Sigma}(V)$ that satisfies (5), unfold ${ }^{\mathcal{A}}$ is the only Σ-homomorphism from \mathcal{A} to $D T_{\Sigma}$, i.e., $D T_{\Sigma}$ is final in $A l g_{\Sigma}$.
\mathcal{A} is observable (or cogenerated) if unfold ${ }^{\mathcal{A}}$ is mono.
\mathcal{A} is behaviorally complete if unfold ${ }^{\mathcal{A}}$ is epi.

From constructors to destructors and backwards

Lambek's Lemma

(1) Suppose that $A l g_{F}$ has an initial object $\alpha: F(A) \rightarrow A . \alpha$ is iso.
(2) Suppose that coAlg_{F} has a final object $\beta: A \rightarrow F(A) . \beta$ is iso.

Lambek's Lemma allows us to transform every constructive or destructive signature Σ into a destructive resp. constructive signature co Σ such that

$$
D T_{c o \Sigma} \cong C T_{\Sigma} \quad \text { resp. } \quad T_{c o \Sigma} \cong c o T_{\Sigma}
$$

Here are the details:

Let $\Sigma=(S, \mathcal{I}, C)$ be a constructive signature,

$$
\begin{aligned}
D & =\left\{s: s \rightarrow \coprod_{c: e \rightarrow s \in C} e \mid s \in S\right\} \\
c o \Sigma & =(S, \mathcal{I}, D)
\end{aligned}
$$

By Lambek's Lemma (1), the initial $H_{\Sigma^{-}}$algebra

$$
\alpha=\left\{\alpha_{s}: H_{\Sigma}\left(T_{\Sigma}\right)_{s}{ }^{\left[c_{\Sigma}\right]_{c: e}}{ }^{s \in C} T_{\Sigma, s} \mid s \in S\right\}
$$

is iso. Hence there is the $H_{\Sigma \text {-coalgebra }}$

$$
\left\{\alpha_{s}^{-1}: T_{\Sigma, s} \rightarrow H_{\Sigma}\left(T_{\Sigma}\right)_{s} \mid s \in S\right\}
$$

that corresponds to the co \sum-algebra $\mathcal{A}=\left(T_{\Sigma}, O p\right)$ with $s^{\mathcal{A}}=\alpha_{s}^{-1}$ for all $s \in S$.

Since $c o \Sigma$ is destructive, Theorem COFREE implies that $D T_{c o \Sigma}$ is final in $A l g_{c o \Sigma}$.
$C T_{\Sigma}$ is also final in $A l g_{c o \Sigma}$:
$C T_{\Sigma}$ is a co Σ-algebra: Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $c: e \rightarrow s \in C, t \in C T_{\Sigma, e}$,

$$
s^{C T_{\Sigma}}(c\{\text { sel } \rightarrow t\})=\operatorname{def} c\{\text { sel } \rightarrow t\}
$$

- For all $t_{i} \in C T_{\Sigma, e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(\operatorname{tup}\left\{i \rightarrow t_{i} \mid i \in I\right\}\right)={ }_{\text {def }} t_{k}$.
- For all $i \in I$ and $t \in C T_{\Sigma, e_{i}}, \iota_{i}(t)=_{\text {def }} i\{$ sel $\rightarrow t\}$.
$C T_{\Sigma}$ and $D T_{c o \Sigma}$ are co Σ-isomorphic. Equivalently,

$$
\text { unfold }^{C T_{\Sigma}}: C T_{\Sigma} \rightarrow D T_{c o \Sigma}
$$

is bijective.

Let $\Sigma=(S, \mathcal{I}, D)$ be a destructive signature,

$$
\begin{aligned}
& C=\left\{s: \prod_{d: s \rightarrow e \in D} e \rightarrow s \mid s \in S\right\}, \\
& c o \Sigma=(S, \mathcal{I}, C) .
\end{aligned}
$$

By Lambek's Lemma (2), the final $H_{\Sigma^{-}}$-coalgebra

$$
\alpha=\left\{\alpha_{s}: D T_{\Sigma, s} \stackrel{\left\langle d^{\left.D T_{\Sigma}\right\rangle_{d: s} \rightarrow \in D}\right.}{ } H_{\Sigma}\left(D T_{\Sigma}\right)_{s} \mid s \in S\right\}
$$

is iso. Hence there is the H_{Σ}-algebra

$$
\left\{\alpha_{s}^{-1}: H_{\Sigma}\left(D T_{\Sigma}\right)_{s} \rightarrow D T_{\Sigma, s} \mid s \in S\right\}
$$

that corresponds to the co Σ-algebra $\mathcal{A}=\left(D T_{\Sigma}, O p\right)$ with $s^{\mathcal{A}}=\alpha_{s}^{-1}$ for all $s \in S$.

Since $c o \Sigma$ is constructive, Theorem FREE implies that $T_{c o \Sigma}$ is initial in $A l g_{c o \Sigma}$.
${ }^{c o T_{\Sigma}}$ is also initial in $A l g_{c o \Sigma}$:
$\cos _{\Sigma}$ is a co $c o$-algebra: Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $s \in S, c: e \rightarrow s \in C$ and $t_{d} \in c o T_{\Sigma, e}, d: s \rightarrow e \in D$,

$$
s^{c o T_{\Sigma}}\left(\operatorname{tup}\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in D\right\}\right)=_{\text {def }} \epsilon\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in D\right\} .
$$

- For all $t_{i} \in \operatorname{coT}_{\Sigma, e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(t u p\left\{i \rightarrow t_{i} \mid i \in I\right\}\right)={ }_{\text {def }} t_{k}$.
- For all $i \in I$ and $t \in \operatorname{co} T_{\Sigma, e_{i}}, \iota_{i}(t)=_{\text {def }} i\{$ sel $\rightarrow t\}$.
$T_{c o \Sigma}$ and $c o T_{\Sigma}$ are $c o \Sigma$-isomorphic. Equivalently,

$$
\text { fold }^{c o T_{\Sigma}}: T_{c o \Sigma} \rightarrow \operatorname{co}_{\Sigma}
$$

is bijective.

Iterative Σ-equations

Let $\Sigma=(S, \mathcal{I}, F)$ be a constructive or destructive signature and V be a finite S-sorted set. An S-sorted function

$$
E: V \rightarrow T_{\Sigma}(V)
$$

with $i m g(E) \cap V=\emptyset$ is called a system of iterative Σ-equations.
E is usually written as $\{x=E(x) \mid x \in V\}$.
Let Σ be constructive, $\mathcal{A}=(A, O p)$ be a Σ-algebra and A^{V} be the set of S-sorted functions from V to A.
$g \in A^{V}$ solves E in \mathcal{A} if $g^{*} \circ E=g$.
E turns $T_{\Sigma}(V)$ into a co Σ-algebra: Let $s \in S, I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $x \in V_{s}, s^{T_{\Sigma}(V)}(x)={ }_{d e f} s^{T_{\Sigma}(V)}(E(x))$.
- For all $c: e \rightarrow s \in F, t \in T_{\Sigma}(V)_{e}, s^{T_{\Sigma}(V)}(c\{\mathrm{sel} \rightarrow t\})={ }_{\operatorname{def}} c\{\mathrm{sel} \rightarrow t\}$.
- For all $t_{i} \in T_{\Sigma}(V)_{e_{i}}, i \in I$, and $k \in I, \pi_{k}\left(\operatorname{tup}\left\{i \rightarrow t_{i} \mid i \in I\right\}\right)={ }_{\operatorname{def}} t_{k}$.
- For all $i \in I$ and $t \in T_{\Sigma}(V)_{e_{i}}, \iota_{i}(t)={ }_{d e f} i\{\mathrm{sel} \rightarrow t\}$.

Theorem SOL

$$
V_{\xrightarrow{\text { inc⿱ }}}^{\rightarrow} T_{\Sigma}(V) \xrightarrow{\text { unfold } T_{\Sigma}(V)} D T_{c o \Sigma} \xrightarrow{\text { (unfold } \left.C T_{\Sigma}\right)^{-1}} C T_{\Sigma}
$$

solves E in $C T_{\Sigma}$ uniquely.
Proof. See Theorem SOL (coalgebraic version) in Fixpoints, Categories, and (Co)Algebraic Modeling.

Example

Let $V=\left\{\right.$ blink, blink $\left.{ }^{\prime}\right\}$. The following system of $\operatorname{List}(\mathbb{Z})$-equations over V has a unique solution in $C T_{\text {List }(\mathbb{Z})}$ and thus defines two elements of $C T_{\text {List }(\mathbb{Z})}$:

$$
\begin{align*}
& \text { blink }=\operatorname{cons}\{\text { sel } \rightarrow \operatorname{tup}\{1 \rightarrow 0,2 \rightarrow \text { blink' }\}\}, \tag{1}\\
& \text { blink } k^{\prime}=\operatorname{cons}\{\text { sel } \rightarrow \operatorname{tup}\{1 \rightarrow 1,2 \rightarrow \text { blink }\}\} .
\end{align*}
$$

Infinite terms that are representable as unique solutions of iterative equations are called rational. A Σ-term is rational iff it has only finitely many subterms.

Let Σ be destructive and h be the bijection between $T_{\Sigma}(V)$ and $T_{c o \Sigma}(V)$ that is the identity on V and agrees with $\left(\text { fold } d^{c o T_{\Sigma}}\right)^{-1}$ on $T_{\Sigma}=c o T_{\Sigma}$.

Corollary $h \circ E$ has a unique solution in $D T_{\Sigma}$.
Proof. $D T_{\Sigma}$ is a co Σ-algebra: For all $s \in S$,

$$
s^{D T_{\Sigma}}\left(\epsilon\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\}\right)=_{\text {def }} s\left\{\text { sel } \rightarrow \operatorname{tup}\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\}\right\} .
$$

By Theorem SOL, $h \circ E$ has a unique solution in $C T_{c o \Sigma}$. Since $C T_{c o \Sigma}$ is final in $A l g_{c o c o \Sigma}$, $C T_{c o \Sigma}$ is $\operatorname{coco} \Sigma$-isomorphic to $A=_{\text {def }} D T_{\text {coco } \Sigma . ~} A$ is a Σ-algebra: For all $s \in S$ and $d: s \rightarrow e$ and $t_{d} \in A_{e}, d: s \rightarrow e \in F$,

$$
d^{A}\left(\epsilon\left\{s \rightarrow s\left\{\text { sel } \rightarrow \operatorname{tup}\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\}\right\}\right\}\right)==_{\text {def }} t_{d} .
$$

unfold $^{A}: A \rightarrow D T_{\Sigma}$ is bijective: The inverse maps $\epsilon\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\} \in D T_{\Sigma}$ to

$$
\epsilon\left\{s \rightarrow s\left\{\text { sel } \rightarrow \operatorname{tup}\left\{d \rightarrow t_{d} \mid d: s \rightarrow e \in F\right\}\right\}\right\} .
$$

Hence $C T_{c o \Sigma} \cong A \cong D T_{\Sigma}$ and thus the solutions of $h \circ E$ in $C T_{c o \Sigma}$ and $D T_{\Sigma}$, respectively, coincide up to isomorphism.

Example

Let $V=\{$ esum, osum $\}$. Given the following system E of $\operatorname{Acc}(\mathbb{Z})$-equations over V, $h \circ E$ has a unique solution in $D T_{A c c}(\mathbb{Z})$ and thus defines two elements of $D T_{A c c}(\mathbb{Z})$:

$$
\begin{gather*}
\text { esum }=\epsilon\{\delta \rightarrow \operatorname{tup}(\{x \rightarrow \text { esum } \mid x \in \text { even }\} \cup\{x \rightarrow \text { osum } \mid x \in \text { odd }\}), \beta \rightarrow 1\}, \\
\text { osum }=\epsilon\{\delta \rightarrow \operatorname{tup}\{x \rightarrow \text { osum } \mid x \in \text { even }\} \cup\{x \rightarrow \text { esum } \mid x \in \text { odd }\}), \beta \rightarrow 0\} . \tag{2}
\end{gather*}
$$

Let $\Sigma=(S, \mathcal{I}, F)$ be a signature.
The set $d e r_{\Sigma}$ of derived Σ-operations is inductively defined as follows:
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- $F \subseteq \operatorname{der}_{\Sigma}$.
- For all $e \in \mathcal{T}(S, \mathcal{I})$ and $i \in I, \bar{i}: e \rightarrow I \in \operatorname{der}_{\Sigma}$.
- For all $f: e \rightarrow e^{\prime}, g: e^{\prime} \rightarrow e^{\prime \prime} \in \operatorname{der}_{\Sigma}, g \circ f: e \rightarrow e^{\prime \prime} \in \operatorname{der}_{\Sigma}$.
- $\pi_{i}: \prod_{i \in I} e_{i} \rightarrow e_{i}, \iota_{i}: e_{i} \rightarrow \coprod_{i \in I} e_{i} \in \operatorname{der}_{\Sigma}$ (also written as id if I is a singleton).
- For all $f_{i}: e \rightarrow e_{i} \in \operatorname{der}_{\Sigma}, i \in I,\left\langle f_{i}\right\rangle: e \rightarrow \prod_{i \in I} e_{i} \in \operatorname{der}_{\Sigma}$.
- For all $f_{i}: e_{i} \rightarrow e \in \operatorname{der}_{\Sigma}, i \in I,\left[f_{i}\right]: \coprod_{i \in I} e_{i} \rightarrow e \in \operatorname{der}_{\Sigma}$.
- λ-abstraction:

For all $c_{i}: e_{i} \rightarrow e, f_{i}: e_{i} \rightarrow e^{\prime} \in \operatorname{der}_{\Sigma}, i \in I, \lambda\left\{c_{i} . f_{i}\right\}_{i \in I}: e \rightarrow e^{\prime} \in \operatorname{der}_{\Sigma}$.

- κ-abstraction:

For all $d_{i}: e \rightarrow e_{i}, f_{i}: e^{\prime} \rightarrow e_{i} \in \operatorname{der}_{\Sigma}, i \in I, \kappa\left\{d_{i} . f_{i}\right\}_{i \in I}: e^{\prime} \rightarrow e \in \operatorname{der}_{\Sigma}$.
$\operatorname{Th}(\Sigma)=\left(S, \mathcal{I}, F \cup d e r_{\Sigma}\right)$ is called the (algebraic) Σ-theory.

Let $\mathcal{A}=(A, O p)$ be a Σ-algebra.
The $\operatorname{Th}(\Sigma)$-algebra $\mathcal{B}=\operatorname{Th}(\mathcal{A})$ with $\left.\mathcal{B}\right|_{\Sigma}=\mathcal{A}$ and the following interpretation of $\operatorname{der}_{\Sigma}$ is called the theory of \mathcal{A}.
Let $I \in \mathcal{I}$ and $\left\{e_{i}\right\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $e \in \mathcal{T}(S, \mathcal{I}), i d^{\mathcal{B}}=i d_{A}$.
- For all $e \in \mathcal{T}(S, \mathcal{I}), i \in I$ and $a \in A_{e}, \bar{i}^{\mathcal{B}}=\lambda x . i$.
- Compositions, projections, injections, product and coproduct extensions are defined as usually.
- For all $c_{i}: e_{i} \rightarrow e, f_{i}: e_{i} \rightarrow e^{\prime} \in \operatorname{der}_{\Sigma}, i \in I$, such that $\left\{c_{i}^{\mathcal{B}} \mid i \in I\right\}$ is a set of constructors for e, for all $k \in I$,

$$
\left(\lambda\left\{c_{i} \cdot f_{i}\right\}_{i \in I}\right)^{\mathcal{B}} \circ c_{k}^{\mathcal{B}}=f_{k}^{\mathcal{B}} .
$$

- For all $d_{i}: e \rightarrow e_{i}, f_{i}: e^{\prime} \rightarrow e_{i} \in \operatorname{der}_{\Sigma}, i \in I$, such that $\left\{d_{i}^{\mathcal{B}} \mid i \in I\right\}$ is a set of destructors for e, for all $k \in I$,

$$
d_{k}^{\mathcal{B}} \circ\left(\kappa\left\{d_{i} \cdot f_{i}\right\}_{i \in I}\right)^{\mathcal{B}}=f_{k}^{\mathcal{B}} .
$$

The following lemma implies that λ - and κ-abstractions are well-defined:
(1) Let $\left\{f_{i}: A_{e_{i}} \rightarrow A_{e} \mid i \in I\right\}$ be a set of constructors for e.

For all $a \in A_{e}$ there are unique $i \in I$ and $b \in A_{e_{i}}$ such that $f_{i}^{A}(b)=a$.
(2) Let $\left\{f_{i}: A_{e} \rightarrow A_{e_{i}} \mid i \in I\right\}$ be a set of destructors for e.

For all $a, b \in A_{e}, a=b$ if $f_{i}(a)=f_{i}(b)$ for all $i \in I$.

For ease of notation, $\operatorname{Th}(\mathcal{A})$ may be regarded as the category with $\mathcal{T}(S, \mathcal{I})$ as the set of objects and the operations of $\operatorname{Th}(\mathcal{A})$ as morphisms:

Every $\operatorname{Th}(\mathcal{A})$-morphism $f: e \rightarrow e^{\prime}$ denotes the interpretation of some derived Σ operation in \mathcal{A}.

Example

Let $p: e \rightarrow 2$ and $f, g: e \rightarrow e^{\prime}$ be $T h(\mathcal{A})$-morphisms. The conditional

$$
\text { if } p \text { then } f \text { else } g: e \rightarrow e^{\prime}
$$

can be derived as follows:

$$
\text { if } p \text { then } f \text { else } g=e \xrightarrow{\langle i d, p\rangle} e \times 2^{\lambda\{\langle i d, \overline{1}\rangle \cdot f,\langle i d, \overline{0}\rangle \cdot g\}} e^{\prime} .
$$

Recursive equations

$$
\begin{aligned}
& \text { factorial : } \mathbb{N} \rightarrow \mathbb{N} \\
& \text { factorial }=\lambda\{\overline{0} \cdot \overline{1},(+1) \cdot(*) \circ\langle i d, \text { factorial } \circ(-1)\rangle\} \\
& \text { factorial : } \mathbb{N}^{2} \rightarrow \mathbb{N}^{2} \\
& \text { factorial }=[\text { id, factorial } \circ(x \leftarrow x-1) \circ(y \leftarrow x * y)] \circ(x=0) \quad \text { or } \\
& \text { factorial }=\text { if } x \equiv 0 \text { then id else factorial } \circ(x \leftarrow x-1) \circ(y \leftarrow x * y) \\
& \text { where }(x=0)(m, n)=\text { if } m=0 \text { then } \iota_{1}(m, n) \text { else } \iota_{2}(m, n) \\
& (x \equiv 0)(m, n)=\text { if } m=0 \text { then } 1 \text { else } 0 \\
& (x \leftarrow x-1)(m, n)=(m-1, n) \\
& (y \leftarrow x * y)(m, n)=(m, m * n) \\
& \text { zip : } X^{\mathbb{N}} \times X^{\mathbb{N}} \rightarrow X^{\mathbb{N}} \\
& z i p=\kappa\left\{\text { head.head } \circ \pi_{1} \text {, tail.tail } \circ \text { zip } \circ\left\langle\pi_{2}, \text { tail } \circ \pi_{1}\right\rangle\right\}
\end{aligned}
$$

Where do such equations have unique solutions?

