
Towards a UML/MARTE CSP-OZ Based Software
Development Methodology

Mourad Maouche, Mohamed Bettaz

Philadelphia University

{mmaouch, mbettaz}@philadelphia.edu.jo

IFIP WG1.3 Workshop, Eindhoven Meeting, Netherlands

March 31, 2016

Mourad Maouche, Mohamed Bettaz March 31, 2016 1 / 30

Overview

Introduction

Related Works

The proposed Methodology

Applicability to Distributed Multiscale Modeling
and Simulation Frameworks (DMMS)

Some Semantical Issues

Conclusions and Future Work

Mourad Maouche, Mohamed Bettaz March 31, 2016 2 / 30

Introduction

study potential synergies between distributed simulation (DS) and
MDE technologies

Topcu et al., Distributed Simulation: A MDE Approach (Simulation
Foundations, Methods and Applications), Springer (2016), provide a
comprehensive review of DS from the MDE perspective

we focus on distributed multiscale modeling and simulation (DMMS)

objectif: contribute to bridging the gap between

an ”e-science” community (dealing with modeling and simulation of
complex -natural world- phenomema) and a
SE community (using rigorous approaches to address the design and
implementation of complex systems)

Mourad Maouche, Mohamed Bettaz March 31, 2016 3 / 30

The proposed Methodology

MD

based on the integration of UML/MARTE, CSP-OZ, PyCSP

UML/MARTE for the requirements
CSP-OZ for the design
PyCSP for the implementation

use of institution theory to ensure soundness of the integration

motivation

first motivate the use of UML/MARTE for the development of DMMS
systems
second motivate the use of the combination (UML/MARTE, CSP-OZ,
PyCSP)

Mourad Maouche, Mohamed Bettaz March 31, 2016 4 / 30

Motivating the Use of UML/MARTE

investigations show four main reasons:
1 both of (UML/MARTE and DMMS modelers) use similar modeling

methodology (separation of concerns, following the so-called Y
structure design methodology)

UML/MARTE: application modeling, HW/SW execution platform
design

DMMS: modeling of e-science phenomena, design of simulation engines

2 both of them advocate a component-based approach
3 UML/MARTE supports concurrency, synchronization and

communication features

useful for the modeling of distributed and concurrent simulation
systems

4 UML/MARTE defines an explicit model for the (logical/physical) time
concept

might cover the development of both event-driven and time-driven
simulators

Mourad Maouche, Mohamed Bettaz March 31, 2016 5 / 30

Motivating the Use of UML/MARTE, CSP-OZ and PyCSP

sharing of core abstractions

making the transformation between various formalisms straightforward

Mourad Maouche, Mohamed Bettaz March 31, 2016 6 / 30

Related Works

several contributions advocate the use of appropriate (modeling and
programming) languages for various views of the systems under
design

for Bjorner et al., 40 Years of Formal Methods: Some Obstacles and
Some Possibilities?, LNCS (2014), ”the trend is to develop verification
technology around programming languages” and that ”verificating
frameworks will be part of programming IDEs”
Hennicker et al., A Generic Framework for Multi-Disciplinary
Environmental Modeling, proceedings of the iEMS (2010), propose an
integration of UML, process algebra and Java
in the position paper Towards an Institutional Framework for
Heterogeneous Formal Development in UML, LNCS 8950, Springer
(2015), Knapp et al., consider the use of UML, OCL, ACSL and C
Michael Moller et al., Linking CSP-OZ with UML and Java, Springer
(2004), use a combination of UML, CSP-OZ, JML, Java, and jassda

Mourad Maouche, Mohamed Bettaz March 31, 2016 7 / 30

More on DMMS

foundations

formalization: scales, phenomena, domains, models, single scale models
(sub-models), conduits, filters, mappers, observations, etc.

J.Borgdorff, E. Lorenz, C. Bona-Casas, J.-L. Falcone, B. Chopard
(University of Geneva), A. G. Hoekstra (University of Amsterdam,
National Research University ITMO, Saint-Petersburg)

implementation of an environment (MUSCLE: MUltiScale Coupling
Library and Environment)

simulation engines execute models independently of the progamming
languages used to implement them (C, C++, Java, Fortran)

M. Mamonski, B. Bosak, K. Kurowski (Poznan Supercompting and
Networking Center), M. Ben Belgacem (University of Geneva), D.
Groen, P.V. Coveny (University College London)

Mourad Maouche, Mohamed Bettaz March 31, 2016 8 / 30

Overview of MUSCLE

library: submodels are implemeted with some specific APIs

configuration: submodels are instantiated and coupled

runtime environment: submodels are executed on a variety of
machines

Figure : Source: Joris Borgdorff et al./Procedia Computer Science 18(2013)

Mourad Maouche, Mohamed Bettaz March 31, 2016 9 / 30

MUSCLE: Illustration of the Modeling Methodology (1/4)

single scale (macro-) model

single scale (micro-) model

Figure : Creation of a scale separation map

Mourad Maouche, Mohamed Bettaz March 31, 2016 10 / 30

MUSCLE: Illustration of the Modeling Methodology (2/4)

Figure : Scale separation map of an In-stent Restenosis: exhibits only time scale
separation (no spatial scale separation: all submodels act at the same spatial
scale) Source: J. Borgdorff et al., Foundations of distributed multiscale
computing, J. Parallel Distrib. Comput., (2013)

Mourad Maouche, Mohamed Bettaz March 31, 2016 11 / 30

MUSCLE: Illustration of the Modeling Methodology (3/4)

controller

filter

conduit conduit

controller

Figure : Implementation of the submodels using controllers (APIs) and creation
of a multiscale model - including filters, mappers, etc. for scale bridging, data
conversions, etc.
Mourad Maouche, Mohamed Bettaz March 31, 2016 12 / 30

MUSCLE: Illustration of the Modeling Methodology (4/4)

simulation manager

local manager local manager

Figure : Mapping of the Application onto the Simulation Engine (Local and
Simulation Managers)

Mourad Maouche, Mohamed Bettaz March 31, 2016 13 / 30

UML/MARTE: Illustration of the Modeling Methodology
(the Requirement Phase)

(system) models are subdivided into three sub-models (Y structure)
1 Platform Independent Model (PIM), intended to represent various

views of the system (data, functional, application, concurrency,
communication, memory space)

1 Platform Description Model (PDM), intended to model the execution
platform supporting the PIM

1 Platform Specific Model (PSM), intended to model the allocation of
PIM to PDM

PIM and PDM developers use Hardware/Software Resource Models
(HRM / SRM) sub-profiles acting as an API

Mourad Maouche, Mohamed Bettaz March 31, 2016 14 / 30

UML/MARTE: More on the SRM sub-profile

NF Ps CoreElements Time

GRM

SRM

(Software Resource Modeling)

HRM

(Software Resource Modeling)

DRM

(Detailed Resource Modeling)

Figure : Source: OMG Document Number: ptc/2008-06-09

Mourad Maouche, Mohamed Bettaz March 31, 2016 15 / 30

Bridging the Gap: Creation of a Specific SRM for DMMS

the analysis of domain model of the SRM and of the domain model of
the resource modeling elements used by the DMMS show some
similarities at the level of the used resource types

this led to the idea of building a specific SRM for the DMMS by
merely extending the SRM (and not starting from the scratch)

Mourad Maouche, Mohamed Bettaz March 31, 2016 16 / 30

Extending the SRM

NF Ps CoreElements Time

GRM

SRM

(Software Resource Modeling)

HRM

(Hardware Resource Modeling)

SSRM

(Specific Software Resource Modeling)

DRM

(Detailed Resource Modeling)

*

Figure : The SSRM

Mourad Maouche, Mohamed Bettaz March 31, 2016 17 / 30

The SSRM Resource Types

we need to

specify more precisely the domain model (of this SSRM) in order to
”extract” (from this model) potential stereotypes

this necessitates to abstract the DMMS core elements (controllers,
filters, mappers, conduits, etc.)

here we consider

controllers, and
conduits

a controller (in MUSCLE) is implemented by a so-called Submodel
Execution Loop (SEL)

Mourad Maouche, Mohamed Bettaz March 31, 2016 18 / 30

(Time-Driven) Submodel Execution Loop (SEL)

f : current state of the submodel
Operators used in the SEL

finit : for initialization of the state
S ′: for solving one modeled step
Oi and Of : for an observation of an intermediate and final state

Figure : Source: J. Borgdorff et al., Foundations of Distributed Multiscale
Computing, Formalization, Specification, and Analysis, J. Parallel Distrib.
Comput. 73(2013)

Mourad Maouche, Mohamed Bettaz March 31, 2016 19 / 30

Submodel Execution Loop (an Abstraction)

finit
while {
Oi ;
S

}
Of

}

Figure : SEL abstracted to essential operators

Mourad Maouche, Mohamed Bettaz March 31, 2016 20 / 30

Recall: (Part of) the Domain Model of SRM

+resumeServices

+resumeServices

0..*

0..*

0..*

0..*

0..*

0..*

1..*0..*

providedResourceownedProperties

stackSizeElement
s

+periodElements

+periodElement
s

+suspendServices

terminateServices

+activateServices

SwResource

ResourceProperty

SchedulableResourseInterruptResource

ConcurrentResource

type : OccurenceKind

<<enumeration>>
OccurenceKind

Periodic
Aperiodic
Sporadic
Other

0..*

ResourceService

Figure : The Schedulable Concurrent Resource

Mourad Maouche, Mohamed Bettaz March 31, 2016 21 / 30

Extending the SRM Domain Model (1/2)

*
1

*
1

*
1

*
1

1

0

0

SoftwareResource

ConcurrentResource

SchedulableResource

SimulationResource

Simulation
ControllerResource

SEL
OperatorResource

Behavior: SEL Loop

(Activity Diagram)

Properties:

-Period

-Start Time

-Duration

Of Oi FiBS

1 1

*
1

*
1

1 1 1

PortResource

InPortResource OutPortResource

Figure : The Controller as a Schedulable Concurrent Resource

Mourad Maouche, Mohamed Bettaz March 31, 2016 22 / 30

Extending the SRM Domain Model (2/2)

SimulationResource

SmartConduitResource CommunicationResource

ScaleBridgingResource PlainConduitResource

SimulationController

FilterResource MapperResource

Figure : The Conduit as a Simulation Communication Resource, Mapper is also a
Controller

Mourad Maouche, Mohamed Bettaz March 31, 2016 23 / 30

Using SSRM in DMMS

PIM SSRM

PSM
PDM

A

B

F1

BF1A

CA

CB

F

LM SM

SM1LC1

LC2

Single Scale Models

Multiscale Model

Controller

d1

d2

Filter

Conduit
d1

d2

Local Manager Communication Resource Simulation Manager

Uses
Instantiation
Allocate to

Figure : Illustration using MUSCLE

Mourad Maouche, Mohamed Bettaz March 31, 2016 24 / 30

CSP-OZ (the Design Phase)

CSP-OZ (an extension of Object-Z with the notion of communication
channels and CSP syntax) with a failure-divergence semantics

property analysis (DMMS community claim to face, among other
verification issues, the crucial problem of deadlock)

the deliverables produced at the requirement level are models that
describe the targeted application at a high level of abstraction

those produced by UML/MARTE form a ”collection” of components
inteconnected via UML/MARTE connectors

at the lowest level of such diagrams we find RtUnits and PpUnits

RtUnits are active classes characterized by the services they provide,
their communication ports, their attributes and also by their behavior
usually expressed in terms of protocol state machines
PpUnits (protected passive units) are similar to RtUnits except that
they do not own an internal behavior (passive classes)

Mourad Maouche, Mohamed Bettaz March 31, 2016 25 / 30

From UML/MARTE to CSP-OZ

RtUnits and PpUnits are transformed into their corresponding
CSP-OZ classes

an RtUnit service is mapped to a CSP-OZ communication schema
all RtUnit/PpUnit attributes are mapped to a CSP-OZ data schema
an RtUnit/PpUnit port is mapped to a CSP-OZ channel
a protocol state machine associated with an RtUnit is mapped to a
CSP process (i.e., the CSP part of the corresponding CSP-OZ class)

a flat component diagram (PpUnits/RtUnits interconnected with
MARTE connectors through ports) is transformed into a CSP-OZ
system class

a set of objects that belong to the resulting CSP-OZ classes
a set of CSP channels
a CSP process describing the overall behaviour of the CSP-OZ system
class

Mourad Maouche, Mohamed Bettaz March 31, 2016 26 / 30

PyCSP (the Implementation Phase)

PyCSP is a CSP library for Python

supports the core abstractions of CSP (i.e., process and channel)
the transformation of a CSP-OZ into PyCSP code is straightforward

CSP-OZ class transformation

a channel (defined in the CSP-OZ class) is mapped to a PyCSP channel
a communication schema (defined in a CSP-OZ class) is mapped to a
Python function
the process part (of a CSP-OZ class) is mapped to (an individual)
PyCSP process

a (CSP-OZ) system class is mapped to a PyCSP process

(individual) PyCSP processes (resulting from corresponding CSP-OZ
classes) are combined using relevant CSP operators

Mourad Maouche, Mohamed Bettaz March 31, 2016 27 / 30

Sematic Issues

institution theory

some of the adopted formalisms are backed by institutions (others are
in progress)

we adopt a similar approach as the one presented in the position
paper: Towards an Institutional Framework for Heterogeneous Formal
Development in UML (Knapp, Mossakowski, Roggenbach, 2015)

Mourad Maouche, Mohamed Bettaz March 31, 2016 28 / 30

Sematic Issues (Continued)

types only are considered

State Machine

MARTE Component
Diagram

MARTE Class Diagram

CSP Specifications

CSP-OZ Specifications

PyCSP

MARTE Modeling

Design

Implementation

Figure : Institution comorphisms between MARTE diagrams and languages

Mourad Maouche, Mohamed Bettaz March 31, 2016 29 / 30

Conclusions and Future Work

extending MARTE with a new subprofile (SSRM) dedicated to
DMMS (intended to define specific modeling resources that capture
DMMS core concepts)

setting a formal semantic framework for the proposed development
methodology (ensuring a sound integration of UML/MARTE,
CSP-OZ and PyCSP)

state machines, CSP, OZ do have institutions

remains to build institutions for

PyCSP (from scratch)
UML/MARTE profile: build on what is planned in the work by (Knapp,
Mossakowski, Roggenbach, 2015)

Mourad Maouche, Mohamed Bettaz March 31, 2016 30 / 30

