
Probabilistic NetKAT

Nate Foster1 Dexter Kozen1 Mark Reitblatt2

Kostas Mamouras3 Alexandra Silva4

1Cornell 2Facebook 3Penn 4UCL

ESOP 2016
Eindhoven

4 April 2016

Motivation

Formal specification and verification of networks have recently
become a reality

I Frenetic [Foster & al., ICFP 11]

I Pyretic [Monsanto & al., NSDI 13]

I Maple [Voellmy & al., SIGCOMM 13]

I FlowLog [Nelson & al., NSDI 14]

I Header Space Analysis [Kazemian & al., NSDI 12]

I VeriFlow [Khurshid & al., NSDI 13]

I NetKAT [Anderson & al., POPL 14]

I and many others . . .

Motivation

But these systems are all deterministic
I network elements modeled as deterministic packet-processing

functions

I applicability limited to simple connectivity or routing behavior

We would like to model more complicated situations that often
arise in practice

I expected congestion: the network operator wishes to calculate the
expected congestion on each link, given a model of incoming traffic

I reliability: the network operator wishes to calculate the probability of
successful packet delivery given probability of failure of some
network components

I randomized routing: the network operator wishes to use randomized
routing schemes such as equal-cost multi-path routing (ECMP) or
Valiant load balancing (VLB) to balance load across multiple paths

This Paper

Probabilistic NetKAT (ProbNetKAT)

I a probabilistic extension of NetKAT [Foster & al., POPL 15]
[Anderson & al., POPL 14] [Smolka & al., ICFP 15], a programming
language/logic for specification/verification/programming of packet
switching networks

I programs denote functions that give probability distributions on sets
of packet histories

I enables reasoning about probabilistic routing protocols or behavior
of deterministic protocols on random inputs

I can handle scenarios involving congestion, failure, and randomized
routing

Contributions

I The design of ProbNetKAT, the first language-based framework for
specifying and verifying probabilistic network behavior

I Formal operational and denotational semantics based on Markov
kernels

I ProbNetKAT extends NetKAT conservatively

I An appropriate notion of approximation—every program is arbitrarily
closely approximated by a loop-free one

I Three illustrative case studies drawn from real-world networks

Design Challenges

A number of important questions do not have obvious answers:

I discrete or continuous distributions?

I lossless or lossy?

I independence of random choices in processing sets of packet
histories?

I most importantly: semantics of iteration?

NetKAT
[Anderson & al., POPL 14] [Foster & al., POPL 15] [Smolka & al., ICFP 15]

NetKAT is . . .

I a programming/specification language/logic for specifying,
programming, and reasoning about packet switching networks

I based on Kleene algebra with tests (KAT)

I decidable and deductively complete

I implemented and deployed as part of the Frenetic suite of network
management tools (compiler and decision procedure)

NetKAT
[Anderson & al., POPL 14] [Foster & al., POPL 15] [Smolka & al., ICFP 15]

NetKAT
=

Kleene algebra with tests (KAT)
+

additional specialized constructs particular to
network topology and packet switching

Kleene Algebra (KA)

Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r

p + q = q + p 1p = p1 = p

p + 0 = p p0 = 0p = 0

p + p = p

p(q + r) = pq + pr p ≤ q
4⇐⇒ p + q = q

(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

Kleene Algebra with Tests (KAT)

(K ,B,+, ·,∗ , ,̄ 0, 1), B ⊆ K

I (K ,+, ·,∗ , 0, 1) is a Kleene algebra

I (B,+, ·, ,̄ 0, 1) is a Boolean algebra

I (B,+, ·, 0, 1) is a subalgebra of (K ,+, ·, 0, 1)

Can encode basic imperative language constructs & partial
correctness reasoning

I if b then p else q = bp + b̄q

I while b do p = (bp)∗b̄

I {b} p {c} = (bp ≤ pc) = (bpc̄ = 0) = (bp = bpc)

NetKAT

Can also encode basic networking constructs: packet filtering
& forwarding, network topology

I a packet π is an assignment of constant values n to fields x

I a packet history is a nonempty sequence of packets
π1 :: π2 :: · · · :: πk

I the head packet is π1

NetKAT primitives
I assignments x ← n

assign constant value n to field x in the head packet

I tests x = n
if value of field x in the head packet is n, then pass, else drop

I dup
duplicate the head packet

NetKAT

Example

sw = 6 ; pt = 88 ; dest ← 10.0.0.1 ; pt ← 50

“For all packets incoming on port 88 of switch 6, set the destination IP
address to 10.0.0.1 and send the packet out on port 50.”

NetKAT Axioms

x ← n ; y ← m ≡ y ← m ; x ← n (x 6= y)
assignments to distinct fields may be done in either order

x ← n ; y = m ≡ y = m ; x ← n (x 6= y)
an assignment to a field does not affect a different field

x = n ; dup ≡ dup ; x = n
field values are preserved in a duplicated packet

x ← n ≡ x ← n ; x = n
an assignment causes the field to have that value

x = n ; x ← n ≡ x = n
an assignment of a value that the field already has is redundant

x ← n ; x ← m ≡ x ← m
a second assignment to the same field overrides the first

x = n ; x = m ≡ 0 (n 6= m) (
∑

n x = n) ≡ 1
every field has exactly one value

NetKAT Semantics

Standard model: packet filtering and forwarding functions

JeK : H → 2H

where H = {packet histories}

Jx ← nK(π :: σ) , {π[n/x] :: σ} J1K(σ) , JskipK(σ) = {σ}

JφK(π :: σ) ,

{
{π :: σ} if π � φ

∅ if π 6� φ
J0K(σ) , JdropK(σ) = ∅

JdupK(π :: σ) , {π :: π :: σ} Jp ; qK(σ) ,
⋃

τ∈JpK(σ)

JqK(τ)

Jp + qK(σ) , JpK(σ) ∪ JqK(σ) Jp∗K(σ) ,
⋃
n

JpnK(σ)

NetKAT Semantics

Standard model: packet filtering and forwarding functions

JeK : H → 2H

where H = {packet histories}

Jx ← nK(π :: σ) , {π[n/x] :: σ} J1K(σ) , JskipK(σ) = {σ}

JφK(π :: σ) ,

{
{π :: σ} if π � φ

∅ if π 6� φ
J0K(σ) , JdropK(σ) = ∅

JdupK(π :: σ) , {π :: π :: σ} Jp ; qK(σ) ,
⋃

τ∈JpK(σ)

JqK(τ)

Jp + qK(σ) , JpK(σ) ∪ JqK(σ) Jp∗K(σ) ,
⋃
n

JpnK(σ)

NetKAT Examples
[Anderson & al 2014]

Reachability
I Can host A communicate with host B? Can every host

communicate with every other host?

Security
I Does all untrusted traffic pass through the intrusion detection

system located at C?

Loop detection
I Is it possible for a packet to be forwarded around a cycle in the

network?

Probabilistic NetKAT (ProbNetKAT)

I Extend NetKAT with probabilistic primitives

I Enriched semantics based on Markov kernels

I Extends NetKAT conservatively

I Lose deductive completeness but can still reason semantically

I Applications:
I expected connectivity given probability of link failures
I expected load given ingress traffic
I expected delivery time for probabilistic broadcast protocols (gossip)

Example

I1

I2

C D

E1

E2

Suppose the network operator wants to configure the switches to forward
traffic on the two left-to-right paths from I1 to E1 and I2 to E2.

We can specify this in ProbNetKAT as follows:

p , (sw = I1 ; dup ; sw ← C ; dup ; sw ← D ; dup ; sw ← E1) &

(sw = I2 ; dup ; sw ← C ; dup ; sw ← D ; dup ; sw ← E2)

Example

I1

I2

C D

E1

E2

Suppose the network operator wants to configure the switches to forward
traffic on the two left-to-right paths from I1 to E1 and I2 to E2.

We can specify this in ProbNetKAT as follows:

p , (sw = I1 ; dup ; sw ← C ; dup ; sw ← D ; dup ; sw ← E1) &

(sw = I2 ; dup ; sw ← C ; dup ; sw ← D ; dup ; sw ← E2)

Example (cont’d)

Now suppose now we wish to represent the following traffic model:

In each time period, the number of packets originating at I1 is
either 0, 1 or 2, with equal probability, and likewise for I2.

Write πij ! for a sequence of assignments that produces the packet πj at
switch Ii . We can encode the input distributions at I1 and I2 as follows.

d1 , drop⊕ π1,1!⊕ (π1,1! & π1,2!)

d2 , drop⊕ π2,3!⊕ (π2,3! & π2,4!)

d1 and d2 are functions giving distributions on sets of histories.

The full input distribution is d , d1 & d2.

Example (cont’d)

To calculate a distribution that encodes congestion on links, push the
input distribution d through the forwarding policy p using sequential
composition: d ; p.

This produces a distribution on sets of histories. In this example, there
are nine such sets, and the output distribution is uniform:

∅
{E1,1:D1:C1:I1,1}
{E2,3:D3:C3:I2,3}
{E1,1:D1:C1:I1,1, E1,2:D2:C2:I1,2}
{E2,3:D3:C3:I2,3, E2,4:D4:C4:I2,4}
{E1,1:D1:C1:I1,1, E2,3:D3:C3:I2,3}
{E1,1:D1:C1:I1,1, E1,2:D2:C2:I1,2, E2,3:D3:C3:I2,3}
{E1,1:D1:C1:I1,1, E2,3:D3:C3:I2,3, E2,4:D4:C4:I2,4}
{E1,1:D1:C1:I1,1, E1,2:D2:C2:I1,2, E2,3:D3:C3:I2,3, E2,4:D4:C4:I2,4}

Example (cont’d)

To calculate the expected number of packets traversing the link ` from
C1 to C2, filter on the set b = · · · :Di :Ci : · · · and ask for the expected
size of the result. (In this example, all histories traverse `, so b actually
has no effect.)

The expected number of packets traversing ` is given by integration:∫
a∈2H
|a| · Jd ; p ; bK(da) = 2

Example (cont’d)

To calculate the expected number of packets traversing the link ` from
C1 to C2, filter on the set b = · · · :Di :Ci : · · · and ask for the expected
size of the result. (In this example, all histories traverse `, so b actually
has no effect.)

The expected number of packets traversing ` is given by integration:∫
a∈2H
|a| · Jd ; p ; bK(da) = 2

Semantic Considerations

When formulating the semantics of ProbNetKAT, several novel
considerations arose:

I NetKAT and ProbNetKAT are not a state-based, but rather
flow-based

I computation is lossless; “halting” is not a relevant notion (all
programs “halt” and produce an output w.p. 1 (which may be the
empty set)

I it is no longer the case that the meaning of a program on an input
set of packet histories is uniquely determined by its action on
individual histories; probabilistic decisions may be correlated

I parallel composition (&) is not idempotent, except for deterministic
programs

I distributivity no longer holds in general, except for deterministic
programs

I in the presence of both duplication (dup) and iteration (∗), discrete
distributions do not suffice

Markov Kernels

Let (S ,BS) and (T ,BT) be measurable spaces. A function
P : S × BT → R is called a Markov kernel if

I for fixed A ∈ BT , the map P(−,A) : S → R is a measurable
function on (S ,BS)

I for fixed s ∈ S , the map P(s,−) : BT → R is a probability measure
on (T ,BT)

The measurable spaces and Markov kernels form a category, the Kleisli
category of the Giry monad. Composition is given by Lebesgue
integration: for P : S → T and Q : T → U,

(P ; Q)(s,A) =

∫
t∈T

P(s, dt) · Q(t,A).

Associativity is essentially Fubini’s theorem.

ProbNetKAT Syntax

I random choice: p ⊕r q, where r ∈ [0, 1]
Flip an r -biased coin (Pr(heads)=r , Pr(tails)=1− r), do p on heads
and q on tails

I parallel composition: p & q
Perform both p and q, making any probabilistic choices in p and q
independently, and take the union of the resulting sets

I extended tests: Formally just an element b ∈ 2H .
Filter the input set by b

A Measurable Space

2H = powerset of packet histories H forms a topological space generated
by basic clopen sets

Bτ = {a ∈ 2H | τ ∈ a}, τ ∈ H

Homeomorphic to the Cantor space, the topological product of countably
many copies of the discrete two-element space

B ⊆ 22H = the Borel sets of this topology (smallest σ-algebra containing
the sets Bτ)

The measurable space (2H ,B) with outcomes 2H and events B.

ProbNetKAT programs p are interpreted as Markov kernels
JpK : 2H → 2H .

Semantics of Atomic Operations

I Jx ← nK(a,−) , δ{π[n/x] :σ |π :σ∈a}

I Jx = nK(a,−) , δ{π :σ |π :σ∈a, π(x)=n}

I JbK(a,−) , δa∩b
I JskipK(a,−) , δa
I JdropK(a,−) , δ∅
I JdupK(a,−) , δ{π :π :σ |π :σ∈a}

These are all deterministic kernels: δa = Dirac (point mass) measure on a

Parallel Composition &

Operational semantics

Jp & qK(s,−) , let a = sample(JpK(s,−)) in

let b = sample(JqK(s,−)) in

a ∪ b

Denotational semantics

Jp & qK(s,−) , (JpK(s,−)× JqK(s,−)) ; ∪−1

The union operation
⋃

: 2H × 2H → 2H is continuous, thus measurable

Jp & qK(s,A) = probability that the union of two independent samples
taken with respect to JpK(s,−) and JqK(s,−) lies in A

Properties of &

Lemma

I & is associative and commutative

I & is linear in both arguments

I (δa & µ)(A) = µ({b | a ∪ b ∈ A})
I δa & δb = δa∪b

I δ∅ is a two-sided identity for &

I µ & µ = µ iff µ = δa for some a ∈ 2H

Sequential Composition p ; q

Operational semantics

Jp ; qK(a,−) , let b = sample(JpK(a,−)) in

sample(JqK(b,−))

Denotational semantics

Jp ; qK(a,A) =

∫
b∈2H

JpK(a, db) · JqK(b,A)

Composition in NetKAT and ProbNetKAT take place in the Kleisli
category of the powerset and Giry monads, respectively

Random Choice p ⊕r q

Operational semantics

Jp ⊕r qK(a,−) , let b = flip(r) in

if b then sample(JpK(a,−))

else sample(JqK(a,−))

Denotational semantics

Jp ⊕r qK(a,A) = rJpK(a,A) + (1− r)JqK(a,A)

Do p with probability r and q with probability 1− r

Iteration p∗

The usual definition of p∗ as a sum of powers does not work!

Operational semantics

An infinite stochastic process:

Jp∗K(c0,−) = forall n ≥ 0

let cn+1 = sample(JpK(cn,−)) in⋃
n

cn

Denotational semantics

Quite technical—requires the Kolmogorov extension theorem

A Fixpoint Equation

Theorem Jp∗K = Jskip & pp∗K.

I We can encode conditionals and while loops in the standard way:

if b then p else q = bp & b̄q while b do p = (bp)∗b̄

I the fixpoint theorem ensures that the while loop works as desired

while b do p = if b then (p ; while b do p) else skip

I does not determine Jp∗K uniquely; e.g., it can be shown that a
probability measure µ is a solution of

Jskip∗K(π,−) = Jskip & skip ; skip∗K(π,−)

iff µ(Bπ) = 1.

Conservativity of the Extension

Lemma
All syntactically deterministic ProbNetKAT programs p (those without an
occurrence of ⊕r) are (semantically) deterministic. That is, for any
a ∈ 2H , the distribution JpK(a,−) is a point mass.

Let J·KN and J·KP denote the semantic maps for NetKAT and
ProbNetKAT respectively.

Theorem
For deterministic programs, ProbNetKAT semantics and NetKAT
semantics agree in the following sense. For a ∈ 2H , define
JpKN(a) =

⋃
τ∈aJpKN(τ). Then for any a, b ∈ 2H ,

JpKN(a) = b ⇔ JpKP(a) = δb.

Conservativity of the Extension

Corollary
The NetKAT axioms are sound and complete for deterministic
ProbNetKAT programs.

Some Useful Properties

I Jp & dropK = JpK = Jdrop & pK
I Jp ⊕r pK = JpK
I J(p & q) & sK = Jp & (q & s)K
I Jp & qK = Jq & pK
I Jp ⊕r qK = Jq ⊕1−r pK

I J
(
p ⊕ a

a+b
q
)
⊕ a+b

a+b+c
sK = Jp ⊕ a

a+b+c

(
q ⊕ b

b+c
s
)
K

Properties of Deterministic Programs

Parallel composition & is not idempotent except in the deterministic
case, neither does sequential composition distribute over & in general.
However, if the term being distributed is deterministic, then the property
holds.

Lemma
If p is deterministic, then

Jp(q & r)K = Jpq & prK J(q & r)pK = Jqp & rpK.

Neither equation holds unconditionally.

A Continuous Measure

Omitting ∗ or dup, ProbNetKAT programs can generate only discrete
measures. This raises the question of whether it is possible to generate a
continuous measure at all.

Theorem
Let π0 and π1 be distinct packets and let p be the program that changes
the current packet to either π0 or π1 with equal probability. The measure
µ = Jp ; (dup ; p)∗K(π0,−) is supported by the subspace of 2H consisting
of all sets containing exactly one history of each length and linearly
ordered by the suffix relation. This subspace is homeomorphic to the
Cantor space and µ is the uniform (Lebesgue) measure on this space.

Thus discrete measures are not adequate.

Approximation

Every program can be approximated arbitrarily closely by a loop-free
program, using a suitable notion of approximation for the iterates of a
loop. This means that in many real-world applications, finite or discrete
distributions suffice.

The appropriate notion of approximation is weak convergence. A
sequence of measures µn converge weakly to µ if for all bounded
continuous real-valued functions f ,

lim
n

∫
a

f (a) · µn(da) =

∫
a

f (a) · µ(da).

That is, the expected values of f with respect to the µn converge to the
expected value of f with respect to µ.

Weak Convergence of p(m) to p∗

Define

p(0) = skip p(n+1) = skip & p ; p(n).

This is the outcome of the first n steps of the process defining p∗.

Note that p(n) is not pn, nor is it p0 & · · · & pn.

Theorem
The measures Jp(m)K(c ,−) converge weakly to Jp∗K(c ,−).

Approximation by ∗-Free Programs

Theorem
All ProbNetKAT program operators are continuous with respect to weak
convergence.

Corollary
For every ProbNetKAT program p, there is a sequence of ∗-free programs
that converge weakly to p.

Applications

Fault Tolerance
I Failures are a fact of life in real-world networks

I A recent empirical study of data center networks [Gill & al 11] found
that failures occur frequently, often cause degraded performance and
service disruptions

I We can model failures in ProbNetKAT: p ⊕d drop succeeds and
executes p with probability d and fails with probability 1− d

Fault Tolerance

S1

S2

S4

S3

Consider the network topology pictured. We
wish to forward traffic from S1 to S4. We know
that the link S1 → S2 fails with 10% probability
and all other links are reliable. What is the
probability that a packet that originates at S1
will be successfully delivered to S4?

The topology and failure probability are
encoded as follows:

t ,(sw = S1; pt = 2; ((sw ← S2; pt ← 1)⊕.9 drop))

& (sw = S1; pt = 3; sw ← S3; pt ← 1)

& (sw = S2; pt = 4; sw ← S4; pt ← 2)

& (sw = S3; pt = 4; sw ← S4; pt ← 3)

(adopting the convention that each port is named according to the
identifier of the switch it connects to—e.g., port 1 on switch S2 connects
to switch S1)

Fault Tolerance

Next, encode the behavior on switches. Try two policies:

1. Send all traffic via S2:

p , (sw = S1; pt ← 2) & (sw = S2; pt ← 4)

2. Divide the traffic evenly between S2 and S3:

p′ , (sw = S1; (pt ← 2⊕ pt ← 3))

& (sw = S2; pt ← 4) & (sw = S3; pt ← 4)

The egress predicate is e , sw = S4. The complete network program is
(p ; t)∗ ; e. That is, the network alternates between forwarding on
switches and topology, iterating these steps until the packet is either
dropped or exits the network.

Calculations using our semantics yield a 90% chance of delivery in case 1
and a 95% chance in case 2. The positive effect with respect to failures
has also been observed in previous work on randomized routing
[Zhang-Shen and McKeown, IWQoS 05].

Applications

Load Balancing
I Operators must often balance traffic to avoid excessive congestion

on any link

I an attractive approach to this problem is randomized routing: traffic
is spread randomly over a diverse set of paths

I Valiant load balancing (VLB) [Valiant 82] is a classic randomized
routing scheme that provides low expected congestion. VLB
forwards packets using a simple two-phase strategy:

1. the ingress switch forwards the packet to a randomly selected
neighbor

2. the neighbor forwards the packet to the final destination.

Load Balancing

S1

S2

S3

S4

Consider the four-node mesh topology shown.
Assume that each switch has ports named
1, 2, 3, 4, that port i on switch i connects to
the outside world, and that all other ports j
connect to switch j .

We can write a ProbNetKAT program for VLB
this load balancing scheme by splitting it into
two parts, one for each phase of routing. We
can use topological information to distinguish
the phases. Incoming packets (port i on switch
i) are forwarded randomly, and packets on
internal ports are forwarded deterministically.

Load Balancing

The initial (random) phase is modeled by

p1 ,
4

&
k=1

(sw = k ; pt = k ;
⊕
j 6=k

pt ← j)

The second (deterministic) phase is modeled by:

p2 ,

(
4

&
k=1

(sw = k ; pt 6= k)

)
;

(
4

&
k=1

(dst = k ; pt ← k)

)

The guards sw = k ; pt 6= k restrict to second-phase packets. The
overall switch term p is p1 & p2.

The topology term t is encoded as before.

Load Balancing

VLB can route nr/2 load in a network with n switches and internal links
with capacity r . In our example, n = 4 and r = 1, so we can route two
packets with no expected congestion. We model this demand with a term
d that generates two packets with random origins and random
destinations:

d , (
4⊕

k=1

(πk,k,0!) &
4⊕

k=1

(πk,k,1!)) ; (
4⊕

k=1

dst ← k)

The full network program to analyze is then d ; (p ; t)∗ ; p.

Defining Xmax , the maximum number of packets traversing a single
internal link and using the semantics of ProbNetKAT, we find that the
expected value of Xmax is one packet, as predicted.

Applications

Gossip Protocols
I used to efficiently disseminate information in large-scale distributed

systems [Demers 1987]

I tend to converge rapidly to a consistent global state while only
requiring bounded worst-case communication

I in each round, every node communicates with a randomly selected
peer and the nodes update their state using information shared
during the exchange

We can use ProbNetKAT to model the convergence of gossip protocols

I introduce a single packet to model the “rumor” being gossiped by
the system

I when a node receives the packet, it randomly selects one of its
neighbors to infect

Gossip Protocols

100

101

111

110000

001

011

010

We run this protocol on a hypercube.
Gossiping on a hypercube is highly
uniform: numbering the switches in
binary, we can randomly select a
neighbor by flipping a single bit.

The fragment of the switch program p for switch 000 is as follows:

sw = 000 ; ((pt ← 001⊕ pt ← 010⊕ pt ← 100) & pt ← 0)

The overall forwarding policy is obtained by combining analogous
fragments for the other switches using parallel composition (&).

Gossip Protocols

Encoding the hypercube topology as t
as before, we can analyze (p ; t)∗ and
calculate the expected number of
infected nodes after a given number of
rounds Xinfected using the ProbNetKAT
semantics. The results for the first few
rounds are shown.

This captures the usual behavior of a
push-based gossip protocol.

Rounds E [Xinfected]

0 1.00
1 2.00
2 3.33
3 4.86
4 6.25
5 7.17
6 7.66

Related Work

Probabilistic Programming

Computational models, semantics, and logics for probabilistic programs
have been extensively studied for many years [SahebDjahromi 78;
Ramshaw 79; Kozen 79, 83; Morgan & al 96; Kozen & al 13; Larsen & al
12; Gordon & al 14; Gretz & al 15]. Our semantics for ProbNetKAT
builds on these foundations and extends it to the new domain of network
programming.

Probabilistic programming in AI

has also been extensively studied [Roy 11; Gordon 11]. However, the
goals of this work are somewhat different in that it focuses on Bayesian
inference.

Related Work

Probabilistic Automata

Probabilistic automata in several forms have been a popular model going
back to early work of [Paz 71], as well as many other more recent efforts
[Segala 06, 95; McIver & al 08; Larsen & Skou 91, 92; Desharnais & al
02; Cattani & Segala 02; Jonsson & Larsen 91; Kwiatkowska & al 02, 07;
Baier 08; Abate & al 14]. Probabilistic automata are a suitable
operational model for probabilistic programs and play a crucial role in the
development of decision procedures for bisimulation equivalence,
synthesis of probabilistic programs, and model checking In the present
paper, we do not touch upon any of these issues so the connections to
probabilistic automata theory are thin. However, we expect they will play
an important role in our future work.

Related Work

Probability & Nondeterminism

Denotational models combining probability and nondeterminism have
been proposed in papers by several authors [Jones & Plotkin 89; Jones
90; McIver & Morgan 96, 05; Varacca & Winskel 06; Tix & al 09].
Because ProbNetKAT does not have nondeterminism, we have not
encountered the extra challenges arising in the combination of
nondeterministic and probabilistic behavior.

Labeled Markov Processes

General models for labeled Markov processes, primarily based on Markov
kernels, have been studied extensively [Panangaden 98, 09; Doberkat 07].
Our use of Markov processes is influenced heavily by these works.

Related Work

Network Programming

Recent years have seen an incredible growth of languages and systems for
programming and reasoning about networks: Frenetic [Foster & al 11];
Pyretic [Monsanto & al 13]; Maple [Voellmy & al 13]; NetKAT
[Anderson & al 14]; and FlowLog [Nelson & al 14]. However, as
mentioned previously, all of these language are based on deterministic
packet-processing functions and do not handle probabilistic traffic models
or forwarding policies. Of all these frameworks, NetKAT is the most
closely related as ProbNetKAT builds directly on its features.

Network Verification Tools

In addition to programming languages, a number of network verification
tools have emerged: Header Space Analysis [Kazemian & al 12];
VeriFlow [Khurshid & al 13]; the NetKAT verifier [Foster & al 15]; and
Libra [Zeng & al 14]. Like the network programming languages described
above, these tools only model deterministic networks and verify
deterministic properties.

Related Work

Network Calculus

Network calculus is a general framework for analyzing network behavior
using tools from queuing theory [Cruz 91; Le Boudec & Thiran 01; Jiang
06]. It models the low-level behavior of network devices in significant
detail, including features such as traffic arrival rates, switch propagation
delays, and the behaviors of components like buffers and queues. This
enables reasoning about quantitative properties such as latency,
bandwidth, and congestion. Like ProbNetKAT, stochastic network
calculus provides tools for reasoning about the probabilistic behavior,
especially in the presence of statistical multiplexing. However, network
calculus is generally considered difficult to use, since it requires external
facts from queuing theory to establish many desired results. In contrast,
ProbNetKAT is a self-contained, language-based framework that offers
general programming constructs and a complete denotational semantics.

Conclusion

I We have introduced Probabilistic NetKAT (ProbNetKAT), a
conservative extension of NetKAT with constructs for reasoning
about the probabilistic behavior of networks. To our knowledge, this
is the first language-based framework for specifying and verifying
probabilistic network behavior.

I We have developed a formal semantics for ProbNetKAT based on
Markov kernels and shown that the extension is conservative over
NetKAT.

I We have determined the appropriate notion of approximation and
have shown that every ProbNetKAT program is arbitrarily closely
approximated by loop-free programs.

I We have presented several case studies that illustrate the use of
ProbNetKAT on examples involving fault tolerance, load balancing,
and a probabilistic gossip protocol.

Conclusion

Future Directions

Our examples have used the semantic definitions directly in the
calculation of distributions. Although we have exploited several general
properties of our system in these arguments, we have made no attempt
to assemble them into a formal deductive system or decision procedure as
done previously for NetKAT [Anderson & al 14, Foster & al 15]. These
questions remain topics for future investigation.

As a more practical next step, we would like to augment the existing
NetKAT compiler [Smolka & al 15] with tools for handling the
probabilistic constructs of ProbNetKAT along with a formal proof of
correctness. Features such as OpenFlow [McKeown & al 08] “group
tables” support simple forms of randomization and emerging platforms
such as P4 [Bosshart 14] offer additional flexibility. Hence, there already
exist machine platforms that could serve as a compilation target for
restricted fragments of ProbNetKAT.

Thanks to . . .

I Cornell PLDG

I DIKU COPLAS

I National Security Agency

I National Science Foundation CNS-1111698, CNS-1413972,
CCF-1422046, CCF-1253165, CCF-1535952

I Office of Naval Research N00014-15-1-2177

I Dutch Research Foundation (NWO) 639.021.334, 612.001.113

I gifts from Cisco, Facebook, Google, and Fujitsu

For papers and code, please visit:
http://frenetic-lang.org/

Thanks!

