
Interoperability of Asynchronous
Relational Nets using

Communicating machines

Carlos Gustavo Lopez Pombo — (1, 3)
Hernán Melgratti — (1, 3)
Emilio Tuosto — (2)
Ignacio Vissani — (1)

(1) Universidad de Buenos Aires, Argentina
(2) University of Leicester
(3) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)

Intro (The Motivation)
In Service-Oriented Computing (SOC), the structure of
software systems is intrinsically dynamic since: a)
computational elements are bound in the form of services
that are procured at run-time to collectively fulfil business
goals, and b) a repository could have many service
providers offering “the same” service
The discovery and binding of services is done at run-
time by a middleware which is transparent from the
perspective of the executing software artefact and should
automatically choose a service that satisfies the contract
associated to the requires point

Intro (The Motivation)
What is out there

WS-I
Web-Service Interoperability Organisation

[founded by Microsoft]

IBM SOAP
IBM Service-Oriented Architecture Assembly

Oracle Fusion Middleware

OASIS

Founder

Founder

Spo
nso

r

“Best Practices for Web services interoperability by developing a
comprehensive set of Web services Profiles, Sample Applications and
Testing Tools”

“An architectural style that requires a service provider, mediation, and
service requestor with a service description”
“The goal of the Web service architecture is to allow heterogeneous
business applications to smoothly work together.”

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Asynchronous Relational Nets

Intro (Elements)

An ARN is a hypergraph-based structure whose nodes are
the ports, and has two types of hyperedges:
communication channels and processes

Each edge is labeled with a Müller automaton, in the case
of processes on the language of the ports, in the case of
communication channels on a new language to which the
language of the ports are mapped by injections,

Nodes that are only incident to processes are called
provides points,
while those that are only incident to communication
channels are called require points

If an ARN has provides points, it is said to be a service as
it can be invoked through them,
while if it only have requires points, it is said to be an
activity, meaning that it can not be invoked.

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Asynchronous Relational Nets

Intro (Composition)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

The composition of an activity with a service is done by
injectively mapping the language of a requires points of
an activity to the language of a provides point of a service.

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Asynchronous Relational Nets

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Binding

�0 �

Both requires points and provides points are labeled with
contracts written in language L using signature E with a
predefined checking mechanism.

L
E -

Only then, points are fused using the injective map.

Computational aspects of ARNs were defined as a
set of execution traces, thus contracts were
conceived as LTL theory presentations, being the
checking mechanism the traditional strong
entailment [Fiadeiro et al FASE2011]

Later, the sets of traces were replaced by Müller
Automata but preserving the contracts and
checking mechanism [Fiadeiro & Tutu CALCO2013]

Binding (LTL contracts)

Combining LTL contracts with the semantics of the
computational elements of ARNs is straightforward, and

There is an automatic procedure implementing the
checking mechanism for LTL strong satisfaction

It does not guaranty that the service acting as provider
implements all the behaviour required by the executing
activity

Binding (LTL contracts)

Example

Up sid
e

Down side

Binding (LTL contracts)

⌃pp´accept _ ´rejectq ^ p´accept ^ ´rejectqq ⌃ ´ reject ^ l ´ accept

$LTL

Requires

Provides

Binding

Orchestration
(local view of the communication)

+
Choreographies

(global view of the communication)

Binding

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Participant Travel Client Participant Travel Agent

Choreographer
of TC and TA

behaviour

Choreographers
of TA and the

expected participants
behaviour

Orchestration (Communicating
Finite State Machines)

A Communicating Finite State Machines (CFSM) is a
finite automata formalising the communication from the
perspective of one of the participants [Brand & Zafiropulo
JACM1983]

Hotel Service (Hs)
Sender of the message

Receiver of the message

Role of Hs in the communication

Message being exchanged

Choreographies (Global
graphs)

A Global Graph is a finite automata formalising the
communication from a global perspective showing all
exchanges of messages [Denielou & Yoshida ESOP2012]

CC Sender of the message

Receiver of the message

Message being exchanged

Tc has no role in this exchange

Binding
(CFSM + Global graphs)

Every provides point (dangling points of a process
hyperarc) is labeled with a communicating
machine declaring its role in the communication

Every communication hyperarc is labeled with a
global graph declaring the protocol that the
participants must follow

The idea

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

�0 �

Binding (CFSM + Global
graphs) [Vissani et al PLACES2015]

1) Project the global graph labelling the communication hyperarc for all
the participants [Lange et al PoPL2015],  
2) check that the CFSM obtained from the projection for each participant
is bisimilar to the CFSM labelling the provides point of each service
provider

Top-D
own

Project CC1 „

�0 �

Binding (CFSM + Global
graphs) [Vissani et al PLACES2015]

1) Synthesise a choreography from the CFSM labelling the provides
point of each service provider (if possible) [Lange et al PoPL2015],  
2) check for isomorphism with the choreography labelling the
communication hyperarc

Synthesis

Botto
m-Up

–

We solved the asymmetry problem of service
provision/request by combining global
(choreographic) and local (orchestrated) views
of communication in a single mechanism for
interoperability check of services

Outro (Conclusions)

Outro (Ongoing work)
Addition of values associated to the messages for a more
functional interoperability [Melgratti, Vissani, Tuosto]

Definition/implementation of a model-checking technique
for analysing properties of ARNs [Fiadeiro, Ţuţu, Vissani]

Automatic analysis of a trace-based semantics for
choreographies and global graphs [Melgratti, Barbeito]

Implementation of a middleware capable of providing
support for formal establishing of Service Level Agreement
as a part of the process of binding [Vissani]

http://en.wikipedia.org/wiki/%C5%A2

Outro (Further work)

Modular checking technique for heterogeneous
contracts for Service Level Agreement

Degrees of satisfaction of certain contracts for Service
Level Agreement

Probabilistic analysis and prediction of service-oriented
system behaviour [Pedro D’Argenio, me]

The Encore

? & !

Some other projects
—8<———8<———8<———8<———8<———8<———8<—

The formulation of a canonical proof-theoretic approach
to model theory [Maibaum, me] and its extension to
substructural logics [Kurz, Maibaum, me]

