A FORMAL FRAMEWORK FOR PRIVACY POLICIES

GERARDO SCHNEIDER

Dept. of Computer Science and Engineering

(Joint work with **RAÚL PARDO*** and **MUSARD BALLIU**)

Nijmegen, 27 June 2015

* Thanks to Raúl for some of the slides

OUTLINE

Part I: About privacy policies on Social Network Systems (SNS)

Part II: A very brief summary of other research interests

MOTIVATION

David Sands

Having some beers at the pub

Like · Comment · with Raul Pardo at Chalmers Pub · 👥

🖒 Devdatt and 20 people like this.

Gerardo Schneider Huh? Raul is supposed to be working on the presentation for DSFM...

11 minutes ago · Like · 🔥 15

Write a comment ...

MOTIVATION

PRIVACY POLICIES IN SNS TODAY

- Limited expressivity on what you can write
- Conformance partially supported in many social networks
 - But limited: no analysis of (post) content, side effects of events (tagging, joining an event, etc.)
- Consistency among policies
 - Not supported in general...
 - Even less among multiple SNS

OUR (MID-TERM) GOAL

- Define a privacy policy framework allowing to write rich privacy policies for social networks
 - Beyond current SNS like
 - Beyond a single SNS
- Means for reasoning about properties of such policies (and the SNS)
 - Model checking, deductive system,...
 - Implicit and explicit knowledge
- Provide enforcement mechanisms

SOCIAL NETWORK GRAPH

HOW IS IMPLEMENTED? ReBAC

SOCIAL NETWORK GRAPH -REVISITED

PPF: A FORMAL FRAMEWORK FOR PRIVACY POLICIES ON SOCIAL NETWORKS

KBL: AN "EPISTEMIC" LOGIC PPF: < SNM, KBL, PPL >

KBL SEMANTICS PPF: < SNM, KBL, PPL >

$$\begin{split} SN, u &\models p(\vec{t}) & \text{iff} \quad p(\vec{t}) \in Cl(KB_u) \\ SN, u &\models \neg \phi & \text{iff} \quad SN, u \not\models \phi \\ SN, u &\models \phi \land \psi & \text{iff} \quad SN, u \not\models \phi \text{ and } SN, u \models \psi \\ SN, u &\models \forall x. \phi & \text{iff} \quad \text{for all } v \in D, SN, u \models \phi[v/x] \\ SN, u &\models K_i \delta & \text{iff} \quad \delta \in Cl(KB_i) \\ SN, u &\models c_m(i, j) & \text{iff} \quad (i, j) \in C_m \\ SN, u &\models a_n(i, j) & \text{iff} \quad (i, j) \in A_n \\ SN, u &\models S_G \delta & \text{iff} & \text{there exits } i \in G \text{ such that } SN, i \models K_i \delta \\ SN, u &\models E_G \delta & \text{iff} & SN, u \models E_G^k \delta & \text{iff} \\ SN, u &\models C_G^k \phi & \text{iff} & SN, u \models E_G^n \phi \text{ for } n = 0, 1, 2, \dots, k \\ SN, u &\models D_G \delta & \text{iff} & \delta \in Cl(\bigcup_{i \in G} KB_i) \end{split}$$

TABLE I: \mathcal{KBL}_{SN} satisfiability relation

PPL: SPECIFYING POLICIES PPF: < SNM, KBL, PPL >

PPL CONFORMANCE RELATION PPF: < SNM, KBL, PPL >

$SN \models_C \delta_1 \wedge \delta_2$	iff	$SN \models_C \delta_1 \land SN \models_C \delta_2$
$SN \models_C \forall x.\delta$	iff	for all $x \in D$, $SN \models_C \delta[v/x]$
$SN \models_C [\neg \alpha]_i$	iff	$SN, i \models \neg \alpha$
$SN \models_C \llbracket \phi \implies \neg \alpha \rrbracket_i$	iff	$SN, i \models \phi$ then $SN \models_C [\neg \alpha]_i$

KBL - EXAMPLES

- Bob knows Alice's location

- Bob knows that Alice knows his location

- Alice and Bob know Bob's location

KBL - EXAMPLES

- If an agent knows a post, she knows who liked it

Interesting article with an overview of some concurrency problems and how they have been solved

Like · Comment · Share

🖒 Adina Aniculaesei, Joel Svensson and 2 others like this.

 $\forall x. \forall u. \forall i. \forall \eta (K_x post(\eta, u) \land K_i like(i, u, \eta) \Rightarrow K_x like(i, u, \eta))$

PPL – EXAMPLES

Nobody can know Bob's location (except Bob)

PPL – EXAMPLES

Nobody can know Bob's location (except Bob)

$$[\neg S_{Ag \setminus \{Bob\}}]_{Bob}$$

Only people who liked at least one of Bob's posts can join his event:

 $\forall i. \forall \eta. [\neg K_{Bob} like(i, Bob, \eta) \Rightarrow \neg P_i^{Bob} joinEvent]_{Bob}$

THAT'S NICE BUT... SOCIAL NETWORKS EVOLVE

"EPISTEMIC" EVOLUTION

"TOPOLOGICAL" EVOLUTION

"POLICY" EVOLUTION

OPERATIONAL RULES

Updated of "primed" variables, auxiliary information, side effects, etc

For any event of the SNS E.g., for Twitter: *follow, unfollow, post*, etc

OPERATIONAL RULES: GENERIC STRUCTURE

PRESERVATION OF PRIVACY

THEOREM: **Solution** and **Theorem and Theorem** and **Theorem** and **Theorem and Theorem a**

e

Privacy Preservir

SUMMARY

Formal Privacy Policy Framework (SEFM'14)

- Social Network Model SN
- . Knowledge Based Logic KBL
- Privacy Policy Language PPL
- . Formalization of Facebook and Twitter

Evolution of SNs (under submission)

- Operational rules
- . Privacy preservation
- . Applied to Facebook and Twitter

ON-GOING AND FUTURE WORK

- Proving relation of the SN Model with standard Kripke semantics for Epistemic Logic
 Implementation: Diaspora*
- Extending the framework with real-time Attacker model
- Enforcement mechanisms
- Long Term:

 A generic privacy policy framework controlling your device (e.g., smart phone)
Privacy-preserving contractual agreements 29

Part II

Other (current) research interests

SPECIFICATION AND ANALYSIS OF NORMATIVE TEXTS

Joint work with John C. Camilleri

Also: Cristian Prisacariu, Gordon Pace, ...

WHAT DO WE WANT TO DO?

- Formalize "contracts" (normative texts)
- Provide (semi) automatic tools for analysis

"What happens if the customer skips the payment?"

"What is the shortest service utilization?"

"What are my obligations?"

"Are there obligations without "reparations"?

THE BIG (PARTIAL) PICTURE...

You should read it in this direction!

STATUS

Our work on "contracts":

FMOODS'07, ATVA'07, ATVA'08, ATVA'09, iFM'09, FESCA'09, WOLLIC'09, ICAIL'09, ICTAC'09, IEEE SCC'10, FMSPLE'10, FLACOS'11, JLAP'12, JLAP'13, IEEE TSE'14, CNL'14

* Thanks to John Camilleri for the picture

COMBINING STATIC AND RUNTIME VERIFICATION

(To verify Data- and Control-Oriented properties)

Joint work with

Wolfgang Ahrendt, Mauricio Chimento and Gordon Pace

Unified **Sta**tic and **R**untime Verification of **O**bject-**O**riented **S**oftware

Unified **Sta**tic and **R**untime Verification of **O**bject-**O**riented **S**oftware

STATUS

Framework + ppDATE (FM'15)

Automatic Tool (RV'15)

