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Signal Flow Graphs

• Signal Flow Graphs are stream processing circuits studied in
Control Theory since the 1950s.

• Constructed combining four kinds of gate
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Signal Flow Graphs

An example:
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Signal Flow Graphs
The orthodoxy
◦ SFGs are not treated as interesting mathematical objects per se.

◦ Formal analysis typically mean translation into a “lower-level”
formalism like systems of linear equations.

In this work
◦ An high-level formalism where SFGs are first-class objects:

the calculus of signal flow diagrams

• String diagrammatic (=graphical) syntax
• Structural Operational Semantics
• Denotational semantics
• Sound and complete axiomatisation
• Full Abstraction
• Realisability

4 / 23



Signal Flow Graphs
The orthodoxy
◦ SFGs are not treated as interesting mathematical objects per se.

◦ Formal analysis typically mean translation into a “lower-level”
formalism like systems of linear equations.

In this work
◦ An high-level formalism where SFGs are first-class objects:

the calculus of signal flow diagrams

• String diagrammatic (=graphical) syntax
• Structural Operational Semantics
• Denotational semantics
• Sound and complete axiomatisation
• Full Abstraction
• Realisability

4 / 23



Signal Flow Graphs
The orthodoxy
◦ SFGs are not treated as interesting mathematical objects per se.

◦ Formal analysis typically mean translation into a “lower-level”
formalism like systems of linear equations.

In this work
◦ An high-level formalism where SFGs are first-class objects:

the calculus of signal flow diagrams

• String diagrammatic (=graphical) syntax
• Structural Operational Semantics
• Denotational semantics
• Sound and complete axiomatisation
• Full Abstraction
• Realisability

4 / 23



Flow direction is
FUNDAMENTAL

“flow graphs differ from electrical network graphs in that their
branches are directed. In accounting for branch directions it is

necessary to take an entirely different line of approach from that
adopted in electrical network topology.”

S.J. Mason. Feedback Theory: I. Some Properties of Signal Flow
Graphs. 1953
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Flow direction is
EVIL

“Adding a signal flow direction is often a figment of one’s
imagination, and when something is not real, it will turn out to be
cumbersome sooner or later. [...] The input/output framework is

totally inappropriate for dealing with all but the most special system
interconnections. [The input/output representation] often needlessly

complicates matters, mathematically and conceptually. A good theory
of systems takes the behavior as the basic notion.”

J. Willems. Linear systems in discrete time. 2009
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The Calculus of SF Diagrams

Circuit diagrams of Circ are generated by the grammar

c,d ::= | | k | x | | |
| | k | x | | |

| | | c d | c
d

We can represent (orthodox) signal flow graphs as circuit diagrams:

xx x x 
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Structural Operational Semantics
k−→k k

k l−→k+l k
l−→kl k

k−→ −→0 x l k−→l x k

k k−→k
k+l−−→k l k

kl−→l k

−→k
0−→ x l l−→k x k

k−→k
k l−→l k

c u−→v c 0 d
v−→w d 0

c d
u−→w c d0 0

c
u1−→v1

c 0 d
u2−→v2

d 0

c
d

u1 u2−−−→v1 v2

c
d 0
0

The operational semantics 〈c〉 is the set of all traces starting from an
initial state for c (i.e. one where all the registers are labeled with 0).
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Functional Circuits

Circuit diagrams of C−→irc are generated by the grammar

c,d ::= | | k | x | | |

| | | c d | c
d

We can represent a polynomial p=k0+k1x+···+knxn as

. . . . . .

x
xx

x . . .x

k0

k1

k2

xkn

hereafter denoted by p .

10 / 23



Functional Circuits

Circuit diagrams of C−→irc are generated by the grammar

c,d ::= | | k | x | | |

| | | c d | c
d

We can represent a polynomial p=k0+k1x+···+knxn as

. . . . . .

x
xx

x . . .x

k0

k1

k2

xkn

hereafter denoted by p .

10 / 23



Polynomial matrices

The map
−→
[[·]] : C−→irc →Matk[x] is inductively defined as follows:

7−→
(

1
1

)
7−→ !

7−→ ( 1 1 )

7−→ ¡
k 7−→ ( k )

x 7−→ ( x )

7−→ id0 7−→ id1 7−→
(

0 1
1 0

)
c1⊕ c2 7−→

−−→
[[c1]]⊕

−−→
[[c2]] c1 ;c2 7−→

−−→
[[c1]] ;

−−→
[[c2]]

where ! : 0→ 1 and ¡ : 1→ 0 are given by initiality and finality of 0 in
Matk[x].
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Axiomatization
The theory HA is C−→irc quotiented by the following equations:

=

= =

=

= =

p1 p2 p1p2

1

=

=

p p
p

p
p

p

p

p

= =

=

=
p2

p1

+p1 p2

0 =

==

=Id0=
=

Soundness and Completeness
−→
[[c]] =

−→
[[d]] ⇐⇒ c HA

= d

HA is isomorphic to Matk[x]
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Reverse Functional Circuits
Circuit diagrams of C←−irc are generated by the grammar

| | k | x | | |

| | | c d | c
d

The map
←−
[[·]] : C←−irc →Matk[x]op is defined dually to

−→
[[·]].

The theory HAop is C←−irc quotiented by the following equations:
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Semantics of Generalised Circuits
When we allow combinations of functional and co-functional circuits
(like in feedbacks) we may get relational behaviors.

For instance,
�
�; �� expresses the diagonal relation.

Moreover, polynomials are not enough: we need fractions of
polynomials. k[[x]] �

� // k((x))

k〈x〉
. N

]]

� v

))
k[x]
, � 99
�� //

?�

·̂

OO

k(x)
� ?

·̃

OO

k[x] the ring of polynomials ∑
n
0 kixi for some natural n

k(x) the field of fractions of polynomials p
q for p,q ∈ k[x] with q 6= 0

k〈x〉 the ring of rationals ∑
n
0 kixi

∑
m
0 ljxj with l0 6= 0

k[[x]] the ring of formal power series ∑
∞
0 kixi

k((x)) the field of Laurent series ∑
∞
d kixi for some interger d
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Denotational Semantics

The semantics [[·]] maps a circuit to a linear relation between stream vectors

�
⌧k ·� x·� �+⌧ 0� �

�
�

� �x

k

xk k ·� x·�� � �
�

� �
�
⌧

�+⌧ 0

�
�⌧
⌧� �

c d�!� �!�1
�!�2

�!⌧1 �!⌧2�!⇢ �!⇢ �!⌧

�!� �!⌧

c d
�!�1

�!⌧1�!⌧2�!�2

c d c
d
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Axiomatisation of [[·]]
The equational theory of interacting Hopf algebras (IH)
is Circ quotiented by the axioms of HA, HAop, plus the following:

= = =

W Separable Frobenius Algebra

= = =

B Separable Frobenius Algebra

p pp p pp p= =

=

= = == p

=
-1

-1

Soundness and Completeness

[[c]] = [[d]] ⇐⇒ c IH
= d

Kleene’s Theorem
IH is the category of subspaces over the field k(x).
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Full Abstraction

Theorem (?)
For any c and d in Circ

[[c]] = [[d]] ⇐⇒ 〈c〉= 〈d〉

Not true in general.
The denotational semantics is coarser than the operational semantics.
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Full Abstraction
A counterexample

[[ xx

]] = [[ ]] = [[ x x ]]

〈 xx 〉( 〈 〉( 〈 x x 〉

We say that x x has deadlocks and xx needs initialisation.
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Full Abstraction

Theorem
For any c and d in Circ deadlock and initialisation free

[[c]] = [[d]] ⇐⇒ 〈c〉= 〈d〉
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Realisability
In presence of deadlocks or initialisation, we cannot determine
directionality of the flow.

x x xx

A trace for these circuits cannot be thought as the execution of a
state-machine.

However, all the circuit diagrams can be put into an executable form
using the equational theory IH

=.

Realisability Theorem
For any circuit c of Circ there exists

d deadlock and initialisation free such that c IH
= d.

20 / 23



Realisability
In presence of deadlocks or initialisation, we cannot determine
directionality of the flow.

x x xx

A trace for these circuits cannot be thought as the execution of a
state-machine.
However, all the circuit diagrams can be put into an executable form
using the equational theory IH

=.

Realisability Theorem
For any circuit c of Circ there exists

d deadlock and initialisation free such that c IH
= d.

20 / 23



Realisation via IH-rewriting

Implementing the Fibonacci circuit
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Realisation via IH-rewriting
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Conclusions
◦ The calculus of signal flow diagrams does not rely on flow

directionality as a primitive.
The reason why physics has ceased to look for causes
is that in fact there are no such things. The law of
causality, I believe, like much that passes muster
among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is
erroneously supposed to do no harm.

(Bertrand Russell -1913)

◦ This allows for a more flexible syntax, disclosing a rich and
elegant mathematical playground: IH.

◦ Whenever flow directionality matters, the realisability theorem
allows us rewrite any circuit diagram into an executable form.
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Beyond this talk

• Full Abstraction for Signal Flow Graphs - PoPL’15.

• A Categorical Semantics for Signal Flow Graphs - CONCUR’14.

• Interacting Bialgebras are Frobenius - FoSSaCS’14.

• Interacting Hopf Algebras - http://arxiv.org/abs/
1403.7048

• Paweł’s blog - http://graphicallinearalgebra.net/

• Fabio’s Ph.D. Thesis - Interacting Hopf Algebras: the theory of
linear systems http://zanasi.com/fabio/IHthesis_FZ.pdf
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