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Our Goal: Metalanguage for Effects + (Co)Recursion

Potential sources:

• Automata theory

• Process algebra

• (Coalgebraic) games

• Functional programming

Potential targets:

Various categories and monads
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Effects



Moggi’s Computational Metalanguage

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction (Cartesian operators omitted):

x : A ∈ Γ
Γ ` x : A

Γ ` t : A
Γ ` f(t) : B

(f : A→ B ∈ Σ)

Γ ` t : A
Γ ` ret t : TA

Γ ` p : TA Γ, x : A ` q : TB

Γ ` do x← p;q : TB

That is interpreted over a strong monad T : Underlying category C,
endofunctor T : C → C, unit: η : Id→ T and Kleisli star

--
? : hom(A, TB)→ hom(TA, TB)

plus strength: τA,B : A× TB→ T(A× B).
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Moggi’s Metalanguage in Use

• Syntax/Effectful Operations: Divergence, Nondeterminism,

Exeptions, States, . . .

• Models/Monads: Lifting monad (over predomains), powerset monad

(over Sets), state monad (over any Cartesian closed category), . . .
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Monads for Operations

Alternatively, a monad T is an algebraic theory, that is:

• TX is a set of Σ-terms over variables from X modulo Σ-equations;

• ret x is the variable x seen as a term;

• do x← p;q is the substitution p[x 7→ q].

Thanks to [Plotkin and Power, 2001] we know that algebraic operations
f : n→ 1 ∈ Σ are dual to generic effects 1→ Tn.

Example: Finite powerset monad Pω is generated by {∅ : 0→ 1,
+ : 2→ 1}, equivalently by {abort : 1→ Pω0, toss : 1→ Pω2}:

∅ = do abort ; ret ?,
p + q = do x← toss ; case x of inl ? 7→ p; inr ? 7→ q.
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Our Agenda: Effects + Recursion

What are the general settings allowing for solving systems of equations

fi = ti(f1, . . . , fn)

where f is a function and ti is a term constructed from interpreted and
uninterpreted functions (including the fi)?

• Interpreted means: satisfies an equational axiomatization, e.g.

∅ + p = p + ∅ = p, p + q = q + p, (p + q) + r = p + (q + r).

This induces a monad: TX are terms over X modulo provable

equivalence; (f : X→ TY)? : TX→ TY is the substitution operation.

• Uninterpreted means: satisfies no equations.
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Free Completion: Finite Case

• Recall that TX is the object of terms over a signature of operations

modulo equations.

• Given a signature Σ, Σ∗X = µγ. (X + Σγ) is the free monad over Σ.

• By [Hyland, Levy, Plotkin, and Power, 2007], TΣX = µγ. T(X + Σγ) is

the coproduct in the category of monads:

T ext //

α
&&

TΣ
[α,β]
��

Σ∗oo

β
xx

S

If Σ = a× --b then

• α : T → S is a monad morphism;

• g : a→ Sb (Yoneda).
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Recursion



Free Completion: Infinite Case

Complete Elgot monad is a monad, equipped with an iteration operator:
--
† : hom(A, T(B +A))→ hom(A, TB)

satisfying some axioms [Bloom and Ésik, 1993] .

Examples include pointed monads over order-enriched categories,
powerset, nontermination, their combinations with other effects.

By [Goncharov, Rauch, and Schröder, 2015], Tba ∼= T + Iba
where TbaX = νγ. T(X + a× γb):

T ext //

α
%%

Tba
[α,β]
��

Iba
!baoo

β
yy

S

Equivalently a pair (α, g):

• α : T → S is a monad morphism;

• g : a→ Sb.
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Verified in Coq (~5000 lines)
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Why ΣX = a× Xb?

Althought we believe that νγ. T(--+Σγ) ∼= T + Σ∞ for any Σ,

still Σ = a× --b is versatile, for

• we can iterate the coproduct construction to obtain

T + Ib1a1 + · · · + I
bn
an

∼= νγ. T(--+a1 × γb1 + · · · + an × γbn)

• we can model recursion:

Iba
!ba //

!ba &&

(Tba )
b
a

[!ba,φ]
��

Tba
extoo

φxx

Tba

1. Start with f : a→ Tbab .

2. Construct φ : Tba → Tba .

3. Obtain (Tba )
b
a→ Tba .

4. Extract fix(f) : a→ Tb.

Free Elgot monad over Σ
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Construction of Solutions

• f : X→ Tba (Y + X) is guarded iff there exists a u such that

X f //

u
,,

Tba (Y + X) out // T((Y + X) + a× Tba (Y + X)b)

T(Y + a× Tba (Y + X)b)

T(inl+ id)

OO

• By [Uustalu, 2003], guarded morphisms admitt unique solutions.

• Any f : X→ Tba (Y + X) gives rise to

which we denote �f : X→ Tba (Y + X) and put f† := (�f)†.
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u
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Guardedness



Guardedness: Example from Process Algebra

Basic Process Algebra (BPA) terms are given by the grammar

P,Q ::= X ∈ Vars | a ∈ Act | ∅ | P +Q | P · Q

A term is guarded if it is either an action, or ∅ or a sum of guarded terms
or a composition P ·Q with guarded P.

Theorem [Bergstra and Klop, 1984]. A system of equations Xi ≡ Pi with
{Xi}i =

⋃
iVars(Pi) and guarded Pi uniquelly determines a solution (Si)i

w.r.t. the semantics of proceses as finitely-branching trees with edges
labelled in Act.
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Example from Process Algebra (Continued)

Example: {X ≡ a · X + b · Y, Y ≡ (a + b · Y) · X}.

(Non-Genuine) Non-Example: {X ≡ a · X + Y , Y ≡ (a + b · Y) · X}
(Solution still exists and unique).

(Genuine) Non-Example: {X ≡ a · X + b · Y, Y ≡ (a + Y ) · X}
(If (P,Q) is a solution then any (P,Q + R) with R = c · R is a solution).

This is a perfect example for Tba : T — finite powerset monad; a —
actions; b = 1; composition is Kleisli composition, etc. Guardedness is
guardedness.

Question: can we define parallel composition this way?

Answer: Well..
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Coalgebra Way

An F-coalgebra is a map ξ : X→ FX. E.g. the semantic domain for
BPA-processes form a Pω(A× --)-coalgebra. In fact, the final one:

X

ξ

��

ξ̂ // PAct

ι

��

Pω(A× X) Pω(A×ξ̂)
// Pω(A× PAct)

Since Pω(A× X) ⊆ Pω(X)A, we have Pω(A× --)-coalgebra on X
whenever we we know all derivatives ∂a : X→ Pω(X).

E.g. for BPA-terms:

∂a(a) = {∅}, ∂a(P +Q) = ∂a(P) ∪ ∂a(Q), ∂a(P ·Q) = ∂a(P) ·Q
where ∅ ·Q = ∅, (s∪ t) ·Q = s ·Q∪ t ·Q, {∅} ·Q = {Q}, {P} ·Q = {P ·Q}.
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Coalgebra Way: Parallel Composition

We can extend our grammar by adding the parallel composition:

P,Q ::= .. | (P | Q),

for we can define

∂a(P | Q) = {(S | Q) | S ∈ ∂a(P)} ∪ {(P | S) | S ∈ ∂a(Q)}

and the like.

The general pattern here is: The derivative of a function is expressed via
a function of derivatives.
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Bialgebraic Way, aka. abstract GSOS-Semantics

Instead of recursive equations we write operational semantic rules, e.g.

P
a−→ P ′

P | Q
a−→ P ′ | Q

Q
a−→ Q ′

P | Q
a−→ P | Q ′

with the same meaning: the behaviour of a function is expressed via a
function of behaviours.

Theorem [Turi and Plotkin, 1997]: Given a signature of operations Σ
(such as +, ·, etc), a behaviour functor B (such as Pω(A× --)) and a
natural transformation Σ(B× Id)→ BΣ∗ there is a canonical Σ-algebra
structure on the B-coalgebra.
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How Can We Cope with Guarded Corecursion?

We can extend the BPA-grammar yet further:

P,Q ::= .. | rec X. P

where P is a guarded (!) term. Then we can put

∂a(rec X. P) = ∂aP[(rec X. P)/X].

The argument that this is well-defined critically depends on P being
guarded.

It does not seem possible to convert this kind of arguments into
GSOS-rules in a natural and general way.
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Higher-Order Behavioral Differential Equations

Definitions in terms of derivatives are also called behavioral differential
equations [Rutten, 2003].

Example (Zipping Infinite Lists): For infinite lists νγ. (A× γ) = Aω,

o(zip(p, q)) = o(p) (zip(p, q)) ′ = zip(q, p ′)

This corresponds to a GSOS-rule Σ(B× Id)→ BT with B = (A× --),
ΣX = X2

Example (Dropping Even Elements):

o(drop2(p)) = o(p) (drop2(p)) ′ = drop2(p ′′)

Here we would need a “GSOS-rule” Σ(B2 × Id)→ BT .

Example (Tail Function): o(tail(p)) = o(p ′).
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Related Work

In [Milius, Moss, and Schwencke, 2013] the authors faced a similar kind
of challenge.

The proposed solution is to partition the set of definable operations into
those defined via (abstract) GSOS and those defined via guarded
corecursion and iterate this process.
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A Syntax for Free Operations

We postulate a signature Ξ for free operations B→ A.

Γ ` p : [C]f f : B→ A ∈ Ξ
Γ ` pr1 p : A

Γ ` p : [C]f Γ ` q : B f : B→ A ∈ Ξ
Γ ` p $q : C

Γ ` p : A Γ, x : B ` q : C f : B→ A ∈ Ξ
Γ ` 〈p, x. q〉f : [C]f

The type [C]f with f : B→ A models the object A× CB.
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A Syntax for Coalgebras

The final coalgebra structure ι : TfC→ T(C + [TfC]f) and the final
coalgebra morphism are mimicked as follows:

Γ ` p : TfC
Γ ` outp : T(C + [TfC]f)

Γ ` p : D Γ, x : D ` q : T(C + [D]f)
Γ ` init x⇐ p coit q : TfC

The corresponding complete quasi-equational axiomatization is easy to
obtain.
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Syntactic Notion of Guardedness

Summarized, our type system is as follows:

A,B . . . ::= V | 0 | 1 | A× B | A + B | [A]f | TA (V ∈ V)
T, S . . . ::= U | Tf (U ∈ U , f ∈ Ξ)

Definiton. Let s be a nonemty string from {1, 2}∗. A term Γ ` p : TC is

s-guarded if one of the following recursive clauses apply:

• s = 1s ′ and p = do z← p ′; ret inr z with some s ′ and p ′;

• s = 1s ′ and p = do z← p ′; ret inl z with some s ′ and s ′-guarded p ′;

• symmetrically for s = 2s ′;

• p = match[x, y]← q; x 7→ p1;y 7→ p2 with some s-guarded p1 and p2;

• T is of the form Sf and Γ ` outp : S(C + [TC]f) is 1s-guarded.
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Solution Theorem

Let us write match[x, y]← p; x 7→ q;y 7→ r for

do z← p; case z of inl x 7→ q; inry 7→ r.

Theorem. For any 2-guarded term Γ, x : D ` p : T(C +D), there exists,
up to semantic equality, a unique term Γ, x : D ` p† : TC satisfying the
equation

p† = match[y, x]← p;y 7→ rety; x 7→ p†.

Intuitivelly, we obtain a solution p† of a guarded specification p.
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Examples

Consider L = I1A where I is the identity monad. The adjoined free
operations are list constructors consa : 1→ 1 (a ∈ A) and
LX = νγ. (X +A× γ) ∼= Aω +A∗ × X. Then

• head(p) = match[o, 〈x, xs〉]← outp; o 7→ !; 〈x, xs〉 7→ ret x;

• tail(p) = out−1(match[o, 〈x, xs〉]← outp; o 7→ !; 〈x, xs〉 7→ out xs);

• zip = (λ〈p, q〉 . out−1(match[o, 〈x, xs〉]← outp; o 7→ !;

〈x, xs〉 7→ ret inr〈x, ret inr〈q, xs〉〉) : (Aω)2 → L(∅ + (Aω)2))†;

• drop2 = (λp. out−1(match[o, 〈x, xs〉]← tail(p); o 7→ !;

〈x, xs〉 7→ ret inr〈x, ret inr xs〉 : Aω → L(∅ +Aω))†.
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Connection to GSOS

• Starting from Σ(Id× B)→ BΣ∗,

• we obtain α : Σ∗(Id× B) [Klin, 2011]−−−−−−→ Σ∗ × BΣ∗ pr2−−−−→ BΣ∗;

• and then f : Σ∗B∞∅ Σ∗ ι
−−−→ Σ∗(BB∞∅)

Σ∗〈ι−1,id〉−−−−−→ Σ∗(B∞∅ × BB∞∅) α−→ BΣ∗B∞∅;
• hence Σ∗B∞∅ is a B-coalgebra and we obtain universal map

g : Σ∗νB ∼= Σ∗B∞∅ −→ νB.

Theorem.

Σ∗B∞∅ f−→ BΣ∗B∞∅ B(η inr)−−−−→ B(B∞(∅ + Σ∗B∞∅)) out−1 inr−−−−→ B∞(∅ + Σ∗B∞∅)
is guarded and g = (out−1 inrB(η inr) ◦ f)†.
IFIP WG1.3 Meeting, Nijmegen, 27.06.2015 | Sergey Goncharov (joint effort with Christoph Rauch & Lutz Schröder)
| Chair 8 (Theoretical Computer Science) | 28



Connection to GSOS
Final coalgebra ι : B∞∅→ BB∞∅.

• Starting from Σ(Id× B)→ BΣ∗,

• we obtain α : Σ∗(Id× B) [Klin, 2011]−−−−−−→ Σ∗ × BΣ∗ pr2−−−−→ BΣ∗;

• and then f : Σ∗B∞∅ Σ∗ ι
−−−→ Σ∗(BB∞∅)

Σ∗〈ι−1,id〉−−−−−→ Σ∗(B∞∅ × BB∞∅) α−→ BΣ∗B∞∅;
• hence Σ∗B∞∅ is a B-coalgebra and we obtain universal map

g : Σ∗νB ∼= Σ∗B∞∅ −→ νB.

Theorem.

Σ∗B∞∅ f−→ BΣ∗B∞∅ B(η inr)−−−−→ B(B∞(∅ + Σ∗B∞∅)) out−1 inr−−−−→ B∞(∅ + Σ∗B∞∅)
is guarded and g = (out−1 inrB(η inr) ◦ f)†.
IFIP WG1.3 Meeting, Nijmegen, 27.06.2015 | Sergey Goncharov (joint effort with Christoph Rauch & Lutz Schröder)
| Chair 8 (Theoretical Computer Science) | 28



Connection to GSOS
Final coalgebra ι : B∞∅→ BB∞∅.

• Starting from Σ(Id× B)→ BΣ∗,

• we obtain α : Σ∗(Id× B) [Klin, 2011]−−−−−−→ Σ∗ × BΣ∗ pr2−−−−→ BΣ∗;

• and then f : Σ∗B∞∅ Σ∗ ι
−−−→ Σ∗(BB∞∅)

Σ∗〈ι−1,id〉−−−−−→ Σ∗(B∞∅ × BB∞∅) α−→ BΣ∗B∞∅;
• hence Σ∗B∞∅ is a B-coalgebra and we obtain universal map

g : Σ∗νB ∼= Σ∗B∞∅ −→ νB.

Theorem.

Σ∗B∞∅ f−→ BΣ∗B∞∅ B(η inr)−−−−→ B(B∞(∅ + Σ∗B∞∅)) out−1 inr−−−−→ B∞(∅ + Σ∗B∞∅)
is guarded and g = (out−1 inrB(η inr) ◦ f)†.
IFIP WG1.3 Meeting, Nijmegen, 27.06.2015 | Sergey Goncharov (joint effort with Christoph Rauch & Lutz Schröder)
| Chair 8 (Theoretical Computer Science) | 28



Further Work

• Better syntax.

• Simulataneous recursion.

• Typing rules for guardedness.

• Implementation.

• Connecting to work on guarded recursion.
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Lambek’s Lemma

Let us write

match[x, y]← p;y 7→ q; z 7→ r

for (do z← p; case z of inl x 7→ q; inry 7→ r).

Let

tuop = init t⇐ p coit(match[x, c]← t; x 7→ ret inl x;
c 7→ ret inr c[s 7→ out s]f).

where p[x 7→ q]f = 〈pr1 p, y. q[p $y/x]〉f.

Lemma (Lambek’s Lemma). For any suitably typed p and q,
out(tuop) = p and tuo(outq) = q.
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