
Speci�cation of
Asynchronous Component Systems

with Modal I/O-Petri Nets

Serge Haddad1 Rolf Hennicker2 Mikael H. Møller3

1ENS Cachan & CNRS & INRIA, France

2Ludwig-Maximilians-Universität München, Germany

3Aalborg University, Denmark

TGC 2013 Rolf Hennicker 1/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

TGC 2013 Rolf Hennicker 2/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems

TGC 2013 Rolf Hennicker 3/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems −→ Petri nets

TGC 2013 Rolf Hennicker 4/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems −→ Petri nets

Loose speci�cations

TGC 2013 Rolf Hennicker 5/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems −→ Petri nets

Loose speci�cations −→ modal transitions (may, must)

TGC 2013 Rolf Hennicker 6/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems −→ Petri nets

Loose speci�cations −→ modal transitions (may, must)

Observational abstraction

TGC 2013 Rolf Hennicker 7/29



Introduction

Context:

Systems of asynchronously communicating components.

Formal speci�cation of component and system behaviors.

Interested in:

In�nite state systems −→ Petri nets

Loose speci�cations −→ modal transitions (may, must)

Observational abstraction −→ hiding and τ -transitions

TGC 2013 Rolf Hennicker 8/29



Introduction

Context:

Systems of asynchronously communicating components

Formal speci�cation of component and system behaviors

Interested in:

In�nite state systems −→ Petri nets

Loose speci�cations −→ modal transitions (may, must)

Observational abstraction −→ hiding and τ -transitions

Re�nement correctness

Communication correctness

Decidability results −→ Petri nets

Modular and incremental veri�cation

TGC 2013 Rolf Hennicker 9/29



Example: File Compressing System

Controller

GifCompressor

TxtCompressor

gif fail jpg

txt zip

�le?
comprJpg!

comprZip!

TGC 2013 Rolf Hennicker 10/29



Modal Asynchronous I/O-Petri Nets (MAIOPNs)

Example: CompressorAssembly =
GifCompressor ⊗ Controller ⊗ TxtCompressor

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

TGC 2013 Rolf Hennicker 11/29



Hiding of Channel Places

Example: CompressorAssembly \{gif,fail,jpg,txt,zip}

�le?

τ

τ

τ

τ

τ

comprJpg!

comprZip!

τ τ

τ τ τ

TGC 2013 Rolf Hennicker 12/29



Semantics

Modal Asynchronous I/O-Transition Systems =

Modal I/O-Transition Systems [Larsen et al. 1988,2007]
extended by Communication Channels

states = reachable markings,

initial state = initial marking,

may-transitions m
a
�m′,

must-transitions m
a
�m′,

such that m
a
�m′ =⇒ m

a
�m′

TGC 2013 Rolf Hennicker 13/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0

�le?
�m1

gifB

�m2
Bgif
�m3 �le?

�m4
gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2
Bgif
�m3 �le?

�m4
gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2

Bgif
�m3 �le?

�m4
gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2
Bgif
�m3

�le?
�m4

gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2
Bgif
�m3 �le?

�m4

gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2
Bgif
�m3 �le?

�m4
gifB

�m5

failB

�m6

TGC 2013 Rolf Hennicker 14/29



Semantics: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

m0 �le?
�m1

gifB

�m2
Bgif
�m3 �le?

�m4
gifB

�m5 failB

�m6

TGC 2013 Rolf Hennicker 14/29



Weak Modal Re�nement [Hüttel, Larsen 1989]

M ≤ N

concrete MAIOPN abstract MAIOPN

N

M

a

τ∗ a τ∗

=⇒

τ∗ a τ∗

a

=
⇒

(a) Must-transitions of the abstract net are preserved (up to τs).

(b) May-transitions of the concrete net are simulated (up to τs).

TGC 2013 Rolf Hennicker 15/29



Weak Modal Re�nement: Example

gif? fail! jpg!

≤

gif? fail! jpg!

≥

gif? jpg!

TGC 2013 Rolf Hennicker 16/29



Results for Re�nement

Decidability:

(1) M≤ N is decidable
if bothM and N are modally weakly deterministic.

(2) Modal weak determinism is decidabe as well.

Modular veri�cation:

(1) M≤ N and E ≤ F =⇒ M⊗ E ≤ N ⊗F .

(2) M≤ N =⇒ (M\ H) ≤ (N \ H).

TGC 2013 Rolf Hennicker 17/29



Communication Requirements

Goal: Avoid communication errors!

Typical communication errors:

Message not taken, message not delivered.

Variants: * synchronous vs asynchronous communication,
* message queues vs message pools,
* delayed vs undelayed reception,
* optimistic vs pessimistic view of the environment, ...

Literature:

* speci�ed reception in CFSMs [Brand, Za�ropulo 1983],
* compatibility of interface automata [de Alfaro, Henzinger 2005],
* communication-safe assemblies [ICTAC 2011],
* I/O-compatibility in team automata [Carmona, Kleijn 2013], ...

We consider:

Message not taken, asynchronous communication with message
pools, delayed reception, pessimistic view.

TGC 2013 Rolf Hennicker 18/29



Consumption Properties for Channels

Assume given a MAIOPNM and a subset B of the channels ofM.

M is message consuming w.r.t. B if for all channels c ∈ B

and for all reachable markings m ofM:
if c is not empty, then there exists a path of
autonomous must-transitions

m
a1
� ...

an
�m′

Bc
�

Autonomous means: No open input action under the ai .

M is necessarily message consuming w.r.t. B if for all
channels c ∈ B and for all reachable markings m ofM:

if c is not empty, then
Bc
� will �always� eventually be executed.

What means �always�?

TGC 2013 Rolf Hennicker 19/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0

�le?−→ m
1 gifB−→ m

2
Bgif−→ m

3 �le?−→ m
4 gifB−→ m

5 jpgB−→ m
6

Bgif−→ m
7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1

gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4 gifB−→ m
5 jpgB−→ m

6
Bgif−→ m

7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4 gifB−→ m
5 jpgB−→ m

6
Bgif−→ m

7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3

�le?−→ m
4 gifB−→ m

5 jpgB−→ m
6

Bgif−→ m
7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4

gifB−→ m
5 jpgB−→ m

6
Bgif−→ m

7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4 gifB−→ m
5

jpgB−→ m
6

Bgif−→ m
7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4 gifB−→ m
5 jpgB−→ m

6

Bgif−→ m
7

TGC 2013 Rolf Hennicker 20/29



Message Consuming: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

m
0 �le?−→ m

1 gifB−→ m
2

Bgif−→ m
3 �le?−→ m

4 gifB−→ m
5 jpgB−→ m

6
Bgif−→ m

7

TGC 2013 Rolf Hennicker 20/29



Results for Message Consuming

Decidability:

The property of message consuming is decidable.

Preservation by re�nement:

N message consuming andM≤ N =⇒ M message consuming.

Incremental veri�cation:

M⊗N message consuming and
(M⊗N )⊗ E message consuming w.r.t. the new channels.

Then: M⊗N ⊗ E is message consuming.

TGC 2013 Rolf Hennicker 21/29



Incremental Veri�cation: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Bgif failB jpgB

gif fail jpg

TGC 2013 Rolf Hennicker 22/29



Incremental Veri�cation: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

TGC 2013 Rolf Hennicker 22/29



Incremental Veri�cation: Example

�le?
gifB

txtB

Bjpg
Bfail

Bzip

comprJpg!

comprZip!

Btxt zipB

txt zip

Bgif failB jpgB

gif fail jpg

TGC 2013 Rolf Hennicker 22/29



Necessarily Message Consuming (1)

M is necessarily message consuming w.r.t. B if for all channels
c ∈ B and for all reachable markings m ofM:

if c is not empty, then
Bc
� will �always� eventually be executed.

What means �always�?

TGC 2013 Rolf Hennicker 23/29



Necessarily Message Consuming (2)

msgBin?
Bmsg

out!
msg

Then this is a run: (
msgB−→ in?−→)∞

Hence: This component is not consuming on all runs.

BUT: This component is consuming on all weakly fair runs.

TGC 2013 Rolf Hennicker 24/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0

msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→

in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→

B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→

out!−→ (
msg

B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→

(
msg

B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→

in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→

τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→)

(
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→

in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→ in?−→

τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock

TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (3)

msgBin?
Bmsg

out!

τ

τ

msg

Then this is a weakly fair run:

m0 msg
B

−→ in?−→
B
msg−→ out!−→ (

msg
B

−→ in?−→ τ−→) (
msg

B

−→ in?−→ τ−→)...

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all observationally weakly

fair runs.

Additionally: A run can stop if it reaches a potential deadlock
TGC 2013 Rolf Hennicker 25/29



Necessarily Message Consuming (4)

De�nition:

M is necessarily message consuming w.r.t. B if for all channels
c ∈ B and for all reachable markings m ofM:

if c is not empty, then
Bc
� will eventually be executed on all

observationally weakly fair runs starting in m.

Results:

Decidability holds (relies on [Jancar 1990]).

Preservation by re�nement holds.

Incremental veri�cation holds.

TGC 2013 Rolf Hennicker 26/29



System Development Methodology (1)

An interface speci�cation for the �le compressing system

�le?

comprZip!

comprJpg!

TGC 2013 Rolf Hennicker 27/29



System Development Methodology (2)

Controller

GifCompressor TxtCompressor

gif jpg fail txt zip

�le?
comprJpg!

comprZip!

CompressorAssembly

≤3)

Controller

GifCompressorRef TxtCompressor

gif jpg fail txt zip

�le?
comprJpg!

comprZip!

CompressorAssemblyRef

CompressorInterface

≤1)

CompressorAssembly
\pn{gif, jpg, fail, txt, zip}

≤4)

CompressorAssemblyRef
\pn{gif, jpg, fail, txt, zip}

hide

hide

GifCompressor

≤2)

GifCompressorRef

compose

compose

TGC 2013 Rolf Hennicker 28/29



Conclusion: Next steps

Larger case-studies

Multi-cast communication (e.g. broadcasting)

�Message not provided� communication properties

Tools

Component model with ports and assume/guarantee reasoning

Thread-based implementations

TGC 2013 Rolf Hennicker 29/29


