Specification of Asynchronous Component Systems with Modal I/O-Petri Nets

Serge Haddad¹ <u>Rolf Hennicker²</u> Mikael H. Møller³

¹ENS Cachan & CNRS & INRIA, France

²Ludwig-Maximilians-Universität München, Germany

³Aalborg University, Denmark

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

Interested in:

• Infinite state systems

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

Interested in:

 $\bullet \ \ {\sf Infinite \ state \ systems} \ \longrightarrow \ {\sf Petri \ nets}$

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

- Infinite state systems \longrightarrow Petri nets
- Loose specifications

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

- Infinite state systems \longrightarrow Petri nets
- Loose specifications \longrightarrow modal transitions (may, must)

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

- Infinite state systems \longrightarrow Petri nets
- Loose specifications \longrightarrow modal transitions (may, must)
- Observational abstraction

Context:

- Systems of asynchronously communicating components.
- Formal specification of component and system behaviors.

- Infinite state systems \longrightarrow Petri nets
- Loose specifications \longrightarrow modal transitions (may, must)
- Observational abstraction \longrightarrow hiding and au-transitions

Context:

- Systems of asynchronously communicating components
- Formal specification of component and system behaviors

- Infinite state systems \longrightarrow Petri nets
- Loose specifications —> modal transitions (may, must)
- Observational abstraction \longrightarrow hiding and au-transitions
- Refinement correctness
- Communication correctness
- Decidability results \longrightarrow Petri nets
- Modular and incremental verification

Example: File Compressing System

Modal Asynchronous I/O-Petri Nets (MAIOPNs)

$\label{eq:compressorAssembly} \begin{array}{l} \mbox{\sf Example: CompressorAssembly} = \\ & \mbox{\sf GifCompressor} \otimes \mbox{\sf Controller} \otimes \mbox{\sf TxtCompressor} \end{array}$

Hiding of Channel Places

Example: CompressorAssembly \{gif,fail,jpg,txt,zip}

Semantics

Modal Asynchronous I/O-Transition Systems = Modal I/O-Transition Systems [Larsen et al. 1988,2007] extended by Communication Channels

- states = reachable markings,
- initial state = initial marking,
- may-transitions $m \xrightarrow{a} m'$,
- must-transitions $m \xrightarrow{a} m'$, such that $m \longrightarrow m' \implies m \xrightarrow{a} m'$

 m^0

$$m^0 \stackrel{\text{file?}}{\longrightarrow} m^1$$

 $m^0 \stackrel{\mathsf{file}?}{\longrightarrow} m^1 \stackrel{\mathsf{gif}^{\rhd}}{\longrightarrow} m^2$

 $m^0 \stackrel{\text{file?}}{\longrightarrow} m^1 \stackrel{\text{gif}^{\triangleright}}{\longrightarrow} m^2 \stackrel{^{\triangleright}\text{gif}}{\longrightarrow} m^3$

 $m^0 \stackrel{\text{file?}}{\longrightarrow} m^1 \stackrel{\text{gif}^{\triangleright}}{\longrightarrow} m^2 \stackrel{\stackrel{\triangleright}{\longrightarrow}}{\longrightarrow} m^3 \stackrel{\text{file?}}{\longrightarrow} m^4$

 $m^{0} \xrightarrow{\text{file?}} m^{1} \xrightarrow{\text{gif}^{\rhd}} m^{2} \xrightarrow{\overset{\triangleright}{ ext{gif}}} m^{3} \xrightarrow{\text{file?}} m^{4} \xrightarrow{\text{gif}^{\rhd}} m^{5}$

 $m^0 \xrightarrow{\text{file?}} m^1 \xrightarrow{\text{gif}^{\rhd}} m^2 \xrightarrow{\overset{\triangleright}{\longrightarrow}} m^3 \xrightarrow{\text{file?}} m^4 \xrightarrow{\text{gif}^{\rhd}} m^5 \xrightarrow{\text{fail}^{\rhd}} m^6$

Weak Modal Refinement [Hüttel, Larsen 1989]

(a) Must-transitions of the abstract net are preserved (up to τ s). (b) May-transitions of the concrete net are simulated (up to τ s).

Weak Modal Refinement: Example

Results for Refinement

Decidability:

(1) $\mathcal{M} \leq \mathcal{N}$ is decidable if both \mathcal{M} and \mathcal{N} are modally weakly deterministic.

(2) Modal weak determinism is decidabe as well.

Modular verification:

(1)
$$\mathcal{M} \leq \mathcal{N} \text{ and } \mathcal{E} \leq \mathcal{F} \implies \mathcal{M} \otimes \mathcal{E} \leq \mathcal{N} \otimes \mathcal{F}.$$

(2) $\mathcal{M} \leq \mathcal{N} \implies (\mathcal{M} \setminus \mathcal{H}) \leq (\mathcal{N} \setminus \mathcal{H}).$

Communication Requirements

Goal: Avoid communication errors!

Typical communication errors:

Message not taken, message not delivered.

Variants: * synchronous vs asynchronous communication,

- * message queues vs message pools,
- * delayed vs undelayed reception,
- * optimistic vs pessimistic view of the environment, ...

Literature:

- * specified reception in CFSMs [Brand, Zafiropulo 1983],
- * compatibility of interface automata [de Alfaro, Henzinger 2005],
- * communication-safe assemblies [ICTAC 2011],
- * I/O-compatibility in team automata [Carmona, Kleijn 2013], ...

We consider:

Message not taken, asynchronous communication with message pools, delayed reception, pessimistic view.

TGC 2013

Rolf Hennicker

Consumption Properties for Channels

Assume given a MAIOPN \mathcal{M} and a subset B of the channels of \mathcal{M} .

M is message consuming w.r.t. *B* if for all channels *c* ∈ *B* and for all reachable markings *m* of *M*: if *c* is not empty, then *there exists* a path of <u>autonomous must-transitions</u>

$$m \xrightarrow{a_1} \dots \xrightarrow{a_n} m' \xrightarrow{\rhd_c}$$

Autonomous means: No open input action under the a_i.

M is necessarily message consuming w.r.t. *B* if for all channels *c* ∈ *B* and for all reachable markings *m* of *M*: if *c* is not empty, then → will "always" eventually be executed. What means "always"?

 m^0

$$m^0 \stackrel{{\sf file}?}{\longrightarrow} m^1$$

$$m^0 \xrightarrow{\operatorname{file}?} m^1 \xrightarrow{\operatorname{gif}^{\rhd}} m^2$$

$$m^0 \stackrel{\mathsf{file}?}{\longrightarrow} m^1 \stackrel{\mathsf{gif}^{\vartriangleright}}{\longrightarrow} m^2 \stackrel{^{\triangleright}\!\mathsf{gif}}{\longrightarrow} m^3$$

$$m^0 \xrightarrow{\text{file}?} m^1 \xrightarrow{\text{gif}^{\rhd}} m^2 \xrightarrow{{}^{\triangleright}\text{gif}} m^3 \xrightarrow{\text{file}?} m^4$$

 $m^0 \xrightarrow{\text{file?}} m^1 \xrightarrow{\text{gif}^{\rhd}} m^2 \xrightarrow{\overset{\triangleright_{\text{gif}}}{\longrightarrow}} m^3 \xrightarrow{\text{file?}} m^4 \xrightarrow{\text{gif}^{\rhd}} m^5$

$$m^{0} \xrightarrow{\text{file}?} m^{1} \xrightarrow{\text{gif}^{\rhd}} m^{2} \xrightarrow{\triangleright_{\text{gif}}} m^{3} \xrightarrow{\text{file}?} m^{4} \xrightarrow{\text{gif}^{\rhd}} m^{5} \xrightarrow{\text{jpg}^{\rhd}} m^{6}$$

 $m^0 \xrightarrow{\text{file?}} m^1 \xrightarrow{\text{gif}^{\rhd}} m^2 \xrightarrow{\overset{\circ}{\to}} m^3 \xrightarrow{\text{file?}} m^4 \xrightarrow{\text{gif}^{\rhd}} m^5 \xrightarrow{\text{jpg}^{\rhd}} m^6 \xrightarrow{\overset{\circ}{\to}} m^7$

Decidability:

The property of message consuming is decidable.

Preservation by refinement:

 ${\mathcal N}$ message consuming and ${\mathcal M} \leq {\mathcal N} \implies {\mathcal M}$ message consuming.

Incremental verification:

 $\mathcal{M}\otimes\mathcal{N}$ message consuming and $(\mathcal{M}\otimes\mathcal{N})\otimes\mathcal{E}$ message consuming w.r.t. the new channels.

Then: $\mathcal{M}\otimes\mathcal{N}\otimes\mathcal{E}$ is message consuming.

Incremental Verification: Example

Incremental Verification: Example

Incremental Verification: Example

 \mathcal{M} is **necessarily message consuming** w.r.t. B if for all channels $c \in B$ and for all reachable markings m of \mathcal{M} :

if c is not empty, then $\xrightarrow{\triangleright_c}$ will "always" eventually be executed.

What means "always"?

Then this is a run: $(\stackrel{msg^{\triangleright}}{\longrightarrow} \stackrel{in?}{\longrightarrow})^{\infty}$

Hence: This component is not consuming on all runs.

BUT: This component is consuming on all weakly fair runs.

Then this is a weakly fair run: m^0

Then this is a weakly fair run: $m^0 \xrightarrow{\operatorname{msg}}$

Then this is a weakly fair run: $m^0 \xrightarrow{\text{msg}} \xrightarrow{\text{in?}}$

Then this is a weakly fair run: $m^0 \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\text{imsg}}$

Then this is a weakly fair run: $m^0 \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\text{imsg}} \xrightarrow{\text{out!}}$

Then this is a weakly fair run: $m^{0} \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\text{pmsg}} \xrightarrow{\text{out!}} (\xrightarrow{\text{msg}}$

Then this is a weakly fair run: $m^{0} \xrightarrow{\text{msg}} \stackrel{\text{in?}}{\longrightarrow} \xrightarrow{\text{lmsg}} \stackrel{\text{out!}}{\longrightarrow} (\xrightarrow{\text{msg}} \stackrel{\text{in?}}{\longrightarrow} \xrightarrow{\text{in?}}$

Then this is a weakly fair run: $m^0 \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\rhd} \xrightarrow{\text{msg}} \xrightarrow{\text{out!}} (\xrightarrow{\text{msg}} \xrightarrow{\tau} \xrightarrow{\tau})$

Then this is a weakly fair run: $m^{0} \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\overset{\square}{\longrightarrow}} \xrightarrow{\text{out!}} (\xrightarrow{\text{msg}} \xrightarrow{\overset{\square}{\longrightarrow}} \xrightarrow{\tau}) (\xrightarrow{\text{msg}}$

Then this is a weakly fair run: $m^{0} \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\overset{\square}{\longrightarrow}} \xrightarrow{\text{out!}} (\xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\tau}) (\xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\tau})$

Then this is a weakly fair run: $m^0 \xrightarrow{\text{msg}} \xrightarrow{\text{in?}} \xrightarrow{\mathbb{P}_{\text{msg}}} \xrightarrow{\text{out!}} (\xrightarrow{\text{msg}} \xrightarrow{\tau}) (\xrightarrow{\text{msg}} \xrightarrow{\tau})...$

Hence: This component is not consuming on all weakly fair runs.

BUT: This component is consuming on all *observationally weakly fair* runs.

Additionally: A run can stop if it reaches a potential deadlock

Definition:

 \mathcal{M} is **necessarily message consuming** w.r.t. B if for all channels $c \in B$ and for all reachable markings m of \mathcal{M} :

if c is not empty, then $\xrightarrow{\succ_c}$ will eventually be executed on all observationally weakly fair runs starting in m.

Results:

Decidability holds (relies on [Jancar 1990]).

Preservation by refinement holds.

Incremental verification holds.

System Development Methodology (1)

An interface specification for the file compressing system

System Development Methodology (2)

Conclusion: Next steps

- Larger case-studies
- Multi-cast communication (e.g. broadcasting)
- "Message not provided" communication properties
- Tools
- Component model with ports and assume/guarantee reasoning
- Thread-based implementations