A full operational semantics for Asynchronous Relational Nets

Carlos Gustavo Lopez Pombo — (1, 3) Ignacio Vissani — (1, 3) Ionuţ Ţuţu — (2) José Luiz Fiadeiro — (2)

(1) Universidad de Buenos Aires, Argentina

(2) Royal Holloway, University of London

(3) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)

The general context: Service-Oriented Computing

*In Service-Oriented Computing (SOC), the structure of software systems is intrinsically dynamic since: a) they run over globally available computational capabilities and network infrastructure, and b) they may require these computational capabilities in the form of services that are procured at run-time to fulfil a given business goal

*The discovery and binding of services is done at run-time by a dedicated middleware which is transparent from the perspective of the executing software artefact

A full operational semantics for Asynchronous Relational Nets

*Properly understanding the behaviour associated to formal models requires to fix meaning to syntactic constructions (i.e., semantics)

*The dynamic nature of SOC suggests the definition of a semantics as close as possible to the actions occurring along an execution (i.e., **operational semantics**)

*Actions taking place in an execution define the expected behaviour of the components intervening in it, like the middleware; so we chose to avoid any denotational descriptions (i.e., **full**)

A full operational semantics for Asynchronous Relational Nets

A full operational semantics for Asynchronous Relational Nets

An ARN is a hypergraph-based structure whose nodes are the **ports**, and has two types of hyperedges: **communication channels** and **processes**

A full operational semantics for Asynchronous Relational Nets

Each edge is labeled with a **Müller automaton**, in the case of **processes** on the language of the **ports**, in the case of **communication channels** on a new language to which the language of the **ports** are **mapped by injections**,

A full operational semantics for Asynchronous Relational Nets

Nodes that are only incident to **processes** are called **provides points**,

A full operational semantics for Asynchronous Relational Nets

Nodes that are only incident to **processes** are called **provides points**,

while those that are only incident to **communication channels** are called **require points**

A full operational semantics for Asynchronous Relational Nets

If an ARN has **provides points**, it is said to be a **service** as it can be invoked through them,

A full operational semantics for Asynchronous Relational Nets

If an ARN has **provides points**, it is said to be a **service** as it can be invoked through them, while if it only have **requires points**, it is said to be an **activity**, meaning that it can not be invoked.

A full operational semantics for Asynchronous Relational Nets

A full operational semantics for Asynchronous Relational Nets

The composition of an **activity** with a **service** is done by **injectively mapping** the language of a **requires points** of an activity to the language of a **provides point** of a service.

A full operational semantics for Asynchronous Relational Nets

The composition of an **activity** with a **service** is done by **injectively mapping** the language of a **requires points** of an activity to the language of a **provides point** of a service.

Internal transitions

(q0, q0)

Information of activities

Reconfiguration actions

Information of activities

Execution of activities

Execution of activities

Execution of activities

Execution of activities

Form Execution of activities

Transition system

- *A repository is a family {Ai}in I such that, for all i in I, Ai is a service
- *A state of an activity A is {qi}in PUC, a family of states, one for each of the automaton of A
- *The transition system of an activity A in a repository Rep is a structure (S, —>) where:
 - S = { (A, q) | q is a state of A }, and

•
$$(A, q) \longrightarrow (A', q')$$
 iff
 $\stackrel{I}{\longrightarrow} A = A' \text{ and } q \stackrel{I}{\longrightarrow} q' \text{ in } A, \text{ or}$
 $\stackrel{I}{\xrightarrow{}} A' = A + \{B_j\}_{j \text{ in } J}, \{B_j\} \text{ in } Rep \text{ and } q \stackrel{I}{\longrightarrow} q' \text{ in } A'$

Form Execution of activities

Transition system

- *A repository is a family {Ai}in I such that, for all i in I, Ai is a service
- *A state of an activity A is {qi}in PUC, a family of states, one for each of the automaton of A
- *The transition system of an activity A in a repository Rep is a structure (S, —>) where:
 - S = { (A, q) | q is a state of A }, and
 - $(A, q) \longrightarrow (A', q')$ iff $\stackrel{I}{\longrightarrow} A = A' \text{ and } q \stackrel{I}{\longrightarrow} q' \text{ in } A, \text{ or}$ $\stackrel{I}{\longrightarrow} A' = A + \{B_j\}_j \text{ in } J, \{B_j\}$ in Rep and $q \stackrel{I}{\longrightarrow} q'$ in A'

Binding of services

If A is an activity with a requires point r and A' is a service with a provides point p, and m: Mr —> Mp a polarity preserving injective function then,

A + A' is the activity resulting from glueing the requires point r of A with the provides point p of A' (preserving the language of the provides point)

*+ extends to finite sets point wise and is denoted as:

$$A'_{\{m_j\}_{j \text{ in } J}} \{B_j\}_{j \text{ in } J}$$

*An infinite sequence of states and transitions in the transition system of A in a repository Rep [(Ao, qo), —>o, (A1, q1), —>1, ..., (Ai, qi), —>i, ...] is said to be a **path** iff

for all $0 <=i < j, \longrightarrow_{i} = \frac{l'}{\operatorname{Rep}^{\prime}}, \longrightarrow_{j} = \frac{l''}{\operatorname{Rep}^{\prime\prime}}$ with Rep' in Rep, Rep'' in Rep and Ai+1 = Ai + {Bj}j in J such $\{m_{j}\}_{j in J}$ there is no i<k<j such that $\longrightarrow_{k} = \frac{l'''}{\operatorname{Rep}^{\prime\prime}}$ with Rep''' in Rep then, Rep'' = Rep' / {Bj}j in J

- ★A path in the transition system of A in a repository Rep [(Ao, qo), —>o, (A1, q1), —>1, ..., (Ai, qi), —>i, ...] is said to be a **trace** iff
 - there exists 0<=i, ->i = ^{l'}/_{Rep'} with Rep' in Rep such that there is no k<i such that ->k = ^{l''}/_{Rep} with Rep'' in Rep and Rep' = Rep, and
 - $A_0 = A$

*The set of all traces of a transition systems S = (S, -->) is denoted as O_S

Linear Temporal Logics formulae (defined as usual)

Let \mathcal{V} be a set of proposition symbols, then the set of LTL formulae on \mathcal{V} , denoted as $LTLForm(\mathcal{V})$, is the smallest set S such that:

- $\mathcal{V} \subseteq S$, and
- if $\alpha, \beta \in S$, then $\{\neg \alpha, \alpha \lor \beta, \mathbf{X}\alpha, \alpha \mathbf{U}\beta\} \subseteq S$.

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then:

- $\pi, v \models \mathbf{true},$
- $\pi, v \models a \text{ iff } [a] \in [v],$
- $\pi, v \models \neg \phi \text{ iff } \pi, v \not\models \phi$,
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$,
- $\pi, v \models \mathbf{X}\phi$ iff $\pi_{[1]}, v_1 \models \phi$, and
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then.

- $\pi, v \models \mathbf{true},$
- $\pi, v \models a \text{ iff } [a] \in [v],$
- $\pi, v \models \neg \phi \text{ iff } \pi, v \not\models \phi,$
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$,
- $\pi, v \models \mathbf{X}\phi$ iff $\pi_{[1]}, v_1 \models \phi$, and
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

where $v_k = \bigcup_{\iota \in \iota_{k-1}} \iota$.

Valuations are sets of labels, those that took the system from one state to another

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then:

- $\pi, v \models true$, Propositions are the labels of the
- $\pi, v \models a \text{ iff } [a] \in [v],$ transitions of the automata
- $\pi, v \models \neg \phi \text{ iff } \pi, v \not\models \phi$,
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$,
- $\pi, v \models \mathbf{X}\phi$ iff $\pi_{[1]}, v_1 \models \phi$, and
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then:

- π, v ⊨ true,
 π, v ⊨ a (ff [a] ∈ [v],) ⇒ equivalence using the mappings of labels
 π, v ⊨ ¬φ iff π, v ⊭ φ, in the communication channels
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$,
- $\pi, v \models \mathbf{X}\phi$ iff $\pi_{[1]}, v_1 \models \phi$, and
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then:

- $\pi, v \models \mathbf{true},$
- $\pi, v \models a \text{ iff } [a] \in [v],$
- $\pi, v \models \neg \phi \text{ iff } \pi, v \not\models \phi$,
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$, As usual, the subindex denotes the
- $\pi, v \models \mathbf{X} \notin \inf \pi_{[1]}, v_1 \models \phi$, and the suffix operator on paths
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

Let α be an activity and Rep a repository, then if $\mathcal{S} = \langle S, \longrightarrow \rangle$ is the transition system for α and Rep then let $\pi = [(\alpha_0, q_0), \longrightarrow_0, (\alpha_1, q_1), \longrightarrow_1, \ldots]$ a path for \mathcal{S} . Let \mathcal{V} be the set of actions in the signature of the Rep or in α , $\phi, \psi \in LTLForm(\mathcal{V}), a \in \mathcal{V}$ and $v \subseteq \mathcal{V}$ then:

- $\pi, v \models \mathbf{true},$
- $\pi, v \models a \text{ iff } [a] \in [v],$
- $\pi, v \models \neg \phi \text{ iff } \pi, v \not\models \phi$,
- $\pi, v \models \phi \lor \psi$ if $\pi, v \models \phi$ or $\pi, v \models \psi$,
- $\pi, v \models \mathbf{X}\phi$ iff $\pi_{[1]}, v_1 \models \phi$, and
- $\pi, v \models \phi \mathbf{U} \psi$ iff there exists $0 \leq i$ such that $\pi_{[i]}, v_i \models \psi$ and for all j, $0 \leq j < i, \pi_{[j]}, v_j \models \phi$

Every execution of **TravelClient** requires the execution of **CurrenciesAgent**:

For all $\pi \in O_{\mathcal{S}}, \pi \models \Diamond \left(\bigvee_{a \in A_{M_{\mathsf{CurrenciesAgent}}}} a \right)$

There exists an execution of **TravelClient** that does not requires the execution of **FlightsAgent**:

There exists $\pi \in O_{\mathcal{S}}, \pi \models \Diamond \left(\neg \bigvee_{a \in A_{M_{\mathsf{FlightsAgent}}}} a \right)$

Every execution of **TravelClient**, in the future, will receive an exchange rate and in the next state a reservation will issued:

For all $\pi \in O_{\mathcal{S}}, \pi \models \Box (hotels! \implies \Diamond (rate! \land \mathbf{X} reservation!))$

In every execution of **TravelClient**, if we place an order for accommodation and flight, we will receive two reservations:

Outro (Conclusions)

*We introduced an execution model for ARNs by providing an operational semantics based on a transition system

*We defined a linear temporal satisfaction relation between traces of the transition system and LTL formulae

Outro (Further work)

*Definition/implementation of a model-checking technique for analysing properties of ARNs using this semantics [Fiadeiro, Ţuţu, Vissani, me]

*Explore the incidence of different kinds of contracts as the means for formalising the negotiation of the Service Level Agreement (SLA)

*Implementation of a middleware capable of providing support for formal establishing of SLA as a part of the process of binding

The Encore

? & !

-8<---8<---8<---8<---8<---8<---8<---8<---8<---8<---8<---8<---8<---8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8<--8

Some other projects

*Use of global types and local graphs as a tool for negotiating the protocol to be used on the interfaces of ARN **[Tuosto, Vissani, me]**

*Analysis of a trace-based semantics for choreographies and global graphs [Melgratti, Barbeito, me]

*The formulation of a canonical proof-theoretic approach to model theory [Maibaum, Chocrón, me] and its extension to substructural logics [Kurz, Maibaum, Chocrón, me]