
A full operational semantics for
Asynchronous Relational Nets

Carlos Gustavo Lopez Pombo — (1, 3) 	

Ignacio Vissani — (1, 3)	

Ionuţ Ţuţu — (2) 	

José Luiz Fiadeiro — (2)

(1) Universidad de Buenos Aires, Argentina	

(2) Royal Holloway, University of London	

(3) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)

http://en.wikipedia.org/wiki/%C5%A2

Intro (The Motivation)
The general context: Service-Oriented Computing

In Service-Oriented Computing (SOC), the structure of
software systems is intrinsically dynamic since: a) they
run over globally available computational capabilities and
network infrastructure, and b) they may require these
computational capabilities in the form of services that are
procured at run-time to fulfil a given business goal!
The discovery and binding of services is done at run-time
by a dedicated middleware which is transparent from the
perspective of the executing software artefact

Intro (The Motivation)
A full operational semantics for Asynchronous Relational Nets

Properly understanding the behaviour associated to formal
models requires to fix meaning to syntactic constructions
(i.e., semantics)

The dynamic nature of SOC suggests the definition of a
semantics as close as possible to the actions occurring
along an execution (i.e., operational semantics)

Actions taking place in an execution define the expected
behaviour of the components intervening in it, like the
middleware; so we chose to avoid any denotational
descriptions (i.e., full)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

An ARN is a hypergraph-based structure whose nodes are
the ports, and has two types of hyperedges:
communication channels and processes

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Each edge is labeled with a Müller automaton, in the case
of processes on the language of the ports, in the case of
communication channels on a new language to which the
language of the ports are mapped by injections,

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Nodes that are only incident to processes are called
provides points,

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Nodes that are only incident to processes are called
provides points,
while those that are only incident to communication
channels are called require points

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

If an ARN has provides points, it is said to be a service as
it can be invoked through them,

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

If an ARN has provides points, it is said to be a service as
it can be invoked through them,
while if it only have requires points, it is said to be an
activity, meaning that it can not be invoked.

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

The composition of an activity with a service is done by
injectively mapping the language of a requires points of
an activity to the language of a provides point of a service.

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

A full operational semantics for Asynchronous Relational Nets

Intro (The Motivation)

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

The composition of an activity with a service is done by
injectively mapping the language of a requires points of
an activity to the language of a provides point of a service.

Internal transitions

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0) hotels! (q1, q1)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0) hotels! (q1, q1)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0) hotels! (q1, q1)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0) hotels! (q1, q1)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Internal transitions

(q0, q0) hotels! (q1, q1)

Inf
orm

all
y 

spe
aki

ng

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Execution of activities
Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Reconfiguration actions

(q1, q1)hotels!
…

Inf
orm

all
y 

spe
aki

ngExecution of activities

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

(q1, q1, q0)

Reconfiguration actions

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

hotels!
…

Inf
orm

all
y 

spe
aki

ngExecution of activities

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

Travel
Agent

⇤TA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

(q1, q1, q0)

Reconfiguration actions

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

hotels¡!
bookHotels¡ (q1, q0, q1)hotels!

…

Inf
orm

all
y 

spe
aki

ngExecution of activities

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

Travel
Client

⇤
TC

� hotels

� hotels&Flights

+ booking

TC

0

CC
⇤

CC

+ hotels

+ hotels&Flights

� booking

CC

1

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

hotels¡!
bookHotels¡ (q1, q0, q1)…

Inf
orm

all
y 

spe
aki

ngExecution of activities

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

hotels¡!
bookHotels¡ (q1, q0, q1) … …… (q1, q0, q9)

reservations!!
booking! (q1, q3, q0)…

Inf
orm

all
y 

spe
aki

ngExecution of activities

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

reservations!!
booking! (q1, q3, q0)…

Inf
orm

all
y 

spe
aki

ngExecution of activities

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

reservations!!
booking! (q1, q3, q0)…

booking¡!
booking¡ (q0, q0, q0)

Inf
orm

all
y 

spe
aki

ngExecution of activities

Travel
Client

⇤TC

� hotels
� hotels&Flights
+ booking

TC0

CC
⇤CC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
� reservations

Travel
Agent

⇤TA

TA0

� getHotels
� getFlights
+ hotels
+ flights

TA1

� getExchangeRate
+ rate

TA2

C0

⇤C0

+ getHotels
� hotels

H0

+ getFlights
� flights

F0

C1

⇤C1

+ getExchangeRate
� rate

CE0

q0start

q1

q2

hotels!

booking¡

hotels&Flights!

booking¡

q0start

q1

q2

q3

hotels!
hotels¡

hotels&Flights!

hotels&Flights¡

booking!
booking¡

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

Transition system
A repository is a family {Ai}i in I such that, for all i in I, Ai is a
service
A state of an activity A is {qi}i in PUC, a family of states, one for each
of the automaton of A
The transition system of an activity A in a repository Rep is a
structure (S, —>) where:

• S = { (A, q) | q is a state of A }, and
• (A, q) —> (A’, q’) iff

 A = A’ and q q’ in A, or
 A’ = A + {Bj}j in J, {Bj} in Rep and q q’ in A’ 

l

{mj}j in J

l

ll
Rep

For
mall

y  

spe
aki

ngExecution of activities

Transition system
A repository is a family {Ai}i in I such that, for all i in I, Ai is a
service
A state of an activity A is {qi}i in PUC, a family of states, one for each
of the automaton of A
The transition system of an activity A in a repository Rep is a
structure (S, —>) where:

• S = { (A, q) | q is a state of A }, and
• (A, q) —> (A’, q’) iff

 A = A’ and q q’ in A, or
 A’ = A + {Bj}j in J, {Bj} in Rep and q q’ in A’ 

l

{mj}j in J

l

ll
Rep

For
mall

y  

spe
aki

ngExecution of activities

Binding of services

If A is an activity with a requires point r and A’ is a
service with a provides point p, and m: Mr —> Mp
a polarity preserving injective function then,  
 
 A + A’ is the activity resulting from glueing the
requires point r of A with the provides point p of
A’ (preserving the language of the provides point)
+ extends to finite sets point wise and is denoted
as:  
 A’ + {Bj}j in J

{mj}j in J

*For
mall

y  

spe
aki

ngExecution of activities

Paths

An infinite sequence of states and transitions in the
transition system of A in a repository Rep  
[(A0, q0), —>0, (A1, q1), —>1, …, (Ai, qi), —>i, …] is said to
be a path iff
 for all 0<=i<j, —>i = , —>j = with Rep’ in
 Rep, Rep’’ in Rep and Ai+1 = Ai + {Bj}j in J such  
 
 there is no i<k<j such that —>k = with Rep’’’ in
 Rep then, Rep’’ = Rep’ / {Bj}j in J

l’
Rep’

l’’
Rep’’

l’’’
Rep’’’

{mj}j in J

For
mall

y  

spe
aki

ngExecution of activities

Traces

A path in the transition system of A in a repository Rep  
[(A0, q0), —>0, (A1, q1), —>1, …, (Ai, qi), —>i, …] is said to
be a trace iff

• there exists 0<=i, —>i = with Rep’ in Rep such
that there is no k<i such that —>k = with Rep’’ in
Rep and Rep’ = Rep, and

• A0 = A
The set of all traces of a transition systems S = (S, —>) is
denoted as OS

l’
Rep’

l’’
Rep’’

For
mall

y  

spe
aki

ngExecution of activities

Linear Temporal Logics and
executions of activities

Let V be a set of proposition symbols, then the set of LTL formulae on V,
denoted as LTLForm(V), is the smallest set S such that:

• V ✓ S, and

• if ↵,� 2 S, then {¬↵,↵ _ �,X↵,↵U�} ✓ S.

Linear Temporal Logics formulae
(defined as usual)

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

Valuations are sets of labels, those that  
took the system from one state to another

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

Propositions are the labels of the
transitions of the automata

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

Propositions are partitioned in clases of
equivalence using the mappings of labels 
in the communication channels

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

As usual, the subindex denotes the  
the suffix operator on paths

Linear Temporal Logics and
executions of activities

Let ↵ be an activity and Rep a repository, then if S = hS,�!i is the

transition system for ↵ and Rep then let ⇡ = [(↵0, q0),�!0, (↵1, q1),�!1, . . .]
a path for S. Let V be the set of actions in the signature of the Rep or in ↵,
�, 2 LTLForm(V), a 2 V and v ✓ V then:

• ⇡, v |= true,

• ⇡, v |= a i↵ [a] 2 [v],

• ⇡, v |= ¬� i↵ ⇡, v 6|= �,

• ⇡, v |= � _ if ⇡, v |= � or ⇡, v |= ,

• ⇡, v |= X� i↵ ⇡[1], v1 |= �, and

• ⇡, v |= �U i↵ there exists 0 i such that ⇡[i], vi |= and for all j,
0 j < i, ⇡[j], vj |= �

where vk =

S
◆2◆k�1

◆.

Linear Temporal Logics and
executions of activities

Some examples of properties

Every execution of TravelClient requires the execution of CurrenciesAgent:
For all ⇡ 2 OS , ⇡ |= ⌃

⇣W
a2AMCurrenciesAgent

a
⌘

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

Linear Temporal Logics and
executions of activities

Some examples of properties

There exists ⇡ 2 OS , ⇡ |= ⌃
⇣
¬
W

a2AMFlightsAgent
a
⌘

There exists an execution of TravelClient that does not requires the execution of
FlightsAgent:

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

Linear Temporal Logics and
executions of activities

Some examples of properties

Every execution of TravelClient, in the future, will receive an exchange rate and in the
next state a reservation will issued:

For all ⇡ 2 OS , ⇡ |= ⇤ (hotels! =) ⌃ (rate! ^Xreservation!))

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

Linear Temporal Logics and
executions of activities

Some examples of properties

In every execution of TravelClient, if we place an order for accommodation and flight, we
will receive two reservations:

For all ⇡ 2 OS , ⇡ |= ⇤ (hotels&Flights! =) ⌃ (reservation!^
((¬hotels! ^ ¬hotels&Flights!)Xreservation!)))

q0start

q1 q2

q4 q5

q6 q7

q3 q8

q9

bookHotels¡

getHotels!

hotels¡

bookF lights¡ getF lights! flights¡

bookHotels&Flights¡

{getHotels!,
getF lights!}

{hotels¡, f lights¡}

getExchangeRate!

rate¡
reservations!

We introduced an execution model for ARNs by
providing an operational semantics based on a
transition system

We defined a linear temporal satisfaction relation
between traces of the transition system and LTL
formulae

Outro (Conclusions)

Outro (Further work)
Definition/implementation of a model-checking
technique for analysing properties of ARNs using this
semantics [Fiadeiro, Ţuţu, Vissani, me]

Explore the incidence of different kinds of contracts as
the means for formalising the negotiation of the Service
Level Agreement (SLA)

Implementation of a middleware capable of providing
support for formal establishing of SLA as a part of the
process of binding

http://en.wikipedia.org/wiki/%C5%A2

The Encore

? & !

Some other projects
—8<———8<———8<———8<———8<———8<———8<—

Use of global types and local graphs as a tool for
negotiating the protocol to be used on the interfaces of
ARN [Tuosto, Vissani, me]

Analysis of a trace-based semantics for choreographies
and global graphs [Melgratti, Barbeito, me]

The formulation of a canonical proof-theoretic approach
to model theory [Maibaum, Chocrón, me] and its
extension to substructural logics [Kurz, Maibaum,
Chocrón, me]

