
An exercise on confined separation logic

Luis S. Barbosa
(joint work with J. N. Oliveira and Shuling Wang)

IFIP WG 1.3

Sinaia, 2-3 September 2014

Motivation Separation logic Confinement Discussion

Summary

Separation logic

• a logic for reasoning about shared mutable data structures

• key notion: separable conjunction (p ∗ q): p and q hold for
disjoint portions of the addressed storage

The confinement extension

• Confined types: “An object is said to be confined in a domain
off all references to this object originate from objects of the
domain” [Bokowski & Vitek, 1999]

• Confined separation logic, proposed in [Wang & Qiu, 2007] as
an extension to deal with problems involving dangling object
references (introducing restricted forms of ∗)

Motivation Separation logic Confinement Discussion

Summary

Our exercise

• To discuss the semantics of such an extension by defining a
relational model for the overall logic, parametric on the shapes
of both the store and the heap,

• aiming at providing a simple interpretation of the new
confinement connectives and helping in seeking for duals,

• as well as proving calculationally a number of properties of
this logic.

Motivation Separation logic Confinement Discussion

Store & Heap

An interpretation state is a Store σ paired with a Heap H:

V
σ / A + K

K
H / A + K

Motivation Separation logic Confinement Discussion

Store & Heap

V
σ /

∈G·σ ##

G(A,K)

∈G

��
K

K

∈F·H
;;

H
/ F(A,K)

∈F

OO

NB: k (∈G · σ) x asserts that variable x currently holds reference k .
Thus,

• Reach = ∈G · σ
• Alias = ker Reach = Reach◦ · Reach

Motivation Separation logic Confinement Discussion

Separated union

It is a partial operator of type

Heap Heap × Heap
∗o

which joins two heaps

H ∗ (H1,H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2)

in case they are (domain) disjoint:

H1 ‖ H2
def
= ¬〈∃ b, a, k :: b H1 k ∧ a H2 k〉

NB: t H k means “thing t is the referent of reference k in heap H”

Motivation Separation logic Confinement Discussion

Separability (going pointfree)

¬〈∃ b, a, k :: b H1 k ∧ a H2 k〉

≡ { ∃-nesting and relational converse }

¬〈∃ b, a :: 〈∃ k :: b H1 k ∧ k H◦
2 a〉〉

≡ { introduce relational composition }

¬〈∃ b, a :: b(H1 · H◦
2)a〉

≡ { de Morgan ; negation }

〈∀ b, a :: b(H1 · H◦
2)a⇒ False〉

≡ { empty relation: b ⊥ a is always false }

〈∀ b, a :: b(H1 · H◦
2)a⇒ b ⊥ a〉

≡ { drop points a, b }

H1 · H◦
2 ⊆ ⊥

Motivation Separation logic Confinement Discussion

Separability (going pointfree)

So we can redefine

H1 ‖ H2
def
= H1 · H◦2 ⊆ ⊥

cf diagram:

K
H1 / F (A,K)

⊆

K

id

OO

F (A,K)

⊥

OO

H◦
2

o

NB: ‖ can be extended for any pair of (not necessarily simple)
relations:

R ‖ S
def
= R · S◦ ⊆⊥

Motivation Separation logic Confinement Discussion

Separability (going pointfree)

Properties of ‖ are easily asserted by calculation, e.g.

(R ∪S) ‖ T

≡ { definition of ‖ }

(R ∪ S) · T ◦ ⊆⊥

≡ { ·T ◦ is a lower adjoint }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ and S · T ◦ ⊆⊥
≡ { definition of ‖ }

R ‖T and S ‖ T

Motivation Separation logic Confinement Discussion

Background: PF-transform

• Predicate calculus is expressive but difficult to manipulate

• Modelling requires descriptive notations (intuitive,
domain-specific, often graphical)

• Reasoning requires compact notations (simple, generic,
amenable to easy formal manipulation)

The problem is recurrent in Mathematics and typically solved by
some sort of transform

The PF-transform to the calculus of binary relations (à la Tarski)
leads to a domain which is simpler, algebraic and easier to
calculate with.

Motivation Separation logic Confinement Discussion

Background: PF-transform

Thus, we’ll resort to a systematic transformation

• of predicate calculus expressions ...

• into pointfree, relational notation

for example,

• dropping quantifiers as much as possible, as in eg.

R ⊆ S ≡ 〈∀ y , x :: y R x ⇒ y S x〉

• or, thanks to relational composition,

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉

Motivation Separation logic Confinement Discussion

Background: PF-transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x : : x R b⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b > a
False b ⊥ a

where R, S , id are binary relations.

Motivation Separation logic Confinement Discussion

Standard separation logic

Syntax:

p ::= . . .
| emp /* heap is empty */
| e 7→ e /* singleton heap */
| p ∗ p /* separating conjunction */
| p −∗ p /* separating implication */

Semantics:

[[e]] : Store → A + K

[[p]] : (Heap × Store)→ IB

Motivation Separation logic Confinement Discussion

Semantics of separating connectives

Separating conjunction:

[[p ∗ q]](H, S)
def
=

〈∃ H0,H1 :: H ∗ (H0,H1) ∧ [[p]](H0,S) ∧ [[q]](H1,S)〉

Separating implication:

[[p −∗ q]](H,S)
def
=

〈∀ H0 : H0 ‖ H : [[p]](H0,S)⇒ [[q]](H0 ∪ H, S)〉

Motivation Separation logic Confinement Discussion

A PF-relational semantics

We define

• assertion semantics as a relation between stores and heaps,

Heap Store
[[p]]oo

a natural decision since every binary predicate is nothing but a
relation

• the preorder on assertions induced by these semantics

p → q
def
= [[p]] ⊆ [[q]]

so that it can be distinguished from standard logic implication
⇒.

Motivation Separation logic Confinement Discussion

Separating conjunction
Reynolds original definition of separating conjunction rewrites to

H[[p ∗ q]]S
def
=

〈∃ H0,H1 :: H ∗ (H0,H1) ∧ H0[[p]]S ∧ H1[[q]]S〉

which PF-transforms to

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉

just by recalling two rules of the PF-transform: composition

b(R · S)c ≡ 〈∃ a :: bRa ∧ aSc〉

and splitting

(a, b)〈R, S〉c ≡ a R c ∧ b S c

Motivation Separation logic Confinement Discussion

Separating implication

Taking seriously the rules

[There are] two further rules capturing the adjunctive
relationship between separating conjunction and
separating implication:

p1 ∗ p2⇒ p3

p1⇒ (p2 −∗ p3)

p1⇒ (p2 −∗ p3)

p1 ∗ p2⇒ p3

quoted from [Reynolds, 2002],

Motivation Separation logic Confinement Discussion

Separating implication

entails the need to make explicit the Galois connection

(p ∗ x)→ y ≡ x → (p −∗ y)

which we regard as an equation where we know everything apart
from −∗ (the unknown), which we want to calculate:

(p ∗ x)→ y

≡ { semantic preorder }

[[p ∗ x]] ⊆ [[y]]

≡ { PF-definition }

(∗) · 〈[[p]], [[x]]〉 ⊆ [[y]]

≡ { ... }

Motivation Separation logic Confinement Discussion

Calculation of −∗
To proceed we resort to two Galois connections, e.g.

R · X ⊆ S ≡ X ⊆ R \ S

where

b (R \ S) a ≡ 〈∀ c : c R b : c S a〉
and

〈R, S〉 ⊆ X ≡ S ⊆ R . X

where

b(R . S)a ≡ 〈∀ c : c R a : (c , b) S a〉

Motivation Separation logic Confinement Discussion

Calculation of −∗

Then,

(∗) · 〈[[p]], [[x]]〉 ⊆ [[y]]

≡ { the two GCs above in a row }

[[x]] ⊆ [[p]] . ((∗) \ [[y]])

≡ { introduce p −∗ y such that [[p −∗ y]] = [[p]] . ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { semantic preorder }

x → (p −∗ y)

We are left with the meaning of p . ((∗) \ [[y]]) ...

Motivation Separation logic Confinement Discussion

Calculation of −∗

H[[p −∗ y]]S

≡ { above }

H([[p]] . ((∗) \ [[y]]))S

≡ { . pointwise }

〈∀ H0 : H0[[p]]S : (H0,H)((∗) \ [[y]])S〉

≡ { left division pointwise }

〈∀ H0 : H0[[p]]S : 〈∀ H1 : H1 ∗ (H0,H) : H1[[y]])S〉〉

≡ { quantifier nesting }

Motivation Separation logic Confinement Discussion

Calculation of −∗

〈∀ H0,H1 : H0[[p]]S ∧ H1 ∗ (H0,H) : H1[[y]])S〉

≡ { separated union }

〈∀ H0,H1 : H0[[p]]S ∧ H0 ‖ H ∧ H1 = H0 ∪ H : H1[[y]])S〉

≡ { quantifier one-point }

〈∀ H0 : H0[[p]]S ∧ H0 ‖ H : (H0 ∪ H)[[y]])S〉

≡ { quantifier trading }

〈∀ H0 : H0 ‖ H : H0[[p]]S ⇒ (H0 ∪ H)[[y]])S〉

As expected, the definition postulated in [Reynolds, 2002].

Motivation Separation logic Confinement Discussion

Benefits of ((∗),−∗) connection

Immediate consequences:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p)

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2)

plus monotonicity, cancellations,

x → (p −∗ (p ∗ x))

p ∗ (p −∗ y)→ y

and some others easily derivable, eg

emp → p −∗ p

p ∗ x ↔ p ∗ (p −∗ (p ∗ x))

p −∗ x ↔ p −∗ (p ∗ (p −∗ x))

Motivation Separation logic Confinement Discussion

from [Bokowski & Vitek, 1999]

A problem

Aliasing — In object-oriented programming it is difficult
to control the spread and sharing of object references.
This pervasive aliasing makes it nearly impossible to
know accurately who owns a given object, that is to say,
which other objects have references to it.

A proposal

Confinement — An object is said to be confined in a
domain if and only if all references to this object
originate from objects of the domain.

A question

• how do we incorporate confinement into separation logic?

Motivation Separation logic Confinement Discussion

[Wang & Qiu, 2007]

Propose that the notion of heap disjointness be sophisticated in
three directions:

• notIn — heaps disjoint and such that no references of the first
point to the other

• In — heaps disjoint and such that all references in the first do
point into the other

• inBoth — heaps disjoint and such that all references in the
first are confined to both.

Motivation Separation logic Confinement Discussion

Confined disjointness — notIn
No outgoing reference in heap H1 goes into separate H2:

H1 ¬. H2
def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥

In a diagram: path

K
H1 / F (A,K)

∈F
{{

K
H2

/ F (A,K)

is empty, that is (back to points)

¬〈∃ k , k ′ : k ∈ δH1 ∧ k ′ ∈ δH2 : k ′ ∈F (H1 k)〉

Motivation Separation logic Confinement Discussion

Confined disjointness — In

All outgoing references in H1 dangle because they all go into
separate H2:

H1 . H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦2 · >

In a diagram: dependency graph ∈F · H1

F (A,K)

∈F
��

K

>
��

H1o

K F (A,K)
H◦

2

o

can only lead to references in the domain of H2 (> transforms the
everywhere true predicate)

Motivation Separation logic Confinement Discussion

Confined disjointness — inBoth

H1 and H2 are disjoint and all outgoing references in H1 are
confined to either H2 or itself:

H1 /. H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)◦ · >︸ ︷︷ ︸

α

Comments:

• Note how clumsy α becomes once mapped back to
point-level:

〈∀ k : 〈∃ k ′ : k ′ ∈ δH1 : k ∈F (H1 k ′)〉 : k ∈ δH1 ∨ k ∈ δH2〉

• Clearly, In ⇒ inBoth

Motivation Separation logic Confinement Discussion

Confined separation logic

Three new variants of separating conjunction:

(∗)

into-both conjunction /. ¬. not-into conjunction

into conjunction .

able to express confinement subtleties.

Motivation Separation logic Confinement Discussion

Confined separation logic

• Left-not-into-right conjunction:

[[p ¬. q]]
def
= (∗) · Φ¬. · 〈[[p]], [[q]]〉

• Left-into-right conjunction:

[[p . q]]
def
= (∗) · Φ. · 〈[[p]], [[q]]〉

• Left-into-both conjunction:

[[p /. q]]
def
= (∗) · Φ/. · 〈[[p]], [[q]]〉

Motivation Separation logic Confinement Discussion

What about confined implication(s)?

Very easy:

• Just stick the relevant coreflexive (eg. Φ.) to separated union
(∗) and and explore the Galois connection as before.

• Once points are back into formulæ, you get separated
implication for each case, for instance:

H[[p −. y]]S
def
=

〈∀ H0 : H0 . H : H0[[p]]S ⇒ (H0 ∪ H)[[y]]S〉

together with all the properties intact.

Motivation Separation logic Confinement Discussion

Confinement extension properties

• Semantics of confinement can be checked against eg. what
happens to standard property

emp ∗ p ↔ p ↔ p ∗ emp

arising from two facts

H[[emp]]S ≡ H = ⊥
H ∗ (H ′,⊥) ≡ H = H ′

Motivation Separation logic Confinement Discussion

Confinement extension properties

• In the confined variant . calculations easily lead to

emp . p ↔ p

and to

p . emp ↔ p ⇐ p → emp

recalling

H1 . H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦2 · >

• The two other variants trivially preserve the standard rule.

• Confined variants of separating conjunction behave in
particular ways even wrt some standard properties. For
example, that . is only semi-associative,

(p1 . p2) . p3 → p1 . (p2 . p3)

Motivation Separation logic Confinement Discussion

Discussion

• Our exercise did not aimed at assessing whether confined
separation logic is enough for reasoning about confinement in
object-oriented programs

• but to illustrate how the PF-transform helps to build a quite
flexible framework for further extending/changing the logic, if
necessary.

• Ther framework is parametric on the shapes of both heap and
store

• Each shape has its own structural membership easy to
calculate:

Motivation Separation logic Confinement Discussion

Background: PF-membership

∈K
def
= ⊥

∈Id
def
= id

∈F×G
def
= (∈F ·π1) ∪ (∈G ·π2)

∈F+G
def
= [∈F,∈G]

∈F·G
def
= ∈G · ∈F

Motivation Separation logic Confinement Discussion

Pointfree reasoning is useful in various aspects

Handy way of carrying out semantics-level reasoning, since,
quoting [Reynolds, 2002]:

”[...] In its present state separation logic is not only
theoretically incomplete but pragmatically incomplete.”

Clearly:

• This gives room for the PF-relational model to be used
explicitly wherever the logic isn’t expressive enough.

• In the PF-style we can calculate directly with semantic
denotations as objects (no quantification over addresses,
atoms, etc)

Motivation Separation logic Confinement Discussion

Pointfree reasoning is useful in various aspects

Handy characterization of [Reynolds, 2002] classes of assertions:

• Intuitionistic p iff [[p]] = ⊇ · [[p]].

• Strictly-exact p iff [[p]] is simple, that is [[p]] · [[p]]◦ ⊆ id

• Pure p iff [[p]] is a right-condition, ie. [[p]] = > · Φ for some Φ

Pure assertions do not depend on the heap, thus the two
conjunctions collapse. For example, we get,

(p ∧ q) ∗ r ↔ p ∧ (q ∗ r) when p is pure

Motivation Separation logic Confinement Discussion

Example of calculation about pure assertions

[[p ∧ (q ∗ r)]]

= { p := > · Φ since p is pure }

> · Φ ∩ (∗) · 〈[[q]], [[r]]〉

= { right-conditions: Φ · R = R ∩ Φ · > }

(∗) · 〈[[q]], [[r]]〉 · Φ

= { splits: 〈R,S〉 · Φ = 〈R,S · Φ〉 ≡ Φ coreflexive [Oliveira, 2007] }

(∗) · 〈[[q]] · Φ, [[r]]〉

= { right-conditions }

(∗) · 〈> · Φ ∩ [[q]], [[r]]〉

= { > · Φ := p ; definitions }

[[(p ∧ q) ∗ r]]

Motivation Separation logic Confinement Discussion

Closing

• High-valued programmers are heavy users of logic: which
entails the need for earlier introduction and explicit use of
logic in middle and high school

• but a heavy use of logic entails the need for more concise
ways of expression and notations amenable to formal,
systematic manipulation.

[With symbols] when controversies arise, there will be no more
necessity for disputation between two philosophers than
between two accountants. Nothing will be needed but that
they should take pen and paper, sit down with their
calculators, and say ‘Let us calculate’.

G. W. Leibniz (1646-1716)

	Motivation
	Separation logic
	Confinement
	Discussion

