
Equational abstractions in rewriting logic and
Maude

Narciso Mart́ı-Oliet
(joint work with J. Meseguer, M. Palomino and F. Durán)

Facultad de Informática
Universidad Complutense de Madrid

narciso@ucm.es

Sinaia, Sept. 2, 2014

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 1 / 59

Abstract

• Abstraction reduces the problem of whether an infinite state system
satisfies a temporal logic property to model checking that property
on a finite state abstract version.

• The most common abstractions are quotients of the original system.

• We present a simple method of defining quotient abstractions by
means of equations collapsing the set of states.

• Our method yields the minimal quotient system together with a set
of proof obligations that guarantee its executability and can be
discharged with tools such as those in the Maude formal
environment.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 2 / 59

Introduction

Maude

• Maude follows a long tradition of algebraic specification languages in
the OBJ family, including

• OBJ3,
• CafeOBJ,
• Elan.

• Computation = Deduction in an appropriate logic.

• Functional modules = (Admissible) specifications in (membership)
equational logic.

• System modules = (Admissible) specifications in rewriting logic.

• Operational semantics based on matching and rewriting.

http://maude.cs.uiuc.edu

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 3 / 59

Introduction

Ingredients of rewriting logic

• Types (and subtypes).

• Typed operators providing syntax: signature Σ.

• Syntax allows the construction of both static data and states: term
algebra TΣ.

• Equations E define functions over static data as well as properties of
states.

• Rewrite rules R define transitions between states.

• Deduction in the logic corresponds to computation with those
functions and transitions.

• The Maude language is an implementation of (equational and)
rewriting logic, allowing the execution of specifications satisfying
some admissibility requirements.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 4 / 59

Introduction

Example: crossing the river

• A shepherd needs to transport to the other side of a river

• a wild dog,
• a lamb, and
• a cabbage.

• He has only a boat with room for the shepherd himself and another
item.

• The problem is that in the absence of the shepherd

• the wild dog would eat the lamb, and
• the lamb would eat the cabbage.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 5 / 59

Introduction

Example: crossing the river

• The shepherd and his belongings are represented as objects with an
attribute indicating the side of the river in which each is located.

• Constants left and right represent the two sides of the river.

• Operation change is used to modify the corresponding attributes.

• Rules represent the ways of crossing the river that are allowed by the
capacity of the boat.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 6 / 59

Introduction

Example: crossing the river

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side [ctor] .

op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .

ops s w l c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(change(S)) .

rl [wdog] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [lamb] : s(S) l(S) => s(change(S)) l(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 7 / 59

Introduction

Example: mutual exclusion between two processes

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .

op [_,_] : Name Mode -> Proc [ctor] .

ops * $: -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $.

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 8 / 59

Introduction

Example: readers and writers

mod READERS-WRITERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

sort State .

op <_,_> : Nat Nat -> State [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 9 / 59

Introduction

Rewriting and equational simplification

• In a Σ-equation l = r all variables in the righthand side r must
appear among the variables of the lefthand side l .

• A term t rewrites to a term t ′ using such an equation in E if

1 there is a subterm t|p of t at a given position p of t such that l
matches t|p via a substitution σ, i.e., σ(l) ≡ t|p,and

2 t ′ is obtained from t by replacing the subterm t|p ≡ σ(l) with
the term σ(r).

• We denote this step of equational simplification by t →E t ′.

• We write t →∗E t ′ to mean either t = t ′ (0 steps) or
t →E t1 →E t2 →E · · · →E tn →E t ′ with n ≥ 0 (n+ 1 steps).

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 10 / 59

Introduction

Confluence and termination

• A set of equations E is confluent (or Church-Rosser) when any two
rewritings of a term can always be unified by further rewriting: if
t →∗E t1 and t →∗E t2, then there exists a term t ′ such that
t1 →∗E t ′ and t2 →∗E t ′.

t

∗
E !!!!

!!
!!

!!

∗
E

"""
""

""
""

"

t1

∗
E

""

t2

∗
E

!!
t′

• A set of equations E is terminating when there is no infinite
sequence of rewriting steps t0 →E t1 →E t2 →E . . .

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 11 / 59

Introduction

Confluence and termination

• If E is both confluent and terminating, a term t can be reduced to a
unique normal or canonical form t ↓E , that is, to a term that can no
longer be rewritten.

• Therefore, in order to check semantic equality of two terms t = t ′,
it is enough to check that their respective canonical forms are equal,
t ↓E = t ′ ↓E , but, since canonical forms cannot be rewritten
anymore, the last equality is just syntactic coincidence: t ↓E ≡ t ′ ↓E .

• Functional modules in Maude are assumed to be confluent and
terminating, and their operational semantics is equational
simplification, that is, rewriting of terms until a canonical form is
obtained.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 12 / 59

Introduction

Matching and simplification modulo

• In the Maude implementation, rewriting modulo A is accomplished
by using a matching modulo A algorithm.

• More precisely, given an equational theory A, a term t
(corresponding to the lefthand side of an equation) and a subject
term u, we say that t matches u modulo A if there is a substitution
σ such that σ(t) =A u, that is, σ(t) and u are equal modulo the
equational theory A.

• Given an equational theory A = ∪iAfi corresponding to all the
attributes declared in different binary operators, Maude synthesizes a
combined matching algorithm for the theory A, and does equational
simplification modulo the axioms A.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 13 / 59

Introduction

Rewriting logic

• We arrive at the main idea behind rewriting logic by dropping
symmetry and the equational interpretation of rules.

• We interpret a rule t → t ′ computationally as a local concurrent
transition of a system, and logically as an inference step from
formulas of type t to formulas of type t ′.

• Rewriting logic is a logic of becoming or change, that allows us to
specify the dynamic aspects of systems.

• Representation of systems in rewriting logic:

• The static part is specified as an equational theory.
• The dynamics is specified by means of possibly conditional rules

that rewrite terms, representing parts of the system, into others.
• The rules need only specify the part of the system that actually

changes: the frame problem is avoided.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 14 / 59

Introduction

System modules

• System modules in Maude correspond to rewrite theories in rewriting
logic.

• A rewrite theory has both rules and equations, so that rewriting is
performed modulo such equations.

• The equations are divided into

• a set A of structural axioms (associativity, commutativity,
identity), for which matching algorithms exist in Maude, and

• a set E of equations that are Church-Rosser and terminating
modulo A;

that is, the equational part must be equivalent to a functional
module.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 15 / 59

Introduction

System modules

• The rules R in the module must be coherent with the equations E
modulo A, allowing us to intermix rewriting with rules and rewriting
with equations without losing rewrite computations by failing to
perform a rewrite that would have been possible before an
equational deduction step was taken.

t
1

R/A
!!

!E/A ""

t′

!
E/A

##
w

u 1
R/A

!! u′

!
E/A

$$

• A simple strategy available in these circumstances is to always
reduce to canonical form using E before applying any rule in R.

• In this way, we get the effect of rewriting modulo E ∪ A with just a
matching algorithm for A.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 16 / 59

Model checking

Model checking

• Two levels of specification:

• a system specification level, provided by the rewrite theory
specified by that system module, and

• a property specification level, given by some properties that we
want to state and prove about our module.

• Temporal logic allows specification of properties such as safety
properties (ensuring that something bad never happens) and liveness
properties (ensuring that something good eventually happens),
related to the infinite behavior of a system.

• Maude 2 includes a model checker to prove properties expressed in
linear temporal logic (LTL).

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 17 / 59

Model checking

Linear temporal logic

• Main connectives:

• True: > ∈ LTL(AP).

• Atomic propositions: If p ∈ AP, then p ∈ LTL(AP).

• Next operator: If ϕ ∈ LTL(AP), then ©ϕ ∈ LTL(AP).

• Until operator: If ϕ, ψ ∈ LTL(AP), then ϕ U ψ ∈ LTL(AP).

• Boolean connectives: If ϕ, ψ ∈ LTL(AP), then the formulas
¬ϕ, and ϕ ∨ ψ are in LTL(AP).

• Other Boolean connectives:

• False: ⊥ = ¬>
• Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))

• Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 18 / 59

Model checking

Linear temporal logic

• Other temporal operators:

• Eventually: ♦ϕ = > U ϕ

• Henceforth: �ϕ = ¬♦¬ϕ

• Release: ϕ R ψ = ¬((¬ϕ) U (¬ψ))

• Unless: ϕW ψ = (ϕ U ψ) ∨ (�ϕ)

• Leads-to: ϕ ψ = �(ϕ→ (♦ψ))

• Strong implication: ϕ⇒ ψ = �(ϕ→ ψ)

• Strong equivalence: ϕ⇔ ψ = �(ϕ↔ ψ).

• Sometimes it is useful to work with the negation-free fragment of
LTL, that we denote LTL−. Negation is removed, and the duals of
the basic operators are added.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 19 / 59

Model checking

Linear temporal logic

• Before considering their formal meaning, let us note that the
intuition behind the main temporal connectives is the following:

• > is a formula that always holds at the current state.

• ©ϕ holds at the current state if ϕ holds at the state that
follows.

• ϕ U ψ holds at the current state if ψ is eventually satisfied at a
future state and, until that moment, ϕ holds at all intermediate
states.

• �ϕ holds if ϕ holds at every state from now on.

• ♦ϕ holds if ϕ holds at some state in the future.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 20 / 59

Model checking

Kripke structures

• A Kripke structure is a triple A = (A,→A, L) such that

• A is a set, called the set of states,
• →A is a total binary relation on A, called the transition

relation, and
• L : A −→ P(AP) is a function, called the labeling function,

associating to each state a ∈ A the set L(a) of those atomic
propositions in AP that hold in the state a.

• A path in a Kripke structure A is a function π : IN −→ A with
π(i)→A π(i + 1) for every i .

• We use πi to refer to the suffix of π starting at π(i).

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 21 / 59

Model checking

Kripke structures: semantics
• The semantics of the temporal logic LTL is defined by means of a

satisfaction relation between a Kripke structure A, a state a ∈ A,
and an LTL formula ϕ ∈ LTL(AP):

A, a |= ϕ ⇐⇒ A, π |= ϕ for all paths π with π(0) = a.

• The satisfaction relation A, π |= ϕ is defined by structural induction
on ϕ:

A, π |= p ⇐⇒ p ∈ L(π(0))
A, π |= > ⇐⇒ true
A, π |= ϕ ∨ ψ ⇐⇒ A, π |= ϕ or A, π |= ψ
A, π |= ¬ϕ ⇐⇒ A, π 6|= ϕ
A, π |=©ϕ ⇐⇒ A, π1 |= ϕ
A, π |= ϕ U ψ ⇐⇒ there exists n ∈ IN such that A, πn |= ψ and,

for all m < n,A, πm |= ϕ

The semantics of the remaining Boolean and temporal operators
(e.g., ⊥, ∧, →, �, ♦, R, and) can be derived from these.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 22 / 59

Model checking

Kripke structures associated to rewrite theories

• Given a system module M specifying a rewrite theory R = (Σ,E ,R),
we

• choose a type k in M as our type of states;
• define some state predicates Π and their semantics in a

module, say M-PREDS, protecting M by means of the operation

op _|=_ : State Prop -> Bool .

coming from the predefined SATISFACTION module.

• Then we get a Kripke structure (more details later)

K(R, k)Π = (TΣ/E ,k , (→1
R)
•, LΠ).

• Under some assumptions on M and M-PREDS, including that the set
of states reachable from [t] is finite, the relation K(R, k)Π, [t] |= ϕ
becomes decidable.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 23 / 59

Model checking

Model-checking modules

MUTEX-CHECK

MUTEX-PREDSMODEL-CHECKERLTL-SIMPLIFIER

MUTEXSATISFACTIONLTL QID

BOOL

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 24 / 59

Model checking

Mutual exclusion: processes

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .

op [_,_] : Name Mode -> Proc [ctor] .

ops * $: -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $.

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 25 / 59

Model checking

Mutual exclusion: basic properties

mod MUTEX-PREDS is

protecting MUTEX .

including SATISFACTION .

subsort Conf < State .

ops crit wait : Name -> Prop [ctor] .

var N : Name .

var C : Conf .

var P : Prop .

eq [N, critical] C |= crit(N) = true .

eq [N, wait] C |= wait(N) = true .

eq C |= P = false [owise] .

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 26 / 59

Model checking

Model checking mutual exclusion

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a, wait] [b, wait] .

eq initial2 = * [a, wait] [b, wait] .

endm

Maude> red modelCheck(initial1, [] ˜(crit(a) /\ crit(b))) .
ModelChecker: Property automaton has 2 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Maude> red modelCheck(initial2, [] ˜(crit(a) /\ crit(b))) .
ModelChecker: Property automaton has 2 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 27 / 59

Model checking

Model checking a strong liveness property
If a process waits infinitely often, then it is in its critical section infinitely
often.

Maude> red modelCheck(initial1, ([]<> wait(a)) -> ([]<> crit(a))) .

ModelChecker: Property automaton has 3 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Maude> red modelCheck(initial1, ([]<> wait(b)) -> ([]<> crit(b))) .

ModelChecker: Property automaton has 3 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(a)) -> ([]<> crit(a))) .

ModelChecker: Property automaton has 3 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(b)) -> ([]<> crit(b))) .

ModelChecker: Property automaton has 3 states.

ModelCheckerSymbol: Examined 4 system states.

result Bool: true

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 28 / 59

Model checking

Counterexamples

• A counterexample is a pair consisting of two lists of transitions,
where the first corresponds to a finite path beginning in the initial
state, and the second describes a loop.

• If we check whether, beginning in the state initial1, process b will
always be waiting, we get a counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .

ModelChecker: Property automaton has 2 states.

ModelCheckerSymbol: Examined 4 system states.

result ModelCheckResult:

counterexample({$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter} ,

{[a, wait] [b, critical], ’b-exit}

{$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter})

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 29 / 59

Model checking

Crossing the river: transitions

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side [ctor] .

op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .

ops s w l c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(change(S)) .

rl [wdog] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [lamb] : s(S) l(S) => s(change(S)) l(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 30 / 59

Model checking

Crossing the river: properties

mod RIVER-CROSSING-PROP is

protecting RIVER-CROSSING .

including MODEL-CHECKER .

subsort Group < State .

op initial : -> Group .

eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop .

vars S S’ S’’ : Side .

ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .

ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .

eq (s(right) w(right) l(right) c(right) |= success) = true .

eq G:Group |= P:Prop = false [owise] .

endm

• success characterizes the (good) state in which the shepherd and
his belongings are in the other side,

• disaster characterizes the (bad) states in which some eating takes
place.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 31 / 59

Model checking

Crossing the river

• The model checker only returns paths that are counterexamples of
properties.

• To find a safe path we need to find a formula that somehow
expresses the negation of the property we are interested in: a
counterexample will then witness a safe path for the shepherd.

• If no safe path exists, then it is true that whenever success is
reached a disastrous state has been traversed before:

<> success -> (<> disaster /\ ((˜ success) U disaster))

Note that this formula is equivalent to the simpler one

<> success -> ((˜ success) U disaster)

• A counterexample to this formula is a safe path, completed so as to
have a cycle.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 32 / 59

Model checking

Crossing the river

Maude> red modelCheck(initial,

<> success -> (<> disaster /\ ((˜ success) U disaster))) .

result ModelCheckResult: counterexample(

{s(left) w(left) l(left) c(left),’lamb}

{s(right) w(left) l(right) c(left),’shepherd}

{s(left) w(left) l(right) c(left),’wdog}

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’cabbage}

{s(right) w(right) l(left) c(right),’shepherd}

{s(left) w(right) l(left) c(right),’lamb}

{s(right) w(right) l(right) c(right),’lamb}

{s(left) w(right) l(left) c(right),’shepherd}

{s(right) w(right) l(left) c(right),’wdog}

{s(left) w(left) l(left) c(right),’lamb}

{s(right) w(left) l(right) c(right),’cabbage}

{s(left) w(left) l(right) c(left),’wdog},

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’lamb})

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 33 / 59

Equational abstractions

Readers and writers: transitions

mod READERS-WRITERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

sort State .

op <_,_> : Nat Nat -> State [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > . --- infinite system

rl < s(R), W > => < R, W > .

endm

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 34 / 59

Equational abstractions

The problem

• Given a concurrent system (corresponding either to a piece of
hardware or software), we want to check whether certain properties
hold in it or not.

• If the number of (reachable) states is finite, use model checking.

• If the number of (reachable) states is infinite (or too large) this does
not work. Then

• we can employ deductive methods, or
• we can calculate an abstract version of the system with a finite

number of states to which model checking can be applied.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 35 / 59

Equational abstractions

Our approach to abstraction

• A simple method of defining quotient abstractions is by means of
equations collapsing the set of states:

• The concurrent system is specified by a rewrite theory
R = (Σ,E ,R).

• Then the quotient is obtained by adding more equations to R.

• Such a quotient is useful for model-checking purposes if

• the resulting theory is executable, and
• the state predicates are preserved by the equations.

• These proof obligations can be discharged with the help of some
Maude tools.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 36 / 59

Equational abstractions

Simulations between Kripke structures

• An AP-simulation H : A −→ B between Kripke structures A and B
over AP is a total relation H ⊆ A× B such that:

•

a −→A a′

H H
b −→B b′

• If aHb then LB(b) ⊆ LA(a).

• If the previous inclusion is an equality in all cases, we call H strict.

• H : A −→ B reflects the satisfaction of a formula ϕ if

B, b |= ϕ and aHb implies A, a |= ϕ.

• Main Theorem. AP-simulations reflect satisfaction of LTL−(AP)
formulas. Strict simulations reflect satisfaction of LTL(AP)
formulas.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 37 / 59

Equational abstractions

Minimal systems

• It is often the case that we just have a Kripke structure M and a
surjective function to a set of abstract states h : M −→ A.

• The minimal system Mh
min (over A) corresponding to M and h is

defined by (A,→Mh
min

, LMh
min

), where:

• x →Mh
min

y ⇐⇒ ∃a∃b.(h(a) = x ∧ h(b) = y ∧ a→M b)

• LMh
min

(a) =
⋂
x∈h−1(a) LM(x).

• Proposition. h :M−→Mh
min is indeed a simulation.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 38 / 59

Equational abstractions

Minimal systems as quotients

• Minimal systems can also be seen as quotients.

• For a Kripke structure A and ∼ an equivalence relation on A, define
A/∼ = (A/∼,→A/∼, LA/∼), where:

• [a1]→A/∼ [a2] ⇐⇒ (∃a′1 ∈ [a1]) (∃a′2 ∈ [a2]) a′1 →A a′2
• LA/∼([a]) =

⋂
x∈[a] LA(x).

• Proposition. Given M and h surjective, the Kripke structures Mh
min

and M/∼h are isomorphic, where x ∼h y iff h(x) = h(y).

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 39 / 59

Equational abstractions

Remarks on minimal systems

• The adjective minimal is appropriate since Mh
min is the most

accurate approximation to M consistent with h.

• It is not always possible to have a computable description of Mh
min.

• The transition relation:

x →Mh
min

y ⇐⇒ ∃a∃b.(h(a) = x ∧ h(b) = y ∧ a→M b)

is not recursive in general.

• Here we present methods that, when successful, yield a computable
description of Mh

min.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 40 / 59

Equational abstractions

The system specification level

• In general, a concurrent system is specified by a rewrite theory
R = (Σ,E ,R) with:

• (Σ,E) an equational theory describing the states;
• R a set of (conditional) rewrite rules defining the system

transitions.

• This determines, for each type k , a transition system

(TΣ/E ,k , (→1
R)
•)

where

• TΣ/E ,k is the set of equivalence classes [t] of terms of type k,
modulo the equations E ;

• (→1
R)
• extends the one-step rewrite relation →1

R with an
identity pair ([t], [t]) for each deadlock state [t].

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 41 / 59

Equational abstractions

LTL properties of rewrite theories

• LTL properties are associated to R and a type k by specifying the
basic state predicates Π in an equational theory (Σ′,E ∪D)
extending (Σ,E) conservatively.

• State predicates, possibly parameterized, are constructed with
operators p : s1 . . . sn → Prop.

• The semantics is defined by means of equations D using the
“satisfaction operator” |= : k Prop→ Bool.

• A state predicate p(u1, . . . , un) holds in a state [t] iff

E ∪D ` t |= p(u1, . . . , un) = true

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 42 / 59

Equational abstractions

LTL properties of rewrite theories

• The Kripke structure associated to R, k , and Π, with atomic
propositions APΠ = {p(u1, . . . , un) ground | p ∈ Π}, is

K(R, k)Π = (TΣ/E ,k , (→1
R)
•, LΠ)

where

LΠ([t]) = {p(u1, . . . , un) | p(u1, . . . , un) holds in [t]}

• Assuming that the equations E ∪D are Church-Rosser and
terminating, and that the rewrite theory R is executable, the
resulting Kripke structure is computable.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 43 / 59

Equational abstractions

Equational abstractions

• We can define an abstraction for K(R, k)Π by specifying an
equational theory extension

(Σ,E) ⊆ (Σ,E ∪ E ′)

• This gives rise to an equivalence relation ≡E ′ on TΣ/E

[t]E ≡E ′ [t
′]E ⇐⇒ E ∪ E ′ ` t = t ′ ⇐⇒ [t]E∪E ′ = [t ′]E∪E ′

and then a quotient abstraction K(R, k)Π/≡E ′ .

• Question: Is K(R, k)Π/≡E ′ the Kripke structure associated to
another rewrite theory?

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 44 / 59

Equational abstractions

Equational abstractions

• We focus on those rewrite theories R satisfying the following
requirements:

• R is k-deadlock free, that is (→1
R)
• =→1

R on TΣ/E ,k ,
• R is k-topmost, so k only appears as the coarity of a certain

operator f : k1 . . . kn −→ k , and
• no terms of type k appear in the conditions.

• A rewrite theory R can often be transformed into an equivalent one
satisfying these requirements.

• The readers-and-writers example satisfies these requirements, as well
as others we will see later.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 45 / 59

Equational abstractions

Equational abstractions

• Let us take a closer look at the quotient:

K(R, k)Π/≡E ′ = (TΣ/E ,k/≡E ′ , (→1
R)
•/≡E ′ , LΠ/≡E ′

).

• TΣ/E/≡E ′
∼= TΣ,E∪E ′ .

• Under the above assumptions, R/E ′ = (Σ,E ∪ E ′,R) is k-deadlock
free and

(→1
R/E ′)

• =→1
R/E ′ = (→1

R)
•/≡E ′

• Therefore, at a purely mathematical level, R/E ′ seems to be what
we want.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 46 / 59

Equational abstractions

Equational abstractions: executability

• Executability requires that:

• The equations E ∪ E ′ are ground Church-Rosser and
terminating.

• The rules R are ground coherent relative to E ∪ E ′.
For example, the rules

a −→ c b −→ d

are not coherent relative to the abstraction

a = b .

• To check and enforce these conditions, and get an executable
rewrite theory R′ semantically equivalent to R/E ′, we can use
some Maude tools.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 47 / 59

Equational abstractions

Equational abstractions: preservation of properties

• What about state predicates? By definition:

LΠ/≡E ′
([t]E∪E ′) =

⋂
[x]E⊆[t]E∪E ′

LΠ([x]E).

• Coming up with equations D ′ defining LΠ/≡E ′
may not be easy.

• It becomes much easier if the predicates are preserved by E ′:

[x]E∪E ′ = [y]E∪E ′ =⇒ LΠ([x]E) = LΠ([y]E)

• In this case we do not need to change the equations D and therefore
we have:

K(R, k)Π/≡E ′
∼= K(R/E ′, k)Π.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 48 / 59

Equational abstractions

Equational abstractions: preservation of properties

• How can we prove

[x]E∪E ′ = [y]E∪E ′ =⇒ LΠ([x]E) = LΠ([y]E) ?

• Proposition. If the equations in E ′ are of the form t = t ′ if C , with
t, t ′ of type k , and for each such equation

E ∪D `ind (∀~x ∀~y) C ⇒
(t(~x) |= p(~y) = true ⇔ t ′(~x) |= p(~y) = true)

then the state predicates Π are preserved by E ′.

• We can also use some Maude tools to mechanically discharge these
proof obligations.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 49 / 59

Equational abstractions

Equational abstractions: all together

• By construction, the quotient simulation

K(R, k)Π −→ K(R,E)Π/≡E ′
∼= K(R/E ′, k)Π

is strict, so it reflects satisfaction of arbitrary LTL formulas.

• Since R/E ′ is executable, for an initial state [t] having a finite set
of reachable states we can use the Maude model checker to check if
a property holds.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 50 / 59

Examples Readers and writers

Readers and writers: properties

mod READERS-WRITERS-PREDS is

protecting READERS-WRITERS .

including SATISFACTION .

ops mutex one-writer : -> Prop [ctor] .

eq < s(N:Nat), s(M:Nat) > |= mutex = false .

eq < 0, N:Nat > |= mutex = true .

eq < N:Nat, 0 > |= mutex = true .

eq < N:Nat, s(s(M:Nat)) > |= one-writer = false .

eq < N:Nat, 0 > |= one-writer = true .

eq < N:Nat, s(0) > |= one-writer = true .

endm

• mutual exclusion: readers and writers never access the resource
simultaneously: only readers or only writers can do so at any given
time.

• one writer: at most one writer will be able to access the resource at
any given time.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 51 / 59

Examples Readers and writers

Abstraction by adding equations

mod READERS-WRITERS-ABS is

including READERS-WRITERS-PREDS .

including READERS-WRITERS .

eq < s(s(N:Nat)), 0 > = < s(0), 0 > .

endm

In order to check both the executability and the property-preservation
properties of this abstraction, we need to check:

1 that the equations in both READERS-WRITERS-PREDS and
READERS-WRITERS-ABS are (ground) Church-Rosser and
terminating;

2 that the equations in both READERS-WRITERS-PREDS and
READERS-WRITERS-ABS are sufficiently complete (this is equivalent
to requiring that properties are preserved, since we have no
equations with either true or false in their lefthand side); and

3 that the rules in both READERS-WRITERS-PREDS and
READERS-WRITERS-ABS are ground coherent with respect to their
equations.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 52 / 59

Examples Readers and writers

Readers and writers: Church-Rosser checker

Maude> (check Church-Rosser READERS-WRITERS-PREDS .)

Church-Rosser checking of READERS-WRITERS-PREDS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

Maude> (check Church-Rosser READERS-WRITERS-ABS .)

Church-Rosser checking of READERS-WRITERS-ABS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 53 / 59

Examples Readers and writers

Readers and writers: sufficient completeness checker

Maude> (scc READERS-WRITERS-PREDS .)

Checking sufficient completeness of READERS-WRITERS-PREDS ...

Success: READERS-WRITERS-PREDS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

Maude> (scc READERS-WRITERS-ABS .)

Checking sufficient completeness of READERS-WRITERS-ABS ...

Success: READERS-WRITERS-ABS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 54 / 59

Examples Readers and writers

Readers and writers: coherence checker

Maude> (check coherence READERS-WRITERS-PREDS .)

Coherence checking of READERS-WRITERS-PREDS

Coherence checking solution:

All critical pairs have been rewritten and all equations

are non-constructor.

The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)

Coherence checking of READERS-WRITERS-ABS

Coherence checking solution:

The following critical pairs cannot be rewritten:

cp < s(0), 0 > => < s(N:Nat), 0 > .

• A simple argument by cases shows that this critical pair can be
joined for each instantiation of N by considering the two cases for
natural numbers N = 0 and N = s(M), thus proving ground
coherence.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 55 / 59

Examples Readers and writers

Readers and writers: model checking, finally

mod READERS-WRITERS-ABS-CHECK is

protecting READERS-WRITERS-ABS .

including MODEL-CHECKER .

endm

Maude> reduce in READERS-WRITERS-ABS-CHECK :

modelCheck(< 0,0 >, []mutex) .

rewrites: 15 in 0ms cpu (0ms real) (28790 rewrites/second)

result Bool: true

Maude> reduce in READERS-WRITERS-ABS-CHECK :

modelCheck(< 0,0 >, []one-writer) .

rewrites: 15 in 0ms cpu (0ms real) (76142 rewrites/second)

result Bool: true

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 56 / 59

Examples Readers and writers

Readers and writers: checking by search

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:State

such that C:State |= mutex = false .

No solution.

states: 3

rewrites: 9 in 0ms cpu (0ms real) (80357 rewrites/second)

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:State

such that C:State |= one-writer = false .

No solution.

states: 3

rewrites: 9 in 0ms cpu (0ms real) (94736 rewrites/second)

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 57 / 59

Conclusion

Concluding remarks

• The technique is fairly simple and takes advantage of the
expressiveness of rewriting logic as well as of the tools available in
the Maude formal environment.

• Other examples, such as the bakery protocol for an arbitrary number
of processes and the bounded retransmission protocol, are available
in the references.

• Related work: Generalization of the equational theory extension
(Σ,E) ⊆ (Σ,E ∪ E ′) to an arbitrary theory interpretation
H : (Σ,E) −→ (Σ′,E ′′), and to (stuttering) simulations between
different sets AP and AP ′ of state predicates.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 58 / 59

Conclusion

References

• José Meseguer, Miguel Palomino, Narciso Mart́ı-Oliet: Equational
abstractions. Theoretical Computer Science 403(2-3): 239-264
(2008).

• José Meseguer, Miguel Palomino, Narciso Mart́ı-Oliet: Algebraic
simulations. Journal of Logic and Algebraic Programming 79(2):
103-143 (2010).

• Francisco Durán, José Meseguer: On the Church-Rosser and
coherence properties of conditional order-sorted rewrite theories.
Journal of Logic and Algebraic Programming 81(7-8): 816-850
(2012).

• Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, Carolyn L. Talcott: All About
Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. Lecture Notes in
Computer Science 4350, Springer, 2007.

Narciso Mart́ı-Oliet (UCM) Equational abstractions Sinaia, Sept. 2, 2014 59 / 59

	Introduction
	Model checking
	Equational abstractions
	Examples
	Readers and writers

	Conclusion

