Uniform Eilenberg Theorems: Syntactic Algebras For Free

Jiří Adámek, Stefan Milius, Robert Myers, Henning Urbat

TECHNISCHE FAKULTÄT

regular languages $L \subseteq \Sigma^*$

regular Moore behaviours $\Sigma^* \to \mathcal{O}$

 ω -regular languages

regular tree languages

... For Regular Languages

Automata	Algebraic Acceptors	
deterministic	finite monoids M , $P: M \rightarrow \{0, 1\}$	Rabin-Scott (1959)
alternating	finite ordered monoids M , monotone $P: M \rightarrow \{0 \le 1\}$	Pin (1986)
nondeterministic	finite idempotent semirings M , \lor -preserving $P: M \rightarrow \{0 \leq 1\}$	Polák (2001)
xor	finite \mathbb{Z}_2 -algebra M , linear $P: M \to \mathbb{Z}_2$	Reutenauer (1978)

Canonical Algebraic Acceptors

- Syntactic monoid for regular languages
- Syntactic semigroup/monoid for regular Moore/Mealy behaviour
- Pin: syntactic ordered monoid
- Polák: syntactic idempotent semiring
- Reutenauer: syntactic \mathbb{Z}_2 -algebra

- Wilke: syntactic binoid
- Bojanczyk/Walukiewics: syntactic forest algebra

Hallmark of Algebraic Automata Theory

Uniform Eilenberg Theorems: Syntactic Algebras For Free | IFIP WG Meeting | September, 2014

Other Eilenberg-type theorems

 General results concerning duality of algebraic and coalgebraic recognition

• General version of Eilenberg's theorem uniformly

- Technical details of our setting
- Statements of several versions of Generalized Eilenberg's Theorem

Take: Σ signature of operations $O_{\mathcal{D}}$ non-trivial finite Σ -algebra whose operations commute: $|O_{\mathcal{D}}| \ge 2$ $\sigma_{O_{\mathcal{D}}}(\tau_{O_{\mathcal{D}}}(x_{ij})_i)_j = \tau_{O_{\mathcal{D}}}(\sigma_{O_{\mathcal{D}}}(x_{ij})_j)_i$ $\forall \sigma, \tau \in \Sigma$

Ordered algebra if operations monotone.

Define: $\mathcal{D} = \mathbb{HSP}(O_{\mathcal{D}})$

Prove: 1. D is a commutative locally finite variety
2. O_D is an injective cogenerator
3. D-epis are surjective

our assumptions

Σ	$O_{\mathcal{D}}$	$\mathcal{D} := \mathbb{HSP}(O_{\mathcal{D}})$
Ø	any set	Set
Ø	2 -chain $0 \le 1$	Poset
$\{0, \lor\}$	any \lor -0-semilattice	JSL_0
$\overline{\{0,+,(k)_{k\in\mathbb{F}}\}}$	vector space \mathbb{F}^n	$Vect(\mathbb{F})$
{0}	any pointed set	Set _*
$\{m:m\in M\}$	$\exists O_{\mathcal{D}}$	M-sets
$\overline{\{0, +, (r)_{r \in R}\}}$	$\exists O_{\mathcal{D}}$	Mod(R)


```
Shake O_{\mathcal{D}} to define a new algebra O_{\mathcal{C}}:
carrier = carrier of O_{\mathcal{D}}
operations = all homomorphisms O_{\mathcal{D}}^n \to O_{\mathcal{D}} (n \in \mathbb{N})
```

Cooking tip: only need operations that generate all others

Define: $C = \mathbb{SP}(O_C)$

$O_{\mathcal{D}}$	\mathcal{D}	$O_{\mathcal{C}}$	$\mathcal{C} := \mathbb{SP}(B)$
set $2 = \{0, 1\}$	Set	boolean algebra 2	BA
2-chain $0 \le 1$	Poset	lattice 2	DL_{01}
2-chain	JSL ₀	2-chain	JSL_0
vector space ${\mathbb F}$	$Vect(\mathbb{F})$	vector space \mathbb{F}	$Vect(\mathbb{F})$
set n	Set	Post algebra of order n	$Post_n$
pointed set 2	Set_*	boolean ring 2 sans unit	$BoolRing_{nu}$
$\bullet \stackrel{\rightarrow}{\leftarrow} \bullet \bullet \bullet$	\mathbb{Z}_2 -sets	$p \stackrel{\rightarrow}{\leftarrow} \neg p \top \perp$	$[\mathbb{Z}_2,BA]$

Theorem. Clark-Davey (1998): Natural Duality

Finite \mathcal{D} -algebras are dual to finite \mathcal{C} -algebras:

Duality $\mathcal{D}_{f}^{op} \cong \mathcal{C}_{f}$ arises from

$$\mathcal{D}_f(-,O_\mathcal{D}): \mathcal{D}_f^{op} \to \mathsf{Set} \qquad \qquad \mathcal{C}_f(-,O_\mathcal{C}): \mathcal{C}_f^{op} \to \mathsf{Set}$$

by adding algebra structure to the hom-sets.

Bimonoids

- A \mathcal{D} -bimonoid consist of:
 - an algebra $X \in \mathcal{D}$
 - a monoid structure $|X| \times |X| \xrightarrow{\bullet} |X| \xleftarrow{e} 1$

bilinear = \mathcal{D} -morphism is each argument

\mathcal{D}	\mathcal{D} -bimonoids	С
Set	monoids	BA
Poset	ordered monoids	DL ₀₁
JSL ₀	idempotent semirings with 0	JSL ₀
$Vect(\mathbb{F})$	associative algebras over ${\mathbb F}$	$Vect(\mathbb{F})$
Set	monoids	$Post_n$
Set_*	monoids with zero	$BoolRing_{nu}$
\mathbb{Z}_2 -sets	monoids with compatible involution	$[\mathbb{Z}_2,BA]$

Recap: 1. Started with finite Σ -algebra $O_{\mathcal{D}}$.

- 2. Constructed \mathcal{D} , $\mathcal{O}_{\mathcal{C}}$, \mathcal{C} with $\mathcal{D}_{f}^{op} = \mathcal{C}_{f}$.
- 3. Defined \mathcal{D} -bimonoids.

Now consider:

 $\begin{array}{ll} \mbox{Formal power series} & f: \Sigma^* \to O_{\mathcal{C}} \\ \mbox{Define derivatives:} & w^{-1}f = \lambda u.f(wu), & fw^{-1} = \lambda u.f(uw). \end{array}$

Theorem. The following are dual:

regular behaviours in $O_{\mathcal{C}}^{\Sigma^*}$

- The finite Σ -generated \mathcal{D} -bimonoids. /
- The finite subalgebras S ⊆ Reg(Σ) closed under derivatives.

Proof. The duality restricts a algebra-coalgebra duality extending the natural duality.

Recall characterizations of syntactic monoid Syn(L):

(1) Original: via monoid congruence $\sim \subseteq \Sigma^* \times \Sigma^*$

$$u \sim v \quad : \iff \quad \forall x, y \in \Sigma^*. (xuy \in L \iff xvy \in L)$$

(2) Construction: transition monoid of L's minimal dfa

(3) Universal property: smallest Σ -generated monoid recognizing L.

(4) Gehrke, Grigorieff and Pin showed:

 ${\rm Syn}(L)$ dual to the boolean algebra generated by the languages $\,u^{-1}Lv^{-1}\,$ where $u,v\in\Sigma^*$

i.e. atoms = states; multiplication = dual of quotients

Theorem. The following are dual:

syntactic algebra for a rational Moore behaviour $\beta : \Sigma^* \to |\mathcal{O}_{\mathcal{C}}| = |\mathcal{O}_{\mathcal{D}}|$ least subalgebra $S \subseteq \mathcal{O}^{\Sigma^*}$ containing β and closed under derivatives

Proof. Follows directly by restriction duality for finite algebras. (Definition of syntactic algebra for free.)

Example. Original case

 $\mathcal{O}_{\mathcal{D}} = 2 \in \mathcal{D} = \mathsf{Set}$ $\mathcal{O}_{\mathcal{C}} = 2 \in \mathcal{C} = \mathsf{BA}$

In other cases analogous characterizations as for syntactic monoid.

Local = fix alphabet Σ for varieties:

- (1) A local variety of C-behaviours is V_Σ ⊆ Reg(Σ) closed under derivatives w⁻¹f and fw⁻¹
 C-operations (e.g. Boolean opns ⊥, ¬, ∧)
- (2) A local variety of *D*-bimonoids is a collection of finite Σ-generated bimonoids closed under subdirect products homomorphic images
- Theorem. The inclusion ordered lattices of (1) and (2) are isomorphic.
- **Proof.** Take ideal completion of previous duality (concerning finite Σ -generated D-bimonoids)

Semi Local Eilenberg Theorem

Missing. preimage closure in *C*-varieties

(1) A semi local variety of C-behaviours is $V_{\Sigma} \subseteq \text{Reg}(\Sigma)$ closed under derivatives $w^{-1}f$ and fw^{-1} C-operations (e.g. Boolean opns \bot, \neg, \land) preimages of \mathcal{D} -bimonoid morphisms $f: \mathbf{F}\Sigma \to \mathbf{F}\Sigma$ (2) A semi local variety of \mathcal{D} -bimonoids is a collection of finite Σ -generated fully invariant bimonoids closed under $\mathbf{F}\Sigma \xrightarrow{\forall f} \mathbf{F}\Sigma$ subdirect products homomorphic images $\overset{\Psi}{A} - \underset{\exists u_f}{\longrightarrow} A$ The inclusion ordered lattices of (1) and (2) are isomorphic. Theorem.

Proof. Take ideal completion of restriction of previous duality.

Global Eilenberg Theorem

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

Still missing. varying alphabets

(1) A variety of C-behaviours is $\mathcal{V} = (V_{\Sigma})_{\Sigma}$, $V_{\Sigma} \subseteq \text{Reg}(\Sigma)$ closed under

derivatives $w^{-1}f$ and fw^{-1} *C*-operations (e.g. Boolean opns \bot, \neg, \land) preimages of *D*-bimonoid morphisms $f : \mathbf{F}\Delta \to \mathbf{F}\Sigma$

- (2) A pseudovariety of \mathcal{D} -bimonoids is an \mathbb{HSP}_f -closed collection of \mathcal{D} -bimonoids.
- Theorem. The pointwise inclusion ordered lattices of (1) and (2) are isomorphic.
- Proof. Take ideal completion of result concerning finitely generated varieties of \mathcal{D} -bimonoids finitely generated varieties of rational \mathcal{C} -behaviours

Conclusions

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

- Uniform category-theoretic approach to Eilenberg-type theorems
- local, semi-local and global theorem specializing to new and existing results (Gehrke/Grigorieff/Pin, Pin, Eilenberg, Polák, ...)
- Lots of syntactic algebras for free (parametric in well-behaved finite algebras whose opns commute)

Future Work

- Profinite equations and Reitermann's theorem
- 2-sorted cases (e.g. forest algebras of Bonjanczyk/Walukiewics)
- Understand why automata-theoretic notions have algebraic counterpart → uniform decidability results

Uniform Eilenberg Theorems: Syntactic Algebras For Free | IFIP WG Meeting | September, 2014