Component models in typed linear algebra

Luis S. Barbosa
(joint work with J.N. Oliveira)

HASLab
HIGH-ASSURANCE
SOFTWARE LABORATORY
SOFTWARE LABORATOR
INESCTEC

Universidade do Minho

IFIP WG 1.3 Meeting

Rome, March 16, 2013

Starting point

A calculus of state-based components building on a generic approach to transition systems, described by coalgebras

$$
Q \rightarrow \mathbf{F} Q
$$

where Q is a set of states and $\mathbf{F Q}$ captures the future behaviour of the system, according to evolution "pattern" F

Examples:

- Mealy machines - $\mathbf{F} Q=\mathbf{B}(Q \times O)^{\prime}$
- Moore machines - $\mathbf{F} Q=(\mathbf{B} Q)^{\prime} \times O$
for I, O input / output types, and \mathbf{B} a behaviour (strong) monad - e.g. maybe $(-+1)$, powerset (\mathcal{P}), distribution (\mathcal{D}), etc.

Starting point

The component calculus

$$
\begin{aligned}
& \text { lax }\left(p \boxtimes p^{\prime}\right) ;\left(q \boxtimes q^{\prime}\right) \sim(p ; q) \boxtimes\left(p^{\prime} ; q^{\prime}\right) \\
& \operatorname{copy}_{K \boxtimes K^{\prime}} \sim \operatorname{copy}_{K} \boxtimes \operatorname{copy}_{K^{\prime}} \\
& \text { functions }\ulcorner f\urcorner \boxtimes\ulcorner g\urcorner \sim\ulcorner f \times g\urcorner \\
& \text { assoc }(p \boxtimes q) \boxtimes r \sim(p \boxtimes(q \boxtimes r))\left[\text { a, a }{ }^{\circ}\right] \\
& \text { id } \text { idle } \boxtimes p \sim p\left[\mathbf{r}, \mathrm{r}^{\circ}\right] \\
& \text { zero } \text { nil } \boxtimes p \sim \operatorname{nil}\left[z \mathrm{z},\left.\mathrm{z}\right|^{\circ}\right] \\
& \text { comm } p \boxtimes q \sim(q \boxtimes p)[\mathrm{s}, \mathrm{~s}] \quad \text { if } \mathrm{B} \text { is commutative }
\end{aligned}
$$

GameLife $=(($ Cell \boxtimes Cell $\boxtimes \cdots \boxtimes$ Cell) $;$ Bus $)$ †

Motivation: going quantitative

From: may it happen?
... to: how often / how costly / how ... will it happen?

- In particular, can propagation of faults be predicted (calculated) rather than simulated?
cf, calculating fault propagation in functional programs ([Oliveira'12] in the context of the QAIS project, 2012-15)

Background

Vast literature, e.g.,

- Probabilistic program semantics - [Kozen 79]
- Weighted automata - [Buchholz 08, Droste \& Gastin 09]
- Probabilistic automata - [Larsen \& Skou 91]
- Coalgebraic approaches - [Sokolova 05] In particular, a recent paper

$$
\begin{aligned}
& \text { [Bonchi et al 12] - A coalgebraic perspective on } \\
& \text { linear weighted automata - Information and } \\
& \text { Computation, 211:77-105. }
\end{aligned}
$$

combines coalgebraic reasoning with linear algebra.
But there is a price to pay: functors need to handle quantities explicitly while states become vectors and coalgebras become linear maps

Our aim

- to obtain the same quantitative effect in component modelling while retaining the simplicity of the original (qualitative) coalgebra approach
keep weighting and quantification implicit rather than explicit
i.e., change to a typed linear algebra and hide weight calculations by matrix operations

Typed is the keyword ...

- Functions - functional programming, an advanced type discipline: typing $f: A \rightarrow B$ well accepted.
- Relations - ubiquitous (eg. graphs) but still under the atavistic set of pairs interpretation. Thus $R \subseteq A \times B$ widespread, compared to $A \xrightarrow{R} B$.
- Matrices - key concept in mathematics as a whole, many tools (eg. Matlab, Mathematica) but still "untyped" explicit dimension checking required.

Matrices as arrows

Given a semiring $(\mathbb{S} ;+, \times, 0,1)$ matrix composition $A \cdot B$ obeys to the typing rule

such that

$$
\begin{equation*}
r(A \cdot B) c=\left\langle\sum x::(r A x) \times(x B c)\right\rangle \tag{1}
\end{equation*}
$$

where \sum is the finite iteration over n of the + operation of \mathbb{S}.

Typed linear algebra

- objects are matrix dimensions and whose
- morphisms $\left(m<^{M} n, n<{ }^{N} k\right.$, etc) are the matrices themselves.

Strictly speaking, there is one such category per matrix cell-level algebra.

Notation:

- write $r A c$ for the (r, c)-th cell of matrix A
- Mats denotes the category, parametric on semiring \mathbb{S}

Typed linear algebra

Type checking:

For matrices A and B of the same type $n<m$, we can extend cell level algebra to matrix level, eg. by adding and multiplying matrices (Hadamard product),

$$
A+B \quad, \quad A \times B
$$

The underlying type system is polymorphic and type inference proceeds by unification, as in programming languages.

For instance, the identity matrix

$$
n \lessdot\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]_{n \times n}
$$

is polymorphic on type n.

Converse

Given matrix $n \ll^{M} m$, notation $m \prec^{M^{\circ}} n$ denotes its converse.
(M° is M changed by transposition)

$$
\begin{gather*}
i d_{n} \cdot M=M=M \cdot i d_{m} \tag{2}\\
\left(M^{\circ}\right)^{\circ}=M \tag{3}\\
(M \cdot N)^{\circ}=N^{\circ} \cdot M^{\circ} \tag{4}
\end{gather*}
$$

Typed linear algebra

Abelian structure

$$
\begin{align*}
& M+0=M=0+M \tag{5}\\
& M \cdot 0=0=0 \cdot M \tag{6}
\end{align*}
$$

Bilinearity - composition is bilinear relative to + :

$$
\begin{align*}
& M \cdot(N+P)=M \cdot N+M \cdot C \tag{7}\\
& (N+P) \cdot M=N \cdot M+P \cdot M \tag{8}
\end{align*}
$$

Biproducts - products and coproducts together enabling block algebra - the whole story goes back to MacLane \& Birkhoff; see also recent thesis [Macedo 12] for applications

(Polymorphic) block combinators

Two ways of putting matrices together to build larger ones:

- $X=[M \mid N]-M$ and N side by side ("junc")
- $X=\left[\frac{P}{Q}\right]-P$ on top of Q ("split" $)$.

$$
\text { cf } \pi_{1}=\left[i d_{m} \mid 0\right], \mathrm{I}_{1}=\left[\frac{i d_{m}}{0}\right] \text { and } P+Q=\left[i_{1} \cdot P \mid i_{2} \cdot Q\right]
$$

Blocked linear algebra

Rich set of laws, for instance divide-and-conquer,

$$
\begin{equation*}
[A \mid B] \cdot\left[\frac{C}{D}\right]=A \cdot C+B \cdot D \tag{9}
\end{equation*}
$$

two "fusion"-laws,

$$
\begin{align*}
C \cdot[A \mid B] & =[C \cdot A \mid C \cdot B] \tag{10}\\
{\left[\frac{A}{B}\right] \cdot C } & =\left[\frac{A \cdot C}{B \cdot C}\right] \tag{11}
\end{align*}
$$

structural equality,

$$
\begin{equation*}
\left[\frac{A}{B}\right]=\left[\frac{C}{D}\right] \quad \Leftrightarrow \quad A=C \wedge B=D \tag{12}
\end{equation*}
$$

- all offered for free from biproducts.

Vectors

Vectors are special cases of matrices in which one of the types is 1, for instance

$$
v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right]
$$

Column vector v is of type $m \ll 1$ (m rows, one column) and row vector w is of type $1 \longleftarrow n$ (one row, n columns).

Special matrices

- The bottom matrix $n \stackrel{0}{\longleftarrow} m$ - wholly filled with 0s
- The top matrix $n<\frac{1}{\leftarrow} m$ - wholly filled with 1 s
- The identity matrix $n<^{i d} n$ - diagonal of 1 s
- The bang (row) vector $1 \stackrel{!}{\longleftarrow} m$ - wholly filled with 1 s

Thus, (typewise) bang matrices are special cases of top matrices:

$$
1 \leftarrow^{1} m=!
$$

Also note that, on type $1 \lessdot<1$:

$$
1=!=i d
$$

Type generalization

As is standard is relational mathematics, matrix types can be generalized from numeric dimensions ($n, m \in N_{0}$) to arbitrary denumerable types (X, Y), taking disjoint union $X+Y$ for $m+n$, Cartesian product $X \times Y$ for $m n$, etc.

In this setting, a function $B \stackrel{f}{\longleftarrow} A$ will be represented in Mats by a (Boolean) matrix $B \stackrel{\llbracket f \rrbracket}{\leftarrow} A$ such that

$$
b \llbracket f \rrbracket a \quad \triangleq \quad\left(b=_{\mathbb{S}} f a\right)
$$

Thus

$$
!\cdot \llbracket f \rrbracket=\text { ! }
$$

Weighted Mealy machines as Mats arrows

A weighted Mealy machine $M=(I, O, Q, \alpha, \gamma)$ consists of

- input and output alphabets I, O, respectively
- finite set of states Q
- $\gamma: Q \rightarrow \mathbb{S}$ - weighted vector of seed (initial) states
- $\alpha: Q \rightarrow\left(\mathbb{S}^{Q \times O}\right)^{\prime}$ such that $\alpha(p)(i)(q, o)$ is the cost of a transition from p to q triggered by input i and producing output $o: p \xrightarrow{i / o} q$ (0 if no such transition).

If weights are trivial, the definition boils down to

$$
\left(Q, \alpha: Q \rightarrow(Q \times O)^{\prime}, \gamma: \mathcal{P} Q\right)
$$

i.e., a (seeded) coalgebra for functor $\mathbf{F} X=(X \times O)^{\prime}$ in Set.

Probabilistic Mealy machines as Mats arrows

For a probabilistic Mealy machine make:

- \mathbb{S} the interval $[0,1]$ in \mathbb{R}
- α is such that ! $\alpha \leq$!. I.e., ! $\cdot \alpha$ is a $(0,1)$-vector (because ! $\cdot M$ adds all columns of M).
- Wherever ! $\cdot \alpha=$! the machine is total and α is a column stochastic matrix, or probabilistic function
- For $I=1$, the definition boils down to a probabilistic automata A weighted finite automaton $W=(I, Q, \alpha, \gamma)$ where
- $\gamma: Q \rightarrow \mathbb{S}$ - weight functions for leaving a state
- $\alpha: I \rightarrow \mathbb{S}^{Q \times Q}$ such that $\mu(a)(p, q)$ is the cost of transition $p \xrightarrow{a} q$ (0 if no such transition).

Weighted Mealy machines as Mats arrows

- $\gamma: Q \rightarrow \mathbb{S}$ is encoded as Mat $_{\mathbb{S}}$ vector $Q \longrightarrow 1$

$$
\begin{equation*}
1 \gamma q \triangleq \gamma(q) \tag{13}
\end{equation*}
$$

- The matrix encoding of $\alpha: Q \rightarrow\left(\mathbb{S}^{Q \times O}\right)^{\prime}$ can be regarded as either of type $Q \times I \longrightarrow Q \times O$ or $Q \longrightarrow I \times Q \times O$, as these types are isomorphic in Mats.

Putting α and γ together into a Mats coalgebra

$$
Q \xrightarrow{M=\left[\frac{\alpha}{\gamma}\right]}(I \times Q \times O)+1
$$

for functor

$$
\mathbf{F} X=(i d \otimes X \otimes i d) \oplus i d
$$

Weighted Mealy machines as Mats arrows

$$
\mathbf{F} X=(i d \otimes X \otimes i d) \oplus i d
$$

where \otimes is Kronecker product and \oplus is direct sum
absorption

$$
\begin{equation*}
(C \oplus D) \cdot\left[\frac{A}{B}\right]=\left[\frac{C \cdot A}{D \cdot B}\right] \tag{14}
\end{equation*}
$$

fusion

$$
\begin{equation*}
\left[\frac{M}{N}\right] \otimes C=\left[\frac{M \otimes C}{N \otimes C}\right] \tag{15}
\end{equation*}
$$

pointwise Kronecker

$$
\begin{equation*}
(y, x)(M \otimes N)(b, a)=(y M b) \times(x N a) \tag{16}
\end{equation*}
$$

Weighted Mealy homomorphisms in Mats

Let us now see how the typed LA encoding of WA regains the simplicity of the original, qualitative starting point.

A homomorphism between weighted Mealy machines M and M^{\prime} is a function h making the following Mats-diagram commutes,

Weighted Mealy homomorphisms in Mats

In cross-checking that this indeed is the usual, quantified definition, we will resort to two rules of thumb,

$$
\begin{align*}
y(f \cdot N) x & =\left\langle\sum z: y=f(z): z N x\right\rangle \tag{18}\\
y\left(g^{\circ} \cdot N \cdot f\right) x & =(g(y)) N(f(x)) \tag{19}
\end{align*}
$$

where N is an arbitrary matrix and f, g are functional matrices.
These rules generalize similar equalities in relation algebra.

Weighted Mealy homomorphisms in Mats

Let us calculate:

$$
\left.\left.\left.\begin{array}{rl}
& (\mathbf{F} h) \cdot M=M^{\prime} \cdot h \\
\Leftrightarrow & \quad\left\{\text { unfold } \mathbf{F} h, M \text { and } M^{\prime}\right\} \\
& ((\text { id } \otimes h \otimes i d) \oplus i d) \cdot\left[\frac{\alpha}{\gamma}\right]=\left[\frac{\alpha^{\prime}}{\gamma^{\prime}}\right] \cdot h \\
\Leftrightarrow & \quad\{\text { absorption (14), identity (2) and fusion (11) \}}
\end{array}\right\} \begin{array}{ll}
\left.\frac{(i d \otimes h \otimes i d) \cdot \alpha}{\gamma}\right]=\left[\frac{\alpha^{\prime} \cdot h}{\gamma^{\prime} \cdot h}\right] \\
\Leftrightarrow & \quad\{\text { equality }(12)\}
\end{array}\right\} \begin{array}{l}
(\text { id } \otimes h \otimes i d) \cdot \alpha=\alpha^{\prime} \cdot h \\
\gamma=\gamma^{\prime} \cdot h
\end{array}\right)
$$

Weighted Mealy homomorphisms in Mats

Next we unfold (id $\otimes h \otimes i d) \cdot \alpha=\alpha^{\prime} \cdot h$ by extensional equality

$$
\begin{aligned}
& \left(i, q^{\prime}, o\right)((i d \otimes h \otimes i d) \cdot \alpha) q=\left(i, q^{\prime}, o\right)\left(\alpha^{\prime} \cdot h\right) q \\
\Leftrightarrow \quad & \quad\{(19) \text { on the rhs, since } h \text { is a function }\} \\
& (i, q, o)((i d \otimes h \otimes i d) \cdot \alpha) q=\left(i, q^{\prime}, o\right) \alpha^{\prime}(h(q)) \\
\Leftrightarrow & \quad\{(18) \text { on the Ihs, since id } \otimes h \otimes i d \text { is a function too }\} \\
& \left\langle\sum\left(i^{\prime}, p, o^{\prime}\right):\left(i, q^{\prime}, o\right)=(i d \otimes h \otimes i d)\left(i^{\prime}, p, o^{\prime}\right):\left(i^{\prime}, p, o^{\prime}\right) \alpha q\right\rangle \\
& =\left(i, q^{\prime}, o\right) \mu^{\prime}(h(q)) \\
\Leftrightarrow & \quad\{\text { simplifying \}}
\end{aligned}
$$

Weighted Mealy homomorphisms in Mats

Finally, writing $p \stackrel{i / o}{\leftarrow} q$ for the weight of the corresponding transition:

$$
\left\langle\sum p: q^{\prime}=h(p): p<^{i / o} q\right\rangle=q^{\prime} \gtrless^{i / o} h(q)
$$

In words:
the weight associated to transition $q^{\prime} \stackrel{i / o}{\gtrless} h(q)$ in the target automaton accumulates the weights of all transitions $p \stackrel{i / o}{\lessdot} q$ in the source automaton for all p which h maps to q^{\prime}.

Unfolding $\gamma=\gamma^{\prime} \cdot h$ will yield the expected $\gamma(q)=\gamma^{\prime}(h(q))$.

Weighted behaviour

- In Set the final coalgebra for $\mathbf{F} X=(X \times O)^{\prime}$ is

$$
\begin{aligned}
& \text { out : } O^{I^{+}} \rightarrow\left(O^{I^{+}} \times O\right)^{\prime} \\
& \text { out }(f)(i)=(\lambda s . f(i: s), f[i])
\end{aligned}
$$

- Functions $f: I^{+} \rightarrow O$ are the behaviours generated by Mealy machines. A weighted behaviour associates a weight in \mathbb{S} to each of them.
- Seed conditions have to be put into the picture as well.

Weighted behaviour

The function $B_{W}: Q \rightarrow \mathbb{S}^{O^{\prime+}}$ which associates to each state in Q of M its weighted behaviour is encoded into a Mats matrix of type $Q \longrightarrow O^{\prime+}$, ie. the F-homomorphism

where

$$
\begin{aligned}
& M_{\nu}=\left[\frac{\alpha_{\nu}}{!}\right] \\
& (i, \lambda s . f(i: s), f[i]) \alpha_{\nu} q
\end{aligned}
$$

Weighted behaviour

What does homomorphism B_{W} mean?

$$
\begin{aligned}
& M_{\nu} \cdot B_{W}=\left(\left(i d \otimes B_{W} \otimes i d\right) \oplus i d\right) \cdot M \\
& \\
& \Leftrightarrow \quad\left[\frac{\alpha_{\nu}}{!}\right] \cdot B_{W}=\left(\left(i d \otimes B_{W} \otimes i d\right) \oplus i d\right) \cdot\left[\frac{\alpha}{\gamma}\right] \\
& \Leftrightarrow \quad\left\{\begin{array}{l}
\left.\frac{\alpha_{\nu}}{!\cdot B_{W}}\right]=\left[\frac{\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha}{\gamma}\right] \\
\Leftrightarrow
\end{array} \begin{array}{c}
\{\text { equality }(12)\}
\end{array}\right. \\
& \quad\left\{\begin{array}{l}
\alpha_{\nu} \cdot B_{W}=\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha \\
!\cdot B_{W}=\gamma
\end{array}\right.
\end{aligned}
$$

Weighted behaviour

$$
!\cdot B_{W}=\gamma
$$

$$
\left.\begin{array}{cc}
& \begin{array}{c}
1\left(!\cdot B_{W}\right) q=1 \gamma q \\
\Leftrightarrow
\end{array} \\
& \{\text { composition; ! and } \gamma \text { are functions }\}
\end{array}\right\}
$$

i.e., the weight of an initial state q is the sum of all weights all behaviours generated from q.

Weighted behaviour

$$
\alpha_{\nu} \cdot B_{W}=\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha
$$

Let's start by unfolding $\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha$:

$$
\begin{aligned}
& (i, f, o)\left(\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha\right) q \\
= & \{\text { matrix composition }\} \\
& \left\langle\sum i^{\prime}, q^{\prime}, o^{\prime}::(i, f, o)\left(i d \otimes B_{W} \otimes i d\right)\left(i^{\prime}, q^{\prime}, o^{\prime}\right)\right\rangle \times\left(i^{\prime}, q^{\prime}, o^{\prime}\right) \alpha q \\
= & \left\{\text { abbreviate }\left(i, q^{\prime}, o\right) \alpha q \text { to } q^{\prime} \leftarrow^{i / o} q\right\} \\
& \left\langle\sum q^{\prime}:: f B_{W} q^{\prime} \times q^{\prime} \gtrless^{i / o} q\right\rangle
\end{aligned}
$$

Weighted behaviour

$$
(i, f, o)\left(\alpha_{\nu} \cdot B_{W}\right) q=\left\langle\sum q^{\prime}:: f B_{W} q^{\prime} \times q^{\prime} \stackrel{i / o}{\longleftarrow} q\right\rangle
$$

$\Leftrightarrow \quad\left\{\right.$ matrix composition; α_{ν} is Boolean $\}$

$$
\begin{aligned}
& \left\langle\sum g:(i, f, o) \alpha_{\nu} g: g B_{W} q\right\rangle \\
= & \left\langle\sum q^{\prime}:: f B_{W} q^{\prime} \times q^{\prime} \leftarrow^{i / o} q\right\rangle \\
\Leftrightarrow \quad & \quad\{\text { one-point rule }\}
\end{aligned}
$$

$$
\left.\begin{array}{c}
\quad(i, o, f) \alpha_{\nu} g \times g B_{W} q=\left\langle\sum q^{\prime}:: f B_{W} q^{\prime} \times q^{\prime} \gtrless^{i / o} q\right\rangle \\
\Leftrightarrow \quad\left\{f=\lambda s . g(i: s), o=g[i] \text { because }(i, o, f) \alpha_{\nu} g\right\} \\
g B_{W} q=\left\langle\sum q^{\prime}::(\lambda s . g(i: s)) B_{W} q^{\prime} \times q^{\prime}<i / g[i]\right. \\
<
\end{array}\right\rangle
$$

Weighted behaviour

Summing up

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\alpha_{\nu} \cdot B_{W}=\left(i d \otimes B_{W} \otimes i d\right) \cdot \alpha \\
!\cdot B_{W}=\gamma
\end{array}\right. \\
\quad\{\text { just computed, going index-wise }\}
\end{array}\right\} \begin{aligned}
& g B_{W} q=\left\langle\sum q^{\prime}::(\lambda s . g(i: s)) B_{W} q^{\prime} \times q^{\prime} \stackrel{i / g[i]}{<} q\right\rangle \\
& \left\langle\sum z:: \text { z } B_{W} q\right\rangle=\gamma(q)
\end{aligned}
$$

In words:

- (seed rule) Each initial state q generates a number of possible behaviours; the sum of their weights equals the weight of q.
- (generation rule) A behaviour ($\lambda s . g(i: s)$) is generated from all states reachable from a state generating g by accepting input i and outputting $g[i]$, accumulating the weights.

Weighted bisimulations in Mats

Strategy

- Start from an equivalence relation K over Q and define the quotient Q / K
- Check whether, whenever states $p, p^{\prime} \in Q$ evolve under the same label to the same equivalence class $[q] \in Q / K$, are related by $p K p^{\prime}$, to conclude they are observational equivalent and K is a bisimulation.
... to be framed in Mats

Weighted bisimulations in Mats

General construction [Oliveira,12]: Equivalence relation K is a bisimulation for a F-machine M iff any surjection h, such that $K=h^{\circ} \cdot h$, is a homomorphism $M / K \longleftarrow{ }^{h} M$:

$$
\left.\begin{array}{cc}
& \text { Fh } \cdot M=(M / K) \cdot h \\
\Leftrightarrow & \{\text { definition of } M / K\} \\
& \mathbf{F} h \cdot M=\mathbf{F} h \cdot M \cdot h^{\bullet} \cdot h \\
\Leftrightarrow & \left\{\text { making } K_{\bullet}=h^{\bullet} \cdot h\right\}
\end{array}\right\}
$$

i.e., FK • W is invariant wrt the "weighted equivalence" K_{\bullet}.

Weighted bisimulations in Mats

For Mealy machines

$$
\mathbf{F} K \cdot M=\mathbf{F} K \cdot M \cdot K_{\bullet}
$$

boils down to the index-wise formulation

$$
\left\langle\forall p, p^{\prime}, q, i, o: p K p^{\prime}:[q]_{K} \stackrel{i / o}{\rightleftarrows} p=[q]_{K} \nLeftarrow p^{i / o}\right\rangle
$$

where

$$
p_{1} K \cdot p_{2}=\left(h\left(p_{1}\right)\right)\left(h \cdot h^{\circ}\right)^{-1}\left(h\left(p_{2}\right)\right)
$$

Diagonal $\left(h \cdot h^{\circ}\right)^{-1}$ represents the weight vector [which] is well known in stochastic modeling [Buchholz 08].

Lessons from this exercise

Much still to be done! - but time already to wrap up with the main points:

- Shift from qualitative to quantitative methods may proceed in two ways:
- Extend original definitions in the same category or
- Stay with original definitions but change the category
- Mats appears to be a suitable choice for calculating with (simple) weighted (probabilistic) automata.

Back to the component calculus

Non deterministic components live in two universes related by an adjunction:

- one is "for calculating"
- the other "for programming" (with the underlying monad)

$$
f=\wedge R \quad \Leftrightarrow \quad\langle\forall b, a \quad: \quad b R a \Leftrightarrow b \in f a\rangle
$$

that is,

Back to the component calculus

In probabilistic components outputs become distributions,

$$
A \rightarrow \mathcal{D} B \backsim \cong \rightarrow_{L S} B
$$

$$
M=\llbracket f \rrbracket \quad \Leftrightarrow \quad\langle\forall b, a \quad:: M(b, a)=(f a) b\rangle
$$

where $\mathcal{D} B$ is the B-distribution monad

$$
\mathcal{D} B=\left\{\mu \in[0,1]^{B} \mid \sum_{b \in B} \mu b=1\right\}
$$

and $L S$ denotes the category of left-stochastic matrices (columns in such matrices add up to 1).

Towards a linear algebra of components

The smooth interplay between functions, relations and matrices provides the ground for

- re-interpreting the component calculus in $L S$ (composition as multiplication)
- introducing faults in both components and their glue: the calculation of their propagation along an architecture comes for free

Towards a linear algebra of components

... but much remains to be done

- coping with both measurable and unmeasurable non-determinism: characterize the adjoint categories required by the various forms in which both appear combined in the literature - see eg. the taxonomy given by [Sokolova 05]
- going ahead of finite support and discrete distributions

Annex

Annex:

computing weighted bisimulation
(details in [Oliveira 12])

Annex

Motivation (with a probabilistic automata)

Q	A	o	1	2	3	4	5
o	a	o	o	o	o	o	o
o	b	o	o	o	o	o	o
1	a	O .3	o	o	o	o	o
1	b	o	o	o	o	o	o
2	a	o .3	o	o	o	o	o
2	b	o	o	o	o	o	o
3	a	O .3	o	o	o	o	o
3	b	o	o	o	o	o	o
4	a	o	o	o	o	o	o
4	b	o	1	o	o	o	o
5	a	o	o	o	o	o	o
5	b	o	o	1	o	o	o

Matrix α is type $Q \times A \longleftarrow Q$, for $Q=\{0, \ldots, 5\}$ and $A=\{a, b\}$.

Annex

Is equivalence relation

		Q					
		0	1	2	3	4	5
Q	0	1	0	0	0	0	0
	1	0	1	1	0	0	0
	2	0	1	1	0	0	0
	3	0	0	0	1	0	0
	4	O	0	O	0	1	1
	5	0	0	0	0	1	1

a bisimulation? It has four classes which can be represented by a quotient automaton using a suitable homomorphism h.

Annex

Candidate surjective

homomorphism

$$
Q^{\prime} \stackrel{h}{\leftarrow} Q:
$$

Annex

Building $M^{\prime}=M / K$ (below we focus on α, α^{\prime} only).

First attempt:
that is

$$
\begin{aligned}
& \alpha^{\prime}=\alpha / K= \\
& (h \otimes i d) \cdot \alpha \cdot h^{\circ}
\end{aligned}
$$

| | Q^{\prime} | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q^{\prime} | A | o | I | II | III |
| o | a | o | o | o | o |
| o | b | o | o | o | o |
| I | a | $2 / 3$ | o | o | o |
| I | b | o | o | o | o |
| II | a | $1 / 3$ | o | o | o |
| II | b | o | o | o | o |
| III | a | o | o | o | o |
| III | b | o | 2 | o | o |

Annex

It doesn't work because, in Mats, h° is not a "true" converse of h : the image $h \cdot h^{\circ} \neq i d$ is a diagonal counting "how much non-injective" h is, cf.
However, surjective
function h has inverses
such as, eg.
$h^{\bullet}=h^{\circ} \cdot\left(h \cdot h^{\circ}\right)^{-1}$, obtained by
straightforward inversion of diagonal $h \cdot h^{\circ}$:

Annex

Second attempt:

$$
M^{\prime}=M / K=
$$

$$
(\mathbf{F} h) \cdot M \cdot h^{\bullet}
$$

that is (aside)

$$
\begin{aligned}
& \alpha^{\prime}=\alpha / K= \\
& (h \otimes i d) \cdot \alpha \cdot h^{\bullet}
\end{aligned}
$$

which leads to automaton

		Q^{\prime}			
Q^{\prime}	A	o	I	II	III
o	a	o	o	o	o
o	b	o	o	o	o
I	a	$2 / 3$	o	o	o
I	b	o	o	o	o
II	a	$1 / 3$	o	o	o
II	b	o	o	o	o
III	a	o	o	o	o
III	b	o	1	o	o

(Clearly, $h^{\bullet} \cdot h=K$ for injective h)

Annex

Definition. Equivalence relation K is a bisimulation for M iff any surjection h, such that $K=h^{\circ} \cdot h$, is a homomorphism $M / K h^{h} M$:

$$
\begin{array}{cc}
& \text { Fh } \cdot M=(M / K) \cdot h \\
\Leftrightarrow & \{\text { definition of } M / K\} \\
& \quad \mathbf{F} h \cdot M=\mathbf{F} h \cdot M \cdot h^{\bullet} \cdot h \\
\Leftrightarrow & \left\{\text { making } K_{\bullet}=h^{\bullet} \cdot h\right\}
\end{array}
$$

Annex

Noting that $\mathbf{F K}$ is an equivalence relation (as K is so and \mathbf{F} is a functor) and unfolding the invariant FK. W, for α :

$$
\begin{aligned}
& (q, a)((K \otimes i d) \cdot \mu) p \\
= & \{\text { composition rule (1) \}}
\end{aligned} \quad\left\langle\sum q^{\prime}, a^{\prime}::(q, a)(K \otimes i d)\left(q^{\prime}, a^{\prime}\right) \times\left(\left(q^{\prime}, a^{\prime}\right) \alpha(p)\right\rangle, \begin{array}{rl}
& \\
= & \text { Kronecker }(1) ; \text { term } K \otimes i d \text { is Boolean }\} \\
& \left\langle\sum q^{\prime}, a^{\prime}::\left(q K q^{\prime}\right) \times\left(a=a^{\prime}\right) \times\left(\left(q^{\prime}, a^{\prime}\right) \alpha(p)\right\rangle\right. \\
= & \left\{\text { let }[q]_{K} \text { denote the equivalence class of } q\right\} \\
& \left\langle\sum q^{\prime}: q^{\prime} \in[q]_{K}: q^{\prime}<^{a} p\right\rangle
\end{array}\right.
$$

Annex

- In words:

$$
\left\langle\sum q^{\prime}: q^{\prime} \in[q]_{K}: \quad q^{\prime} \leftarrow^{a} p\right\rangle
$$

is the accumulated cost (probability) of transitions within the same equivalence class, which is invariant for equivalent initial states

Now turn attention to

$$
(q, a)\left(\mathbf{F} K \cdot \alpha \cdot K_{\bullet}\right) p=\left\langle\sum p^{\prime}::(q, a)(\mathbf{F} K \cdot \alpha) p^{\prime} \times p^{\prime} K_{\bullet} p\right\rangle
$$

The weighted equivalence term is such that

$$
p^{\prime} K_{\bullet} p=\frac{1}{|p|_{K}} p^{\prime} K p
$$

where $|p|_{K}$ is the cardinal of equivalence class $[p]_{K}$.

Annex

Thus

$$
(q, a)\left(\mathbf{F} K \cdot \alpha \cdot K_{0}\right) p=\frac{1}{|p| K}\left\langle\sum p^{\prime}: p^{\prime} \in[p]_{K}:(q, a)(\mathbf{F} K \cdot \alpha) p^{\prime}\right\rangle
$$

whose RHS unfolds into:

$$
\frac{1}{|p|_{K}}\left\langle\sum p^{\prime}: p^{\prime} \in[p]_{\kappa}:\left\langle\sum q^{\prime \prime}: q^{\prime \prime} \in[q]_{\kappa}: q^{\prime \prime}<p^{\prime}\right\rangle\right\rangle
$$

In summary:

$$
\begin{aligned}
& \left\langle\sum q^{\prime}: q^{\prime} \in[q]_{K}: \quad q^{\prime} \longleftarrow a b\right\rangle= \\
& \quad \frac{1}{|p|_{K}}\left\langle\sum p^{\prime}, q^{\prime \prime}: p^{\prime} \in[p]_{K} \wedge q^{\prime \prime} \in[q]_{K}: \quad q^{\prime \prime} \longleftarrow p^{\prime}\right\rangle
\end{aligned}
$$

Annex

The following notation abbreviation will help: for R, S subsets of Q,

$$
S<^{a} R=\left\langle\sum p, q: p \in R \wedge q \in S: q<^{a} p\right\rangle
$$

Then equivalence K is a bisimulation once

$$
[q]_{K}<^{a} p=\frac{1}{|p|_{K}} \times\left([q]_{K}<a b[p]_{K}\right)
$$

holds.

