Model Checking Knowledge-based Programs

Alexander Knapp
Heribert Mhlberger
Universitat Augsburg

Sum and Product

“J says to S and P: | have chosen two integers x and y such that

1 < x <y < 100. In a moment, | will inform S only of s = x + y, and P only of
p = x - y. These announcements remain private. You are required to determine
the pair (x,y). He acts as said. The following conversation now takes place:

1.
2.
3.
4.

P says
S says
P says
S says

: ‘I do not know it.
. ‘'l knew you didn’t’
2 ‘I now know it.

: ‘I now also know it.

Determine the pair (x,y).”

H. Freudenthal (1969)

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs

= 2/23

Epistemic Logic

o, € Lg(P)==p | m¢ | ¢V | Kip
» set of propositions P > p, finite set of agents {1,...,n} >
» K;p read as “agent i knows ¢”

Interpreted over Kripke structure .# = (S, (R;)i<i<n, T)
» set of states S, interpretation of propositions 7 : § — pP
» accessibility relation R; C S x § of possible worlds for each agent i

Satisfaction relation .#,s = ¢
M,sl=p = pemn(s)
M= —p <= not M,s =@
M,sE VY — M,sEporM,s =
M,s = Kip < forallr € Swith (s,7) € Ri: M, t = ¢

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs = = 3/23

Epistemic Logic: Axioms

S5,-logic — all R; equivalence relations

>

>

(Kip A Ki(p — ©)) — Kjip — distribution axiom
Ki¢p — ¢ — knowledge axiom

» “Known facts are true”
> R; reflexive on §

Kip — K;K;¢ — positive introspection axiom
» “If agent i knows ¢, then he knows that he knows ¢”
> R; transitive

-K;p — K;=K;p — negative introspection axiom
» “If agent i does not know ¢, then he knows that he does not know ¢”
> R; Euclidean

—K;false — consistency axiom

» “No agent believes false”
> R; serial

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs = = 4/23

Knowledge in Programs

Programs with knowledge guards
» abstracting from how knowledge is gained

Bit-transmission protocol
> 1f —Kgender recbit then sendbit
> 1f Kgeceiver Dit A =KReceiver Ksender Kreceiver bit then sendack

Sum-and-product
» if step=1AKg(—3a € [2..99].Kpx = a) then step < step + |

Based on R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi (1995)

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs = = 5/23

Knowledge-based Programs

Finite set of propositions P
» determines set of states pP > s

Observability set W C P
> an agent can observe propositions in W
» defines equivalence relation s; ~y s <= forallp e P:p € syiffp € s

Knowledge-based program (7', (W;)i<i<n, ", I) over P
» Transition relation T C pP x P
» Observability set for each agenti € {1,...,n}
» Assignment of knowledge guards vy : T — Lk (P)
> Initial states I C pP

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs = = 6/23

Knowledge-based Programs: Sum-and-Product (1)

specification sum_and_product;

var x, y : 2..99 initial x <= y;
var s : 4..198 initial s = x + y;
var p : 4..9801 initial p = x * y;
var step : 1..6 initial step = 1;
var pl, p2, p3, p4, s2: boolean
initial pl = false & p2 = false & p3 = false &
p4 = false & s2 = false;

agent Prod = { p, step, pl, p2, p3, p4 }i
agent Sum = { s, step, pl, p2, p3, P4, s2 };
guard P_knows_x = (exists a:2..99 . (K[Prod] x = a));
guard P_knows_y = (exists b:2..99 . (K[Prod] y = b));
guard S_knows_x = (exists a:2..99 . (K[Sum] x = a));
guard S_knows_y = (exists b:2..99 . (K[Sum] y = b));
guard S_knows_P_does_not_know_x =

K[Sum] 7 (exists a:2..99 . (K[Prod] x = a));

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs = = 7/23

Knowledge-based Programs: Sum-and-Product (2)

action stepl_S_yes

epre S_knows_P_does_not_know_x
pre step =1

do s2 := true, step := step + 1;

action stepl_S_no

epre ~S_knows_P_does_not_know_x
pre step =1

do s2 := false, step := step + 1;

action step2_P_yes

epre P_knows_x

pre step = 2

do pl := true, step := step + 1;

action step2_P_no

epre “P_knows_x

pre step = 2

do pl := false, step := step + 1;

action step3_S_publish

pre step = 3
do p2 := s2, step := step + 1;

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs

=

8/23

Knowledge-based Programs: Sum-and-Product (3)

action step4_P_yes

epre P_knows_x

pre step = 4

do p3 := true, step := step + 1;

action step4_P_no

epre “P_knows_x

pre step = 4

do p3 := false, step := step + 1;

action step5_S_yes

epre S_knows_x

pre step = 5

do p4 := true, step := step + 1;

action step5_S_no

epre "~ S_knows_x

pre step = 5

do p4 := false, step := step + 1;

action stutter
pre step = 6
do ;

end;

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs

=

9/23

Knowledge-based Programs: Interpretation

Propositions P = {p, qi1,q2}, observability set W; = {p} for agent 1

Ki—(q1 A —q2)] @ [Ki=(—=q1 A q2)]
S1

2 83

» Possible runs depend on evaluation of knowledge guards
» Evaluation of knowledge guards depends on possible runs
» Which states are reachable and therefore possible worlds?

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 10/23

Interpreting Knowledge-based Programs

Knowledge-based program S = (T, (W;)i<i<n,7,I) over P
Interpretation of S w.r.t. possible worlds S C P
Kripke structure .Z (S, S) = (S, (Ri)1<i<n, 7) for S C pP

> Ri:NWiﬂ(SXS)

> w(s) =s
Evaluation of knowledge guards of Sw.r.t. S C pP and s € pP

S,S,s EKip < foralls’ € Swiths ~y, 5 #(S,S),s' = ¢

Reachable states Rs(S) C P of S w.r.t. possible worlds §

» compute reachable states w.r.t. S by evaluating knowledge guards 7 in a
state s with S, S,s =17

Goal: Unique interpretation with Rs(S) = S

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 11/23

Unique Interpretation (1)

Propositions P = {p, qi1,q2}, observability set W; = {p} for agent 1
» abbreviating valuation of propositions by state name

[Ki—s3]

[Ki7s2]

Rs(0) = {s1,52,53,54}

Rs({s1,52,53,54}) = {51,52}

Rs({s1,52}) = {s1,52,54}

Rs({s1,52,54}) = {51,52,54}
Not monotone

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 12/23

Unique Interpretation (2)

Propositions P = {p,qi1,qz}, observability set W; = {p} for agent 1

K ﬁ] ~s2]
S1

52 §3

s(0) = {s1,52,83}
s({s1,52,53}) = {s1}
s({s1}) = {s1,52,53}
Rs({s1,52}) = {s1,5}

Rs({s1,53}) = {s1,s3}
Several fixed points

N AN A

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs

=

13/23

Perfect Synchrony

A system works in perfect synchrony if all reactions of the system are executed
in O-time: all outputs are generated at the same instant of time at which the
inputs are present.

Based on logical time
» computation separated into macro steps for interactions with the system
» each macro step consists of a finite number of micro steps for computing
the reaction, taking O-time
Realised in Esterel (J.-P. Marmorat, J.-P. Rigault, G. Berry 1980s)
» based on signals with status in a macro step: present or absent

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 14/23

Esterel: Example

module P1:
input I; output O;
signal S1, S2 in
present I then emit S1 end

present S1 else emit S2 end
[
present S2 then emit O end
end signal
end module

Logical coherence — A signal s is present in a macro step iff an emit sis
executed in this macro step

Logical correctness — For each signal in each macro step there is a unique
status (present/absent) such that logical coherence is satisfied
» there is at least one program execution: logically reactive

» there is at most one program execution: logically determined

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 15/23

Esterel: Logical Correctness

module P3:
present O else emit O end
end module

» Not logically correct: non-reactive

module P4:
present O then emit O end
end module

» Not logically correct: non-determined

module P8:
present Ol then emit Ol end
[
present Ol then
present 02 else emit 02 end
end
end module

» Logically correct (combines P3 and P4)

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs

=

16/23

Esterel: Constructive Semantics

Analysis what a statement must do and cannot do
» based on a logical operational semantics
» no checking of assumptions of status of signals

Restriction of logical coherence to constructive coherence
» A signal s is present in a macro step iff an emit s must be executed in this
macro step.

» A signal s is absent in a macro step iff an emit s cannot be executed in
this macro step.

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 17/23

Esterel: Must- and Cannot-Analysis

out(P,I) =
E < 1U{s* | s € outdecls(P)}
do
E' < E
C « canj (P,E)
M <+ mustg(P,E)
E« I1U{st |seM}U{s™ |s € outdecls(P)\ C}U {s* | s € C\ M}
while E #£ E’
if 3s. s € E then error(“not constructive”)
return £

» P=enit S; present S then emit O else pause end,
I =10, outdecls(P) = {s,0}

» cang (P, {s*,01}) = {s,0}
» mustg(P, {s+,01}) = {s}
» mustg(P, {st,0t}) = {s,0}

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 18/23

Re-interpreting Knowledge-based Programs

Application of must/cannot-analysis to interpretation of knowledge-based
program S
» Assume two disjoint sets of states:
M — definitely reachable (positive, must) and
N — definitely not reachable (negative, cannot)
» Evaluation of knowledge guards of S w.r.t. (M, N)
Sa (M,N),S):p n
S,(M,N),s =nn
» Compute new pair (M',N') = REN(M,N)
M’ — reachable states using S, (M, N),s =p 1
N’ — complement of reachable states using S, (M, N), s [“n 1
Goal: (unique) interpretation RPN(M, N) = (M, N) such that each state either
isinM or N

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 19/23

Positive-Negative-Semantics

S,(M,N),s =pp <= pEs

S,(M,N),skEnp < pé¢s

S,(M,N),s =p ~¢p <= S,(M,N),s |=n ¢

S,(M,N),s =n ~¢p <= S,(M,N),s |=p ¢

S, (MN),5 op 9V 16 <= S, (M,N),s F=p ¢ 0r S, (M,N), 5 |=p ¥
S,(M,N),s En V1) <= S,(M,N),s=npandS,(M,N),s =, v
S,(M,N),s =p Kip < foralls’ € [s]., with S, (M,N),s' £, p:s' €N
S,(M,N),s =, Kjp < existss’ € PN [s]., suchthatS, (M,N),s' =, ¢

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 20/23

Unique Interpretation with Positive-Negative-Semantics (1)

Propositions P = {p, q1,q2}, observability set W; = {p} for agent 1

852 53 S4

PN
RS

PN
RS

PN
RS

PN
RS

Monotone

0,0) = ({s1,s2},0)

{s1,824,0) = ({s1, 52}, {s3})

{s1, 52}, {s3}) = ({51, 52,54}, {s3})
{s1,52, 84}, {s3}) = ({51, 52,84}, {s3})

o~ o~ o~ o~

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 21/23

Unique Interpretation with Positive-Negative-Semantics (2)

Propositions P = {p,q,qz}, observability set W; = {p} for agent 1

K ﬁ] ~s2]
S1

2 83

RS (0,0) = ({s1},0)
RSN ({513,0) = ({s1},0)

Undecisive fixed point

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 22/23

Conclusions and Future Work

Model checking approach to knowledge-based programs

» extending MCK (P. Gammie, R. van der Meyden 2004), MCMAS
(A. Lomuscio, F. Raimondi 2006), MCTK (X. Luo et al. 2008)

» Alternative: Dynamic Epistemic Logic, DEMO (H. P. van Ditmarsch et al.
2005)

Possible applications
» Security protocols

» Java memory model

A. Knapp, H. Muhlberger: Model Checking Knowledge-based Programs o =3 23/23

