
Model Checking Knowledge-based Programs

Alexander Knapp
Heribert Mühlberger

Universität Augsburg

Sum and Product

“J says to S and P: I have chosen two integers x and y such that
1 < x ≤ y < 100. In a moment, I will inform S only of s = x + y, and P only of
p = x · y. These announcements remain private. You are required to determine
the pair (x, y). He acts as said. The following conversation now takes place:

1. P says: ‘I do not know it.’

2. S says: ‘I knew you didn’t.’

3. P says: ‘I now know it.’

4. S says: ‘I now also know it.’

Determine the pair (x, y).”

H. Freudenthal (1969)

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 2/23

Epistemic Logic

ϕ,ψ ∈ Ln
K(P) ::= p | ¬ϕ | ϕ ∨ ψ | Kiϕ

I set of propositions P 3 p, finite set of agents {1, . . . , n} 3 i
I Kiϕ read as “agent i knows ϕ”

Interpreted over Kripke structure M = (S, (Ri)1≤i≤n, π)

I set of states S, interpretation of propositions π : S→ ℘P
I accessibility relation Ri ⊆ S× S of possible worlds for each agent i

Satisfaction relation M , s |= ϕ

M , s |= p ⇐⇒ p ∈ π(s)
M , s |= ¬ϕ ⇐⇒ not M , s |= ϕ

M , s |= ϕ ∨ ψ ⇐⇒ M , s |= ϕ or M , s |= ψ

M , s |= Kiϕ ⇐⇒ for all t ∈ S with (s, t) ∈ Ri: M , t |= ϕ

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 3/23

Epistemic Logic: Axioms
S5n-logic — all Ri equivalence relations

I (Kiϕ ∧ Ki(ϕ→ ψ))→ Kiψ — distribution axiom

I Kiϕ→ ϕ — knowledge axiom
I “Known facts are true”
I Ri reflexive on S

I Kiϕ→ KiKiϕ — positive introspection axiom
I “If agent i knows ϕ, then he knows that he knows ϕ”
I Ri transitive

I ¬Kiϕ→ Ki¬Kiϕ — negative introspection axiom
I “If agent i does not know ϕ, then he knows that he does not know ϕ”
I Ri Euclidean

I ¬Kifalse — consistency axiom
I “No agent believes false”
I Ri serial

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 4/23

Knowledge in Programs

Programs with knowledge guards

I abstracting from how knowledge is gained

Bit-transmission protocol

I if ¬KSender recbit then sendbit
I if KReceiver bit ∧ ¬KReceiver KSender KReceiver bit then sendack

Sum-and-product

I if step = 1 ∧ KS(¬∃a ∈ [2..99] .KP x = a) then step← step + 1

Based on R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi (1995)

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 5/23

Knowledge-based Programs

Finite set of propositions P
I determines set of states ℘P 3 s

Observability set W ⊆ P
I an agent can observe propositions in W
I defines equivalence relation s1 ∼W s2 ⇐⇒ for all p ∈ P: p ∈ s1 iff p ∈ s2

Knowledge-based program (T, (Wi)1≤i≤n, γ, I) over P
I Transition relation T ⊆ ℘P× ℘P
I Observability set for each agent i ∈ {1, . . . , n}
I Assignment of knowledge guards γ : T → Ln

K(P)
I Initial states I ⊆ ℘P

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 6/23

Knowledge-based Programs: Sum-and-Product (1)

specification sum_and_product;

var x, y : 2..99 initial x <= y;
var s : 4..198 initial s = x + y;
var p : 4..9801 initial p = x * y;
var step : 1..6 initial step = 1;
var p1, p2, p3, p4, s2: boolean

initial p1 = false & p2 = false & p3 = false &
p4 = false & s2 = false;

agent Prod = { p, step, p1, p2, p3, p4 };
agent Sum = { s, step, p1, p2, p3, p4, s2 };

guard P_knows_x = (exists a:2..99 . (K[Prod] x = a));
guard P_knows_y = (exists b:2..99 . (K[Prod] y = b));
guard S_knows_x = (exists a:2..99 . (K[Sum] x = a));
guard S_knows_y = (exists b:2..99 . (K[Sum] y = b));
guard S_knows_P_does_not_know_x =

K[Sum] ˜(exists a:2..99 . (K[Prod] x = a));

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 7/23

Knowledge-based Programs: Sum-and-Product (2)

action step1_S_yes
epre S_knows_P_does_not_know_x
pre step = 1
do s2 := true, step := step + 1;

action step1_S_no
epre ˜S_knows_P_does_not_know_x
pre step = 1
do s2 := false, step := step + 1;

action step2_P_yes
epre P_knows_x
pre step = 2
do p1 := true, step := step + 1;

action step2_P_no
epre ˜P_knows_x
pre step = 2
do p1 := false, step := step + 1;

action step3_S_publish
pre step = 3
do p2 := s2, step := step + 1;

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 8/23

Knowledge-based Programs: Sum-and-Product (3)
action step4_P_yes
epre P_knows_x
pre step = 4
do p3 := true, step := step + 1;

action step4_P_no
epre ˜P_knows_x
pre step = 4
do p3 := false, step := step + 1;

action step5_S_yes
epre S_knows_x
pre step = 5
do p4 := true, step := step + 1;

action step5_S_no
epre ˜S_knows_x
pre step = 5
do p4 := false, step := step + 1;

action stutter
pre step = 6
do ;

end;

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 9/23

Knowledge-based Programs: Interpretation

Propositions P = {p, q1, q2}, observability set W1 = {p} for agent 1

p,¬q1,¬q2

s1

p,¬q1, q2

s2

p, q1,¬q2

s3

[K1¬(q1 ∧ ¬q2)] [K1¬(¬q1 ∧ q2)]

I Possible runs depend on evaluation of knowledge guards
I Evaluation of knowledge guards depends on possible runs

I Which states are reachable and therefore possible worlds?

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 10/23

Interpreting Knowledge-based Programs

Knowledge-based program S = (T, (Wi)1≤i≤n, γ, I) over P

Interpretation of S w.r.t. possible worlds S ⊆ ℘P

Kripke structure M (S, S) = (S, (Ri)1≤i≤n, π) for S ⊆ ℘P
I Ri = ∼Wi ∩ (S× S)
I π(s) = s

Evaluation of knowledge guards of S w.r.t. S ⊆ ℘P and s ∈ ℘P

S, S, s |= Kiϕ ⇐⇒ for all s′ ∈ S with s ∼Wi s′: M (S, S), s′ |= ϕ

Reachable statesRS(S) ⊆ ℘P of S w.r.t. possible worlds S
I compute reachable states w.r.t. S by evaluating knowledge guards η in a

state s with S, S, s |= η

Goal: Unique interpretation withRS(S) = S

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 11/23

Unique Interpretation (1)

Propositions P = {p, q1, q2}, observability set W1 = {p} for agent 1
I abbreviating valuation of propositions by state name

p,¬q1,¬q2

s1

p, q1,¬q2

s2

p,¬q1, q2

s3

p, q1, q2

s4

[K1¬s2]

[K1¬s3]

RS(∅) = {s1, s2, s3, s4}
RS({s1, s2, s3, s4}) = {s1, s2}
RS({s1, s2}) = {s1, s2, s4}
RS({s1, s2, s4}) = {s1, s2, s4}

Not monotone

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 12/23

Unique Interpretation (2)

Propositions P = {p, q1, q2}, observability set W1 = {p} for agent 1

p,¬q1,¬q2

s1

p,¬q1, q2

s2

p, q1,¬q2

s3

[K1¬s3] [K1¬s2]

RS(∅) = {s1, s2, s3}
RS({s1, s2, s3}) = {s1}
RS({s1}) = {s1, s2, s3}

RS({s1, s2}) = {s1, s2}
RS({s1, s3}) = {s1, s3}

Several fixed points

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 13/23

Perfect Synchrony

A system works in perfect synchrony if all reactions of the system are executed
in 0-time: all outputs are generated at the same instant of time at which the
inputs are present.

Based on logical time

I computation separated into macro steps for interactions with the system

I each macro step consists of a finite number of micro steps for computing
the reaction, taking 0-time

Realised in Esterel (J.-P. Marmorat, J.-P. Rigault, G. Berry 1980s)

I based on signals with status in a macro step: present or absent

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 14/23

Esterel: Example

module P1:
input I; output O;
signal S1, S2 in
present I then emit S1 end

||
present S1 else emit S2 end

||
present S2 then emit O end

end signal
end module

Logical coherence — A signal s is present in a macro step iff an emit s is
executed in this macro step

Logical correctness — For each signal in each macro step there is a unique
status (present/absent) such that logical coherence is satisfied

I there is at least one program execution: logically reactive

I there is at most one program execution: logically determined

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 15/23

Esterel: Logical Correctness

module P3:
present O else emit O end

end module

I Not logically correct: non-reactive

module P4:
present O then emit O end

end module

I Not logically correct: non-determined

module P8:
present O1 then emit O1 end

||
present O1 then
present O2 else emit O2 end

end
end module

I Logically correct (combines P3 and P4)

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 16/23

Esterel: Constructive Semantics

Analysis what a statement must do and cannot do

I based on a logical operational semantics

I no checking of assumptions of status of signals

Restriction of logical coherence to constructive coherence

I A signal s is present in a macro step iff an emit s must be executed in this
macro step.

I A signal s is absent in a macro step iff an emit s cannot be executed in
this macro step.

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 17/23

Esterel: Must- and Cannot-Analysis

out(P, I) ≡
E ← I ∪ {s⊥ | s ∈ outdecls(P)}
do

E′ ← E
C← can+S (P,E)
M ← mustS(P,E)
E ← I ∪ {s+ | s ∈ M} ∪ {s− | s ∈ outdecls(P) \ C} ∪ {s⊥ | s ∈ C \M}

while E 6= E′

if ∃s . s⊥ ∈ E then error(“not constructive”)
return E

I P = emit S; present S then emit O else pause end,
I = ∅, outdecls(P) = {S,O}

I can+S (P, {S⊥,O⊥}) = {S,O}
I mustS(P, {S⊥,O⊥}) = {S}
I mustS(P, {S+,O⊥}) = {S,O}

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 18/23

Re-interpreting Knowledge-based Programs

Application of must/cannot-analysis to interpretation of knowledge-based
program S

I Assume two disjoint sets of states:
M — definitely reachable (positive, must) and
N — definitely not reachable (negative, cannot)

I Evaluation of knowledge guards of S w.r.t. (M,N)
S, (M,N), s |=p η
S, (M,N), s |=n η

I Compute new pair (M′,N′) = RPN
S (M,N)

M′ — reachable states using S, (M,N), s |=p η
N′ — complement of reachable states using S, (M,N), s 6|=n η

Goal: (unique) interpretationRPN(M,N) = (M,N) such that each state either
is in M or N

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 19/23

Positive-Negative-Semantics

S, (M,N), s |=p p ⇐⇒ p ∈ s

S, (M,N), s |=n p ⇐⇒ p /∈ s

S, (M,N), s |=p ¬ϕ ⇐⇒ S, (M,N), s |=n ϕ

S, (M,N), s |=n ¬ϕ ⇐⇒ S, (M,N), s |=p ϕ

S, (M,N), s |=p ϕ ∨ ψ ⇐⇒ S, (M,N), s |=p ϕ or S, (M,N), s |=p ψ

S, (M,N), s |=n ϕ ∨ ψ ⇐⇒ S, (M,N), s |=n ϕ and S, (M,N), s |=n ψ

S, (M,N), s |=p Kiϕ ⇐⇒ for all s′ ∈ [s]∼i with S, (M,N), s′ 6|=p ϕ: s′ ∈ N

S, (M,N), s |=n Kiϕ ⇐⇒ exists s′ ∈ P ∩ [s]∼i such that S, (M,N), s′ |=n ϕ

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 20/23

Unique Interpretation with Positive-Negative-Semantics (1)

Propositions P = {p, q1, q2}, observability set W1 = {p} for agent 1

p,¬q1,¬q2

s1

p, q1,¬q2

s2

p,¬q1, q2

s3

p, q1, q2

s4

[K1¬s2]

[K1¬s3]

RPN
S (∅, ∅) = ({s1, s2}, ∅)
RPN

S ({s1, s2}, ∅) = ({s1, s2}, {s3})
RPN

S ({s1, s2}, {s3}) = ({s1, s2, s4}, {s3})
RPN

S ({s1, s2, s4}, {s3}) = ({s1, s2, s4}, {s3})

Monotone

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 21/23

Unique Interpretation with Positive-Negative-Semantics (2)

Propositions P = {p, q1, q2}, observability set W1 = {p} for agent 1

p,¬q1,¬q2

s1

p,¬q1, q2

s2

p, q1,¬q2

s3

[K1¬s3] [K1¬s2]

RPN
S (∅, ∅) = ({s1}, ∅)
RPN

S ({s1}, ∅) = ({s1}, ∅)

Undecisive fixed point

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 22/23

Conclusions and Future Work

Model checking approach to knowledge-based programs

I extending MCK (P. Gammie, R. van der Meyden 2004), MCMAS
(A. Lomuscio, F. Raimondi 2006), MCTK (X. Luo et al. 2008)

I Alternative: Dynamic Epistemic Logic, DEMO (H. P. van Ditmarsch et al.
2005)

Possible applications

I Security protocols

I Java memory model

A. Knapp, H. Mühlberger: Model Checking Knowledge-based Programs 23/23

