Hybrid Ehrenfeucht-Fraïssé Games

Guillermo Badia
The University of Queensland

Daniel Găină Kyushu University

Alexander Knapp

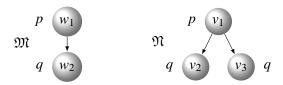
Universität Augsburg

Tomasz Kowalski

Jagiellonian University La Trobe University

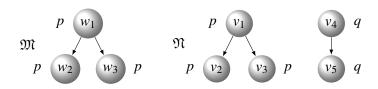
Martin Wirsing
Ludwig-Maximilians-Universität München

Hybrid Propositional Logic (1)



- ▶ $(\mathfrak{M}, w_1) \equiv (\mathfrak{N}, v_1)$ in modal logic with just \Diamond
- For $\phi = \downarrow z_1 \cdot \Diamond \downarrow z_2 \cdot @_{z_1} \Diamond \neg z_2$ in hybrid logic with \Diamond, \downarrow , and @ $(\mathfrak{M}, w_1) \not\models \phi \quad \text{and} \quad (\mathfrak{N}, v_1) \models \phi$

Hybrid Propositional Logic (2)



- ▶ $(\mathfrak{M}, w_1) \equiv (\mathfrak{N}, v_1)$ in hybrid logic with \Diamond , \downarrow , and @
- For $\phi = \exists x \cdot @_x q$ in hybrid logic with @ and \exists $(\mathfrak{M}, w_1) \not\models \phi$ and $(\mathfrak{N}, v_1) \models \phi$

Hybrid Propositional Logic: Signatures and Models

Signatures
$$\Delta = (\Sigma, \texttt{Prop})$$
 with $\Sigma = (F, P)$

- nominals F and relations P
- $ightharpoonup \Delta[x]$ adds x as new nominal
- "usual" signature morphisms $\chi:(\Sigma_1,\mathtt{Prop}_1)\to(\Sigma_2,\mathtt{Prop}_2)$

$\operatorname{\mathsf{Models}} \mathfrak{M} = (W, M) \in \operatorname{\mathsf{Mod}}(\Delta) \text{ over } \Delta = (\Sigma, \operatorname{\mathtt{Prop}})$

- ightharpoonup W first-order structure over Σ
 - interpretations $k^{\mathfrak{M}}$ for nominals and $\lambda^{\mathfrak{M}}$ for relations
- $lackbox{ iny } M: |\mathfrak{M}|
 ightarrow |\mathsf{Mod}^\mathsf{PL}(\texttt{Prop})| ext{ with } |\mathfrak{M}| ext{ universe of } W$
- lacktriangledown reduct $\mathfrak{M}|\chi=(W|\chi,M|\chi)$ along $\chi:(\Sigma_1,\mathtt{Prop}_1) o(\Sigma_2,\mathtt{Prop}_2)$ with
 - $\blacktriangleright W|\chi$ first-order reduct of W
 - $\blacktriangleright \ M|\chi(w)=M(w)|\chi=\{p\in {\rm Prop}_1\mid \chi(p)\in M(w)\}$
- lacktriangleright "usual" proposition-preserving homomorphisms $h:(W_1,M_1) o (W_2,M_2)$

Hybrid Propositional Logic: Sentences

Sentences Sen(
$$\Delta$$
) over $\Delta = ((F,P), \texttt{Prop})$
$$\phi ::= p \mid k \mid \phi \land \phi \mid \neg \phi \mid @_k \phi \mid \langle \lambda \rangle \phi \mid \downarrow x \cdot \phi_x \mid \exists x \cdot \phi_x$$
 p proposition, k nominal, x variable, $\lambda \in P$, $\phi_x \in \text{Sen}(\Delta[x])$ Hybrid language features: retrieve $@$, store \downarrow , quantifier \exists

• "usual" translation $\chi(\phi)$ for $\chi:\Delta_1\to\Delta_2$

Hybrid Propositional Logic: Satisfaction

Satisfaction in a pointed model (\mathfrak{M}, w)

- "usual" satisfaction for p, ∧, ¬
- \blacktriangleright $(\mathfrak{M}, w) \models k \text{ if } w = k^{\mathfrak{M}}$
- \blacktriangleright $(\mathfrak{M}, w) \models @_k \phi \text{ if } (\mathfrak{M}, k^{\mathfrak{M}}) \models \phi$
- \blacktriangleright $(\mathfrak{M},w)\models\langle\lambda\rangle\phi$ if $(\mathfrak{M},v)\models\phi$ for some $v\in\lambda^{\mathfrak{M}}(w)$
 - $\lambda^{\mathfrak{M}}(w) = \{ w' \in |\mathfrak{M}| \mid (w, w') \in \lambda^{\mathfrak{M}} \}$
- \blacktriangleright $(\mathfrak{M}, w) \models \downarrow x \cdot \phi$ if $(\mathfrak{M}^{x \leftarrow w}, w) \models \phi$
 - ▶ $\mathfrak{M}^{x \leftarrow w}$ unique expansion of \mathfrak{M} to $\Delta[x]$ interpreting x as w
- ▶ $(\mathfrak{M}, w) \models \exists x \cdot \phi \text{ if } (\mathfrak{M}^{x \leftarrow v}, w) \models \phi \text{ for some } v \in |\mathfrak{M}|$

Satisfaction condition $(\mathfrak{M}, w) \models \chi(\phi)$ iff $(\mathfrak{M}|\chi, w) \models \phi$ holds.

Elementary Equivalence

$$(\mathfrak{M},w)$$
 and (\mathfrak{N},v) elementarily equivalent, $(\mathfrak{M},w)\equiv (\mathfrak{N},v)$, if $(\mathfrak{M},w)\models \phi \iff (\mathfrak{N},v)\models \phi \quad \text{for all } \phi\in \mathrm{Sen}(\Delta)$

Varies with language fragment \mathcal{L} offering different language features

- ▶ modal logic when discarding @, \downarrow , and \exists
- ▶ quantifier-free fragment only discarding ∃

Goal: Characterising elementary equivalence for different $\mathcal L$ in terms of Ehrenfeucht-Fra $\ddot{}$ ssé games

Related Work

Our goal: Parametric handling of different hybrid language fragments

Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: characterization, interpolation and complexity. J. Symbolic Logic, 2001

hybrid bisimulations, back-and-forth systems

Daniel Kernberger and Martin Lange. On the expressive power of hybrid branching-time logics. Theo. Comp. Sci., 2020

Ehrenfeucht-Fraïssé games for branching time hybrid logics

Samson Abramsky and Dan Marsden. Comonadic semantics for hybrid logic. MFCS 2022.

Ehrenfeucht-Fraïssé comonad

Ehrenfeucht-Fraïssé Games

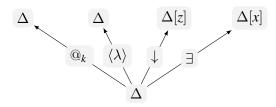
Two-player game between ∃loise and ∀belard

- played on a (complete) gameboard tree tr
 - ▶ nodes: finite signatures ∆
 - edges: (labelled) signature morphisms $\Delta \xrightarrow{lb} \Delta'$
 - lacktriangle possible edge labels depend on language fragment ${\cal L}$
- ▶ game starts with pointed models (\mathfrak{M}, w) and (\mathfrak{N}, v) over $\Delta = root(tr)$
- ▶ ∃loise loses if game property not satisfied

$$(\mathfrak{M},w)\models\phi\iff (\mathfrak{N},v)\models\phi\quad \text{for all basic sentences }\phi\in \mathrm{Sen}_{\mathrm{b}}(\Delta)$$

- ▶ $\mathsf{Sen_b}((F,P), \mathsf{Prop})$: nominal $k \in F$, proposition $p \in \mathsf{Prop}$
- ▶ if game property holds, \forall belard can move (\mathfrak{M}, w) or (\mathfrak{N}, v) along one of the outgoing edges of tr, \exists loise has to answer

Gameboard Trees



retrieve for nominal $k\colon \Delta \xrightarrow{@_k} \Delta$ identity (signature morphism) possibility for relation $\lambda\colon \Delta \xrightarrow{\langle \lambda \rangle} \Delta$ identity store for variable $z\colon \Delta \xrightarrow{\exists} \Delta[z]$ inclusion exists for variable $x\colon \Delta \xrightarrow{\exists} \Delta[x]$ inclusion

Moves on a Gameboard Tree (1)

Retrieve

$$\frac{(\mathfrak{M},w)}{(\mathfrak{N},v)}\Delta - - - \mathbb{Q}_k \longrightarrow \Delta \frac{(\mathfrak{M},k^{\mathfrak{M}})}{(\mathfrak{N},k^{\mathfrak{M}})}$$

Possibility for $w \lambda^{\mathfrak{M}} w_1$ answered by $v \lambda^{\mathfrak{N}} v_1$

$$\frac{(\mathfrak{M}, w)}{(\mathfrak{N}, v)} \Delta \longrightarrow \Delta \xrightarrow{(\mathfrak{M}, w_1)} \Delta$$

Moves on a Gameboard Tree (2)

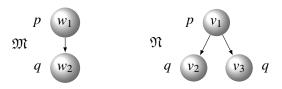
Store

$$\frac{(\mathfrak{M},w)}{(\mathfrak{N},v)}\Delta \longrightarrow \Delta[z] \frac{(\mathfrak{M}^{z\leftarrow w},w)}{(\mathfrak{M}^{z\leftarrow v},v)}$$

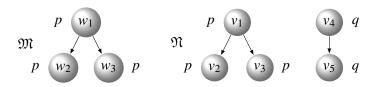
Exists

$$\frac{(\mathfrak{M},w)}{(\mathfrak{N},v)}\Delta \longrightarrow \exists \longrightarrow \Delta[x] \frac{(\mathfrak{M}^{x\leftarrow w_1},w)}{(\mathfrak{N}^{x\leftarrow v_1},v)}$$

Game Examples (1)



Game Examples (2)



Fraïssé-Hintikka Theorem

Theorem Let Δ be a finite signature.

- 1. For all (\mathfrak{M}, w) over Δ and all gameboard trees tr with $root(tr) = \Delta$, there exists a unique game sentence $\varphi \in \Theta_{tr}$ such that $(\mathfrak{M}, w) \models \varphi$.
- 2. For all (\mathfrak{M}, w) and (\mathfrak{N}, v) over Δ and all gameboard trees tr with $root(tr) = \Delta$, the following are equivalent:
 - (i) \exists loise has a winning strategy on tr starting with (\mathfrak{M}, w) and (\mathfrak{N}, v) .
 - \triangleright $(\mathfrak{M}, w) \approx_{tr} (\mathfrak{N}, v)$
 - (ii) There is a unique $\varphi \in \Theta_{tr}$ with $(\mathfrak{M}, w) \models \varphi$ and $(\mathfrak{N}, v) \models \varphi$.
- 3. If $\mathcal L$ is closed under store, then for each sentence ϕ over Δ , there exists a gameboard tree tr with $root(tr) = \Delta$ and a $\Psi_{\phi} \subseteq \Theta_{tr}$ such that $\phi \leftrightarrow \bigvee \Psi_{\phi}$ is a tautology.

Game Sentences (1)

Games sentences Θ_{tr} of gameboard tree tr

For $tr = \Delta$:

$$\Theta_{\Delta} = \{ \bigwedge_{\rho \in \mathsf{Sen}_{\mathsf{b}}(\Delta)} \rho^{f(\rho)} \mid f : \mathsf{Sen}_{\mathsf{b}}(\Delta) \to \{0,1\} \}$$

 $\qquad \qquad \rho^0 = \rho \text{ and } \rho^1 = \neg \rho$

For $tr = \Delta(\xrightarrow{lb_1} tr_1 \dots \xrightarrow{lb_n} tr_n)$: Define $S_i \subseteq \mathcal{P}(\Theta_{tr_i})$ and for each $\Gamma \in S_i$ a sentence φ_{Γ} over Δ ; set of game sentences over tr is

$$\Theta_{tr} = \{ \varphi_{\Gamma_1} \wedge \cdots \wedge \varphi_{\Gamma_n} \mid \Gamma_1 \in S_1, \dots, \Gamma_n \in S_n \}$$

Game Sentences (2)

$$\Delta \xrightarrow{@_k} \Delta S_i = \{\{\phi\} \mid \phi \in \Theta_{tr_i}\}$$

$$\varphi_{\Gamma} = @_k \gamma \text{ for } \Gamma = \{\gamma\} \in S_i$$

$$\Delta \xrightarrow{\langle \lambda \rangle} \Delta S_i = \mathcal{P}(\Theta_{tr_i})$$

$$\varphi_{\Gamma} = (\bigwedge_{\gamma \in \Gamma} \langle \lambda \rangle \gamma) \wedge ([\lambda] \bigvee \Gamma)$$

$$\Delta \xrightarrow{\downarrow} \Delta[z] S_i = \{\{\phi\} \mid \phi \in \Theta_{tr_i}\}$$

$$\varphi_{\Gamma} = \downarrow z \cdot \gamma \text{ for } \Gamma = \{\gamma\} \in S_i$$

$$\Delta \xrightarrow{\exists} \Delta[x] S_i = \mathcal{P}(\Theta_{tr_i})$$

$$\varphi_{\Gamma} = (\bigwedge_{\gamma \in \Gamma} \exists x \cdot \gamma) \wedge (\forall x \cdot \bigvee \Gamma)$$

Game Characterisation of Elementary Equivalence

- Gameboard tree construction plays rôle of quantifier rank in first-order logic.
- If L is closed under possibility, there is no normal form of sentences with first quantifiers, then store, retrieve and Boolean connectives.
 - ► closure under ↓ can be replaced by adding identity possibility

Corollary Assume that $\mathcal L$ is closed under store. For $\mathfrak M$ and $\mathfrak N$ over a finite signature Δ the following are equivalent:

- 1. $(\mathfrak{M}, w) \equiv (\mathfrak{N}, v)$
- 2. \exists loise has a winning strategy for the Ehrenfeucht-Fraïssé game starting with (\mathfrak{M}, w) and (\mathfrak{N}, v) .
 - ▶ $(\mathfrak{M}, w) \approx_{tr} (\mathfrak{N}, v)$ for all finite gameboard trees tr

Infinite Ehrenfeucht-Fraïssé Games

Gameboard trees of countably infinite height

- ▶ ∃loise loses if game property gets violated
- ▶ ∃loise wins if she can always match any of ∀belard's moves

$$(\mathfrak{M}, w) \approx_{\omega} (\mathfrak{N}, v)$$

▶ ∃loise has a winning strategy for all gameboard trees of countably infinite height starting with (\mathfrak{M}, w) and (\mathfrak{N}, v)

Goal: Equivalent characterisation of different $\mathcal L$ in terms of infinite Ehrenfeucht-Fra $\ddot{}$ ssé games and back-and-forth systems

Back-and-forth Systems

Basic partial isomorphism $h:\mathfrak{M} o\mathfrak{N}$ bijection between a subset of $|\mathfrak{M}|$ and a subset of $|\mathfrak{N}|$ such that

$$(\mathfrak{M},w)\models\rho$$
 iff $(\mathfrak{N},h(w))\models\rho$ for all $w\in\mathrm{dom}(h),\,\rho\in\mathrm{Sen_b}(\Delta)$

Back-and-forth system between $\mathfrak M$ and $\mathfrak N$ over $\Delta=((F,P), \texttt{Prop})$ non-empty family $\mathcal F$ of basic partial isomorphisms $\mathfrak M \nrightarrow \mathfrak N$ satisfying back and forth extension properties depending on the hybrid language features

- @-extension
- ⟨λ⟩-extension
- ∃-extension

Back-and-forth Systems: Extensions

@-extension

▶ for all $h \in \mathcal{F}$ and $k \in F$, there exists $g \in \mathcal{F}$ with $h \subseteq g$ and $k^{\mathfrak{M}} \in \text{dom}(g)$

$\langle \lambda \rangle$ -extension for $\lambda \in P$

- "forth": for all $h \in \mathcal{F}$, $w_1 \in \text{dom}(h)$, and $w_2 \in |\mathfrak{M}|$ with $w_1 \lambda^{\mathfrak{M}} w_2$, there exists $g \in \mathcal{F}$ with $h \subseteq g$, $w_2 \in \text{dom}(g)$, and $g(w_1) \lambda^{\mathfrak{N}} g(w_2)$;
- "back": analogous

∃-extension

- ▶ "forth": for all $h \in \mathcal{F}$ and $w \in |\mathfrak{M}|$, there exists $g \in \mathcal{F}$ with $h \subseteq g$ and $w \in \text{dom}(g)$;
- "back": analogous

Back-and-forth Systems vs. Partial Isomorphisms

Back-and-forth equivalence

- lacktriangledown $\mathfrak{M}\equiv_{\mathcal{F}}\mathfrak{N}$ if \mathcal{F} back-and-forth system between \mathfrak{M} and \mathfrak{N}
- lacksquare $(\mathfrak{M},w)\equiv_{\mathcal{F}}(\mathfrak{N},v)$ if $\mathfrak{M}\equiv_{\mathcal{F}}\mathfrak{N}$ such that h(w)=v for some $h\in\mathcal{F}$

Partial isomorphism $h: \mathfrak{M} \to \mathfrak{N}$ basic partial isomorphism with

$$w_1 \ \lambda^{\mathfrak{M}} \ w_2 \ \text{iff} \ h(w_1) \ \lambda^{\mathfrak{N}} \ h(w_2) \quad \text{for all } \lambda \in P, w_1, w_2 \in \text{dom}(h)$$

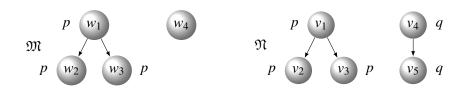
Lemma Any basic partial isomorphism belonging to a back-and-forth system closed under possibility-extensions is a partial isomorphism.

Back-and-forth Systems vs. Ehrenfeucht-Fraïssé Games

Theorem Assume that $\mathcal L$ is closed under store and that $\mathcal L$ is closed under retrieve if it is closed under existential quantifiers. For $\mathfrak M$ and $\mathfrak N$ over a finite signature Δ the following are equivalent:

- 1. $(\mathfrak{M}, w) \approx_{\omega} (\mathfrak{N}, v)$
 - ▶ ∃loise has a winning strategy for the countably infinite Ehrenfeucht-Fraïssé game starting with (\mathfrak{M}, w) and (\mathfrak{N}, v) .
- 2. $(\mathfrak{M}, w) \equiv_{\mathcal{F}} (\mathfrak{N}, v)$
 - ▶ There is a back-and-forth system \mathcal{F} between \mathfrak{M} and \mathfrak{N} which contains a basic partial isomorphism sending w to v.

Back-and-forth Systems vs. Ehrenfeucht-Fraïssé Games: Example



For \mathcal{L} without nominals and @, but containing \exists :

$$(\mathfrak{M}, w_1) \approx_{\omega} (\mathfrak{N}, v_1)$$
 and $(\mathfrak{M}, w_1) \not\equiv_{\mathcal{F}} (\mathfrak{N}, v_1)$

▶ non-reachable states cannot be compared, but there is no "forth" \exists -extension for w_4

From Back-and-forth to Ehrenfeucht-Fraïssé

Lemma Let $\mathfrak{M} \equiv_{\mathcal{F}} \mathfrak{N}$ and $w_1, \ldots, w_n, w_{n+1} \in |\mathfrak{M}|$ and $v_1, \ldots, v_n, v_{n+1} \in |\mathfrak{N}|$ with some $h \in \mathcal{F}$ such that $h(w_i) = v_i$ for all $i \in \{1, \ldots, n+1\}$. Then $\mathfrak{M}^{z_1, \ldots, z_n \leftarrow w_1, \ldots, w_n} \equiv_{\mathcal{F}'} \mathfrak{N}^{z_1, \ldots, z_n \leftarrow v_1, \ldots, v_n}$ for some back-and-forth system \mathcal{F}' .

Given that $(\mathfrak{M},w)\equiv_{\mathcal{F}}(\mathfrak{N},v)$ with $h\in\mathcal{F}$ such that h(w)=v, construct winning strategy for \exists loise along back-and-forth equivalent pairs of pointed models using the extension properties, e. g.

From Ehrenfeucht-Fraïssé to Back-and-forth (1)

For n>0, let $w_1,\ldots,w_n\in |\mathfrak{M}|,\,v_1,\ldots,v_n\in |\mathfrak{N}|$ s.t. $(\mathfrak{M}^{z_1,\ldots,z_i\leftarrow w_1,\ldots,w_i},w_{i+1})\approx_{\omega}(\mathfrak{N}^{z_1,\ldots,z_i\leftarrow v_1,\ldots,v_i},v_{i+1})$ for all $1\leq i\leq n-1$.

- For new variable z_n , move along $\Delta[z_1,\ldots,z_{i-1}] \xrightarrow{\downarrow} \Delta[z_1,\ldots,z_{i-1},z_i]$ yields $(\mathfrak{M}^{z_1,\ldots,z_i\leftarrow w_1,\ldots,w_i},w_i) \approx_{\omega} (\mathfrak{N}^{z_1,\ldots,z_i\leftarrow v_1,\ldots,v_i},v_i)$ for all $1\leq i\leq n$.
- ▶ Then $h: \mathfrak{M} \nrightarrow \mathfrak{N}$ with $h(w_i) = v_i$ for all $1 \le i \le n$:
 - Injectivity: $w_i = w_j$ iff $(\mathfrak{M}^{z_1, \dots, z_j \leftarrow w_1, \dots, w_j}, w_j) \models z_i$ iff $(\mathfrak{N}^{z_1, \dots, z_j \leftarrow v_1, \dots, v_j}, v_j) \models z_i$ iff $v_i = v_j$.
 - Satisfaction of basic sentences: satisfaction condition

From Ehrenfeucht-Fraïssé to Back-and-forth (2)

▶ h can be extended to another basic partial isomorphism $h \cup \{w \mapsto v\}$ according to back-and-forth extensions such that $(\mathfrak{M}^{z_1,\dots,z_n\leftarrow w_1,\dots,w_n},w)\approx_{\omega}(\mathfrak{N}^{z_1,\dots,z_n\leftarrow v_1,\dots,v_n},v)$, e.g.,

 $\langle \lambda \rangle$ -extension Let $w_n \lambda^{\mathfrak{M}} w$ hold. Consider move along

$$\Delta[z_1,\ldots,z_n] \xrightarrow{\langle \lambda \rangle} \Delta[z_1,\ldots,z_n] \text{ s. t.} (\mathfrak{M}^{z_1,\ldots,z_n\leftarrow w_1,\ldots,w_n},w) \approx_{\omega} (\mathfrak{M}^{z_1,\ldots,z_n\leftarrow v_1,\ldots,v_n},v).$$

Then $h \cup \{w \mapsto v\} : \mathfrak{M} \nrightarrow \mathfrak{N}$ by checking injectivity and satisfaction of basic sentences.

Given that $(\mathfrak{M}, w_1) \approx_{\omega} (\mathfrak{N}, v_1)$, start with basic partial isomorphism $h: \mathfrak{M} \nrightarrow \mathfrak{N}$ with $h(w_1) = v_1$ and extend it an arbitrary number of times.

Reachable and Image-finite Models (1)

 \mathfrak{M} reachable if all states reachable

• $w \in |\mathfrak{M}|$ reachable if $w \in (\bigcup_{\lambda \in P} \lambda^{\mathfrak{M}})^*(k^{\mathfrak{M}})$ for some nominal k

 \mathfrak{M} image-finite if $\lambda^{\mathfrak{M}}(w)$ finite for each $w \in |\mathfrak{M}|$ and all $\lambda \in P$

Lemma Let \mathfrak{M} and \mathfrak{N} be image-finite over Δ such that $(\mathfrak{M}, w) \equiv (\mathfrak{N}, v)$ for some $w \in |\mathfrak{M}|$, $v \in |\mathfrak{N}|$. Then:

- 1. w and v have the same number of λ -successors, for all λ in Δ .
- 2. For all λ in Δ and all $w_1 \in |\mathfrak{M}|$ with $w \lambda^{\mathfrak{M}} w_1$ there exists a $v_1 \in |\mathfrak{N}|$ with $v \lambda^{\mathfrak{M}} v_1$ and $(\mathfrak{M}, w_1) \equiv (\mathfrak{N}, v_1)$.

Reachable and Image-finite Models (2)

Consider quantifier-free fragment

Theorem Let $\mathfrak M$ and $\mathfrak N$ be reachable over the finite signature Δ with at least one nominal.

- 1. If \mathfrak{M} and \mathfrak{N} are countable and $\mathfrak{M} \equiv_{\mathcal{F}} \mathfrak{N}$, then $\mathfrak{M} \cong \mathfrak{N}$.
- 2. If \mathfrak{M} and \mathfrak{N} are image-finite and $(\mathfrak{M}, k^{\mathfrak{M}}) \equiv (\mathfrak{N}, k^{\mathfrak{N}})$ for all nominals k, then $\mathfrak{M} \equiv_{\mathcal{F}} \mathfrak{N}$ for some back-and-forth system \mathcal{F} .

Proof idea

- 1. Consider enumeration of states along possibilities and nominals; construct ascending chain of partial isomorphims.
- 2. Show that \exists loise has a winning strategy in any Ehrenfeucht-Fraı̈ssé game starting from some nominal: \exists loise has a winning strategy when starting in $(\mathfrak{M},w)\equiv (\mathfrak{N},v)$ by previous lemma.

Reachable and Image-finite Models (3)

Consider quantifier-free fragment

Corollary Let $\mathfrak M$ and $\mathfrak N$ be reachable and image-finite over the finite signature Δ with at least one nominal. If $(\mathfrak M,k^{\mathfrak M})\equiv (\mathfrak N,k^{\mathfrak N})$ for all nominals k, then $\mathfrak M\cong \mathfrak N$.

- image-finiteness necessary, like in modal logic
- also applicable to rooted models (without nominals)

Conclusions and Future Work

Ehrenfeucht-Fraïssé games for hybrid propositiona logic

- parametric in the language features using gameboard trees
- finite and countably infinite versions
- characterisation of elementary equivalence and back-and-forth systems

Connection to bisimulations

▶ G. Badia, D. Găină, A. K., T. Kowalski, M. Wirsing. A Modular Bisimulation Characterisation for Fragments of Hybrid Logic. Submitted, 2024.

