Component Interfaces with Contracts on Ports: Meta-Theory and Instantiation

Rolf Hennicker

Ludwig-Maximilians-Universität München, Germany

Joint work with Sebastian Bauer, Axel Legay

- Context: Specification of reactive software components. They interact with their environment and have a significant dynamic behavior depending on states.
- Interface specifications are important for both, the correct usage and the correct implementation of a component. They provide a "black box" view of a component.
- Crucial aspects:
 - *Refinement* of interface specifications (to obtain a correct implementation!)
 - *Compatibility* of interfaces of interacting components (to avoid communication errors!)
 - Composition of interface specifications (to construct larger systems from smaller ones!)

Requirement 1: Preservation of Compatibility by Refinement

Requirement 2: Preservation of Refinement by Composition

Definition (inspired by De Alfaro, Henzinger)

An interface theory is a tuple $(\mathfrak{S}, \leq, \leftrightarrows, \otimes)$ consisting of

- a class S of interface specifications
- a reflexive and transitive refinement relation $\leq \subseteq \mathfrak{S} \times \mathfrak{S}$
- a symmetric **compatibility relation** $\leftrightarrows \subseteq \mathfrak{S} \times \mathfrak{S}$

• a partial, commutative composition operator $\otimes:\mathfrak{S}\times\mathfrak{S}\to\mathfrak{S}$ satisfying

- Preservation of compatibility
- Oppositionality of refinement

Example: Modal I/O-Transition Systems (MIOs) [Larsen, Nyman, Wasowski 2007]

"must \otimes must = must"

Weak Modal Refinement [Hüttel, Larsen 1989]

- If all transitions are "may", then \leq is weak trace inclusion.
- If all transitions are "must", then \leq is weak bisimulation.

Weakly compatible MIOs:

Incompatible MIOs:

Theorem: MIOs with weak modal refinement, weak compatibility and synchronous composition form an interface theory.

Interface Theories provide

• a nice abstract framework focusing on rudimentary requirements for component-based design.

But

• there is a lack of structure; they do not provide any mechanism to identify communication points.

Interface specification (no structure)

Idea: Any interface specification should be equipped with a set of labels (representing visible actions).

Definition

- A labeled interface theory is a tuple $(\mathfrak{S}, \leq, \leftrightarrows, \otimes, \mathcal{L}, \ell)$ consisting of
 - an interface theory $(\mathfrak{S},\leq,\leftrightarrows,\otimes)$,
 - a set *L* of labels,
 - a function $\ell:\mathfrak{S} o\wp_{\mathrm{fin}}(\mathcal{L})$ assigning a finite set of labels, such that
 - if $\ell(S) \cap \ell(T) = \emptyset$, then $S \otimes T$ is defined,
 - If $S \otimes T$ is defined, then $\ell(S \otimes T) = (\ell(S) \cup \ell(T)) \setminus (\ell(S) \cap \ell(T))$,
 - ...

From Labeled Interfaces to Component Interfaces

(1) Interface specification with labels

(2) Interface specification with ports

We want more: Behavior specifications on ports!

From Labeled Interfaces to Component Interfaces

(3) Interface specification with port specifications (protocols)

Problem: Obligations for user and implementor often mixed up!

(4) Interface specification with port contracts

Semantic Requirements

Compatibility on ports:

Each port contract should have compatible assumptions and guarantees, i.e.

 $A1 \leftrightarrows G1$ and $A2 \leftrightarrows G2$.

2 Reliability:

The frame specification F should satisfy each guarantee (on a port) under the given assumptions (on the other ports), i.e.

```
A1 \otimes F \leq G2 and A2 \otimes F \leq G1.
```

Port Contracts and Component Interfaces (formally)

Given a labeled interface theory ($\mathfrak{S}, \leq, \leq, \otimes, \mathcal{L}, \ell$).

Definition

A port contract is a pair (A, G) with $A, G \in \mathfrak{S}$ such that $\ell(A) = \ell(G)$ and $G \leftrightarrows A$.

Definition

A component interface is a pair $C = (F, \{P_1, \dots, P_n\})$ such that

• $F \in \mathfrak{S}$ is an interface specification, called *component frame*,

• $\{P_1, \ldots, P_n\}$ is a set of port contracts $P_i = (A_i, G_i)$.

such that:

- $\ell(P_i) \cap \ell(P_j) = \emptyset$ for all $i \neq j$,
- 8 Reliability on each port.

Example: Broker with Port Contracts

Refinement of Component Interfaces

Notation: $C' \sqsubseteq C$

Compatibility of Component Interfaces

Notation: $C \Leftrightarrow C'$

Facts: If $C \stackrel{\text{\tiny def}}{\longrightarrow} C'$ then

• $G2 \leftrightarrows G1'$,

• if $E1 \le A1$, $A1 \otimes I \le A1 \otimes F$ and $E2' \le A2'$, $A2' \otimes I' \le A2' \otimes I'$, then $E1 \otimes I \leftrightarrows E2' \otimes I'$.

Composition of Compatible Component Interfaces

Fact: Composition preserves reliability! $(A1 \otimes F \otimes F') \leq G2'$ and $(A2' \otimes F' \otimes F) \leq G1$.

- Preservation of component compatibility:
 if C ≝ D, C' ⊑ C and D' ⊑ D then C' ≝ D'.
- Compositionality of component refinement: if $C' \sqsubseteq C$ and $D' \sqsubseteq D$ then $C' \boxtimes D' \sqsubseteq C \boxtimes D$.

Theorem:

Let $LTh = (\mathfrak{S}, \leq, \leftrightarrows, \otimes, \mathcal{L}, \ell)$ be an arbitrary labeled interface theory. The class of component interfaces over LTh is itself an interface theory with \sqsubseteq , $\stackrel{\text{\tiny (m)}}{\Longrightarrow}$ and \boxtimes .

Example: Broker and Client Components

Example: Broker and Client Component Interfaces

Example: Composition of Broker and Client Interfaces

Adaptation of Component Interfaces

Initial situation:

Final situation:

Task: Find assumption \bar{A}_1^B such that $\bar{A}_1^B \leftrightarrows G^C \otimes F^B$ and $\bar{A}_1^B \otimes F^B \leq A^C$!

Rolf Hennicker (LMU)

Adaptation: Example

Initial situation:

Adaptation: Example continued

Final situation:

- Interface theories are a nice abstract framework but they lack structure for proper component-based design.
- Just by introducing labels for interfaces one can do a lot more.
- One can construct a generic, contract-based framework for component interfaces with ports *on top of any labeled interface theory*.
- The framework provides design and adaptation guidelines.
- Instantiation by modal I/O-transition systems.
- Further instantiations should be studied,
 e.g. integrating data constraints, asnychronous communication, ...
- Tool support: MIO-Workbench [Bauer, Mayer et al. 2010].