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Motivation

� Bisimulation: To prove that x and y are bisimilar, it suffices to show 
that x and y are related by a relation which is a bisimulation.

� Bisimulation-up-to: To prove that x and y are bisimilar, it suffices to 
show that x and y are related by a relation which is almost a 
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show that x and y are related by a relation which is almost a 
bisimulation.

� Bisimulation up to bisimilarity Modular proofs 

� Bisimulation up to equivalence Smaller proofs

� Bisimulation up to congruence Equational reasoning

� Several combinations of the above

� Coalgebra: Several notions of bisimilarity



Historical motivation

� 1983: Robin Milner              Bisimulation up to bisimilarity for labelled

transition systems

� 1998-2007: Sangiorgi, Pous Several enhancements of the bisimulation

proof method for labelled transition systems
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� 1999: Marina Lenisa Coalgebraic bisimulation up to: some results,

some problems

� 2004: Falk Bartels Bisimulation up to contextual closure.

� 2013: Bonchi, Pous Bisimulation up to congruence for DFA



From bisimulation …

F-bisimulation R ⊆ X x X
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δ
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FX

δ

FXFR
Fπ2Fπ1

δ

Bisimilarity ∼∼∼∼ is the largest bisimulation



Example: deterministic automata 

F = 2 x idA <o,t>: X → 2 x XA

o(x) = 1  iff x is accepting

xa = t(x)(a)  
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F-bisimulation: R ⊆ X x X such that

(x,y) ∈ R     implies    o(x) = o(y)    and    ∀a. (xa,ya) ∈ R



Example: deterministic automata 
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Example: deterministic automata 

R = { (x,u) } ?
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Example: deterministic automata 

R = { (x,u),(y,v),(y,w) } ?
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Example: deterministic automata 

R = { (x,u),(y,v),(y,w),(z,w),(z,v) }
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… to progression …

� R progress to S R,S ⊆ X x X

X
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… to bisimulation-up-to

� F-bisimulation up to f R ⊆ X x X
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f:P(X x X) → P(X x X)

� F-bisimulation up to identity is just F-bisimulation!



Example: deterministic automata 

Let S ⊆ X x X be a set of assumptions

Bisimulation up to union with S: R ⊆ X x X such that

(x,y) ∈ R     implies    o(x) = o(y)    and    ∀a. (xa,ya) ∈ R ∪ S
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R = {(x,u)}  is

not a bisimulation! 
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Example: deterministic automata 

Let S ⊆ X x X be a set of assumptions

Bisimulation up to union with S: R ⊆ X x X such that

(x,y) ∈ R     implies    o(x) = o(y)    and    ∀a. (xa,ya) ∈ R ∪ S
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R = {(x,u)}  is a bisimulation 
up to union with S = {(u,y)}

… but not a bisimulation! 

ux
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a

a

y



Soundness

� A bisimilation up to f is sound for a coalgebra (X, δ) if  R ⊆ ∼δ for 
all R that progress to f(R).

X XR
π2π1
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Bisimulation up to union

If S ⊆ ∼ then bisimulation up to union with S is sound
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i.e. if our assumptions in S are true than what we 

can prove using those assumptions is also true.



Bisimulation up to equivalence

f(R) = e(R) equivalence closure of R

R = { (x,u),(y,v),(z,w),(z,v) }

(y,w) ∈ e(R)
b
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x
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u
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Bisimulation up to union & equivalence

f(R) = e(R ∪ S) equivalence closure of R ∪ S   

Bisimulation up to union with ∼ and equivalence generalizes

bisimulation up to bisimilarity:
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bisimulation up to bisimilarity:

∼ ° R ° ∼ ⊆ equivalence closure of (R ∪ ∼)

It allows shorter and modular proofs



Bisimulation up to context

� F:Set → Set T:Set → Set  monad

� The contextual closure of R ⊆ X x X for a T-algebra α:TX → X 
is cα(R) = <α ° Tπ , α ° Tπ >(TR)
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is cα(R) = <α ° Tπ1, α ° Tπ2>(TR)

t1 cα(R) t2 if and only if we can obtain one from the other by 

substituting variables related by R.

s R t                           si R ti for all i

s c(R) t                op(s1,…,sn) c(R) op(t1,…,tn) 



Bisimulation up to context

Bisimulation up to contextual closure is sound for λ-
bialgebras where λ is a distributive law of a monad T over
a functor F. [Bartels 2004]
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a functor F. [Bartels 2004]

But bisimulation up to contextual closure becomes interesting only in 
the final coalgebra or in combination with up-to-bisimilarity or up-to 
equivalence!



Example: Languages

� FX = = 2 x idA

� Algebra Union, concatenation, Kleene star
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� Coalgebra o(L) = 1 iff ε∈L La= { w | aw ∈L }



Example: Arden’s theorem

� Theorem: If L = K ⋅ L ∪ M and ε∉K then L = K*⋅M.

Proof: It is enough to prove that R = { (L,K*⋅M) } is a 
bisimulation up to context. Clearly o(L) = o(K*⋅M). Further, 
for every a ∈ A:

L = (K⋅L ∪ M)
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La = (K⋅L ∪ M)a

= (K⋅L)a ∪ Ma [ because (X ∪ Y)a = (X)a ∪ (Y)a ]

= Ka⋅L ∪ Ma [ because (X⋅ Y)a = Xa ⋅ Y   if ε∉X ] 

c(R) Ka⋅K*⋅M ∪ Ma [ coinduction ]

= (K*)a⋅M ∪ Ma [ because (X*)a = Xa ⋅ X* ]

= (K*⋅M)a [ because (X⋅ Y)a = Xa ⋅ Y ∪ Ya if ε∈X ]



Another example: streams

� FX = R x X TX =    t ::=x | r | -t | t ⊕ t | t ⊗ t | t-1

� Bialgebras TTX → TX → FTX

� Behavioral differential equations (i.e. distributive law)
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� Behavioral differential equations (i.e. distributive law)

o(r) = r (r)’ = 0

o(σ1⊕σ2) = o(σ1) + o(σ2) (σ1⊕σ2)’ = σ1’⊕σ2’  

o(-σ) = - o(σ) (-σ)’ = - σ’ 

o(σ1⊗σ2) = o(σ1)⋅o(σ2) (σ1⊗σ2)’ = (σ1’⊗σ2) ⊕ (σ1⊗σ2’) 

o(σ -1) = o(σ) -1 (σ -1)’ = -σ’⊗(σ -1⊗σ -1) 



Bisimulation up to union,context & equivalence

� f(R) = e(c(r(R ∪ S)))) least congruence containing R and S

R = {(σ⊗σ-1,1)| σ ∈ T(Rω), o(σ) ≠ 0 }

S = {(σ ⊗σ , σ ⊗σ ) commutative
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S = {(σ1⊗σ2, σ2⊗σ1) commutative

(σ1⊗(σ2 ⊗σ3),(σ1⊗σ2) ⊗σ3) associative

(σ⊗1,σ) 1 as unit

(σ⊕-σ,0)} sum inverse



Bisimulation up to union,context & equivalence

� o(σ⊗σ-1) = o(σ)⋅o(σ -1) = o(σ)⋅o(σ) -1 = 1 = o(1)

� (σ⊗ σ -1)’ = (σ’⊗ σ -1) ⊕ (σ⊗ (σ -1)’)                        definition ⊗

= (σ’⊗ σ -1) ⊕ (σ⊗ (-σ’⊗(σ -1⊗σ -1)))        definition (-)-1

c(S)* (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗(σ⊗σ -1))       associativity
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c(S)* (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗(σ⊗σ -1))       associativity

c(R)  (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗ 1)                coinduction

c(S)* (σ’⊗ σ -1) ⊕ -(σ’⊗σ -1)                unit of ⊗

c(S)* 0                                                        sum inverse

=  1’ definition 1

Thus R is a bisimulation-up-to union, context & equivalence 

but not a bisimulation. 



Bisimulation up to union,context & equivalence

� o(σ⊗σ-1) = o(σ)⋅o(σ -1) = o(σ)⋅o(σ) -1 = 1 = o(1)

� (σ⊗ σ -1)’ = (σ’⊗ σ -1) ⊕ (σ⊗ (σ -1)’)                        definition

= (σ’⊗ σ -1) ⊕ (σ⊗ (-σ’⊗(σ -1⊗σ -1)))        definition

c(S)* (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗(σ⊗σ -1))       associativity

16 March 2013Coalgebraic bisimulation-up -to

Slide 25

c(S)* (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗(σ⊗σ -1))       associativity

c(R)  (σ’⊗ σ -1) ⊕ (-(σ’⊗σ -1) ⊗ 1)                coinduction

c(S)* (σ’⊗ σ -1) ⊕ -(σ’⊗σ -1)                unit

c(S)* 0                                                        sum inverse

=  1’

Thus R is a bisimulation-up-to union, context & equivalence 

but not a bisimulation. 

Is it sound?



Soundness of bisimulation up to techniques

� Bisimulation up to equivalence is not sound in general.
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� Bisimulation up to bisimilarity is not sound in general.

� Composition of sound techniques needs not to be sound.



Bisimulation up to equivalence is not sound

� FX = { (x1,x2,x3) ∈ X3| x1=x2 or x1=x3 or x2=x3 } 

X   → FX
0    ↦ (0,1,0)
1    ↦ (0,0,1)

2    ↦ (0,0,0)

R      → Fe(R)
(2,0) ↦ ((0,0),(0,1),(0,0))
(2,1) ↦ ((0,0),(0,0),(0,1))
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� R is a bisimulation up to equivalence because (0,0) and (0,1) 
are not in R, but in e(R).

� However 0 is not bisimilar to 1 because ((0,0),(1,0),(0,1)) 
contains three different pairs!

� !

↦

↦

2    ↦ (0,0,0)



Bisimulation up to bisimilarity

� Bisimulation up to bisimilarity is not sound for weighted 
automata:

[BBBRS 2012]
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[BBBRS 2012]

x2-x3 ∼ 0

{(x1,y1)} is a bisimulation up to bisimilarity

x1 is not bisimilar to y1



Soundness

Two directions to prove soundness:

1. using behavioral equivalence

[Rot,--,Rutten 2012]
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2. using the abstract theory of enhancements

[Rot, Bonchi,--,Rutten, Pous,Silva]



Relators

� F:Set → Set

� Relator: F®:Rel → Rel F®(X) = X

F®(R) = F(π2) ° F(π1)
-1

X Y

R
π1

π2
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� The following are equivalent: [Trnkova, Rutten, Gumm&Schroeder] 

1. F preserves weak pullback

2. F® is a functor

3. The composition of two F-bisimulations is a F-bisimulation



Bisimulations as functions

� δ: X → FX R ⊆ X × X

� Relational lifting: ϕδ(R) = { (x,y) | (δ(x), δ(y)) ∈ F®(R) }
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� R is a bisimulation iff R ⊆ ϕδ(R)

� R is a bisimulation up to f iff R ⊆ ϕδ(f(R))

� F preserves weak pullbacks ⇔ ϕδ(R) ° ϕδ(S) = ϕδ(R ° S)



Compatible functions

� Let b and f monotone functions on a complete lattice L. The 
function f is said to be b-compatible if 

f ° b ≤ b ° f

� b-compatible functions are b-sound if gfp(b ° f) ≤ gfp(b)
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� b-compatible functions are b-sound if gfp(b ° f) ≤ gfp(b)

� b-compatible functions are closed under functional composition 
and arbitrary unions.

� If b(R) ° b(S) ≤ b(R ° S) then b-compatible functions are closed 
also under relational composition (i.e. (f • g)(R) = f(R) ° g(R)).



Soundness via compatibility

� Equivalence closure is ϕδ-compatible. 

If f:P(X x X) → P(X x X) is ϕδ-compatible then 

bisimulation up to f is sound for δ:X → FX.
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� If S ⊆ ∼δ then union with S is ϕδ-compatible.

� Contextual closure is ϕδ-compatible for λ-bialgebras, where λ is 
a distributive law of a monad T over a functor F

� Any combination of the above is ϕδ-compatible.



Soundness

Two directions to prove soundness:

1. using behavioral equivalence

[Rot,--,Rutten 2012]
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2. use the abstract theory of enhancements

[Rot, Bonchi,--,Rutten, Pous,Silva]



Behavioral equivalence

� F-behavioral equivalence R ⊆ X x X

X

δ

R
π2

π1

Fq

X/e(R)
q
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� Any F-bisimulation is a F-behavioral equivalence. If F 
preserves weak pullbacks then the converse is true.

� Maximal F-behavioral equivalence ≈δ ⊆ X x X

FX F(X/e(R))
Fq



Behavioral equivalence up to

� F-behavioral equivalence up to f f(R) ⊆ X x X

X

δ

R
π2

π1

X/e(f(R))
q
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� Behavioral equivalence up to f is sound wrt an F-coalgebra
(X,δ) if R ⊆ ≈δ for any R behavioral equivalence up to f

FX

δ

F(X/e(f(R)))
Fq



Soundness: behavioral equivalence-up-to 

� Behavioral equivalence up to equivalence is sound.

� If S ⊆ ≈ then behavioral equivalence up to union with S is
sound.
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� Behavioral equivalence up to contextual closure is sound for λ-
bialgebras, where λ is a distributive law of a finitary monad T 
over a functor F.

� Any combinations of the above is sound.



Soundness: bisimulation-up-to

� Any bisimulation up to f is a behavioral equivalence up to f.

� If F preserves weak pullback  then soundness of behavioral 
equivalence up to (union,context and) equivalence implies 
soundness of analogous bisimulation up to (union,context and) 
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soundness of analogous bisimulation up to (union,context and) 
equivalence.

� In all previous examples about deterministic automata and 
streams bisimulation up to union, context and equivalence is 

sound.



� A general theory of bisimulation up to techniques for 
coinduction

� Interesting proof method for behavioral equivalence.

Conclusions

16 March 2013

� Presenting SOS rule formats using up-to context techniques?

� New proof systems for rational behavior?

� Other categories than Set (for example for syntax with bindings)
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