

Marcello Bonsangue (LIACS)

J. Rot (LIACS), F. Bonchi (ENS), J. Rutten (CWI), D. Pous (ENS), A. Silva (RUN)

Motivation

- Bisimulation: To prove that x and y are bisimilar, it suffices to show that x and y are related by a relation which is a bisimulation.
- Bisimulation-up-to: To prove that x and y are bisimilar, it suffices to show that x and y are related by a relation which is almost a bisimulation.
\square Bisimulation up to bisimilarity
\square Bisimulation up to equivalence
\square Bisimulation up to congruence
Modular proofs
Smaller proofs
Equational reasoning
\square Several combinations of the above
- Coalgebra: Several notions of bisimilarity

Historical motivation

- 1983: Robin Milner

Bisimulation up to bisimilarity for labelled transition systems

- 1998-2007: Sangiorgi, Pous Several enhancements of the bisimulation proof method for labelled transition systems
- 1999: Marina Lenisa

Coalgebraic bisimulation up to: some results, some problems

- 2004: Falk Bartels
- 2013: Bonchi, Pous

Bisimulation up to contextual closure.

Bisimulation up to congruence for DFA

From bisimulation ...

F-bisimulation

$R \subseteq X x X$

Bisimilarity ~ is the largest bisimulation

Example: deterministic automata

\forall a. $\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right) \in \mathrm{R}$

Example: deterministic automata

Example: deterministic automata

Example: deterministic automata

Example: deterministic automata

... to progression ...

- R progress to $S \quad R, S \subseteq X \times X$

... to bisimulation-up-to

- F-bisimulation up to $f \quad R \subseteq X \times X$

$\mathrm{f}: \mathcal{P}(\mathrm{X} \times \mathrm{X}) \rightarrow \mathcal{P}(\mathrm{X} \times \mathrm{X})$
- F-bisimulation up to identity is just F-bisimulation!

Example: deterministic automata

Let $S \subseteq X \times X$ be a set of assumptions
Bisimulation up to union with $\mathrm{S}: \mathrm{R} \subseteq \mathrm{X} x \mathrm{X}$ such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \quad$ implies $\quad \mathrm{o}(\mathrm{x})=\mathrm{o}(\mathrm{y})$ and $\quad \forall \mathrm{a} .\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right) \in \mathrm{R} \cup \mathrm{S}$

$$
\mathrm{R}=\{(\mathrm{x}, \mathrm{u})\} \text { is }
$$

Example: deterministic automata

Let $S \subseteq X \times X$ be a set of assumptions
Bisimulation up to union with $S: R \subseteq X x X$ such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \quad$ implies $\quad \mathrm{o}(\mathrm{x})=\mathrm{o}(\mathrm{y})$ and $\quad \forall \mathrm{a} .\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right) \in \mathrm{R} \cup \mathrm{S}$
$\mathrm{R}=\{(\mathrm{x}, \mathrm{u})\}$ is a bisimulation up to union with $S=\{(u, y)\}$... but not a bisimulation!

Soundness

- A bisimilation up to f is sound for a coalgebra (X, δ) if $R \subseteq \sim_{\delta}$ for all R that progress to $f(R)$.

Bisimulation up to union

If $S \subseteq \sim$ then bisimulation up to union with S is sound

i.e. if our assumptions in S are true than what we can prove using those assumptions is also true.

Bisimulation up to equivalence

$$
f(R)=e(R)
$$

equivalence closure of R

Bisimulation up to union \& equivalence

$$
f(R)=e(R \cup S)
$$

equivalence closure of $R \cup S$

Bisimulation up to union with ~ and equivalence generalizes bisimulation up to bisimilarity:
$\sim \cdot R \circ \sim \subseteq$ equivalence closure of $(R \cup \sim)$

It allows shorter and modular proofs

Bisimulation up to context

- F:Set \rightarrow Set

T:Set \rightarrow Set monad

- The contextual closure of $R \subseteq X x X$ for a T-algebra $\alpha: T X \rightarrow X$ is $\mathrm{c}_{\alpha}(\mathrm{R})=<\alpha \circ \mathrm{T} \pi_{1}, \alpha \circ \mathrm{~T} \pi_{2}>(\mathrm{TR})$
$t_{1} c_{\alpha}(R) t_{2}$ if and only if we can obtain one from the other by substituting variables related by R.

$$
\frac{s R t}{s c(R) t}
$$

$\frac{s_{i} R t_{i} \quad \text { for all } i}{\operatorname{op}\left(s_{1}, \ldots, s_{n}\right) c(R) \operatorname{op}\left(t_{1}, \ldots, t_{n}\right)}$

Bisimulation up to context

Bisimulation up to contextual closure is sound for λ bialgebras where λ is a distributive law of a monad T over a functor F.
[Bartels 2004]

But bisimulation up to contextual closure becomes interesting only in the final coalgebra or in combination with up-to-bisimilarity or up-to equivalence!

Example: Languages

- $\mathrm{FX}==2 \mathrm{xid} \mathrm{A}^{\mathrm{A}}$
- Algebra Union, concatenation, Kleene star
- Coalgebra $\mathrm{o}(\mathrm{L})=1$ iff $\varepsilon \in \mathrm{L}$

$$
L_{a}=\{w \mid a w \in L\}
$$

Example: Arden's theorem

- Theorem: If $L=K \cdot L \cup M$ and $\varepsilon \notin K$ then $L=K^{*} \cdot M$.

Proof: It is enough to prove that $R=\left\{\left(L, K^{*} \cdot M\right)\right\}$ is a bisimulation up to context. Clearly $\mathrm{o}(\mathrm{L})=\mathrm{O}\left(\mathrm{K}^{*} \cdot \mathrm{M}\right)$. Further, for every $a \in A$:

$$
\begin{aligned}
L_{a} & =(K \cdot L \cup M)_{a} & & \\
& =(K \cdot L)_{a} \cup M_{a} & & {\left[\text { because }(X \cup Y)_{a}=(X)_{a} \cup(Y)_{a}\right] } \\
& =K_{a} \cdot L \cup M_{a} & & {\left[\text { because }(X \cdot Y)_{a}=X_{a} \cdot Y \text { if } \varepsilon \notin X\right] } \\
& c(R) K_{a} \cdot K^{*} \cdot M \cup M_{a} & & {[\text { coinduction }] } \\
& =\left(K^{*}\right)_{a} \cdot M \cup M_{a} & & {\left[\text { because }\left(X^{*}\right)_{a}=X_{a} \cdot X^{*}\right] } \\
& =\left(K^{*} \cdot M\right)_{a} & & {\left[\text { because }(X \cdot Y)_{a}=X_{a} \cdot Y \cup Y_{a} \text { if } \varepsilon \in X\right] }
\end{aligned}
$$

Another example: streams

- $F X=R x X$
- Bialgebras
$T X=t::=x|\underline{r}|-t|t \oplus t| t \otimes t \mid t^{-1}$

TTX \rightarrow TX \rightarrow FTX

■ Behavioral differential equations (i.e. distributive law)

$$
\begin{array}{ll}
\mathbf{O}(\underline{r})=\mathbf{r} & (\mathrm{r})^{\prime}=\underline{\mathbf{0}} \\
\mathbf{0}\left(\sigma_{1} \oplus \sigma_{2}\right)=\mathbf{0}\left(\sigma_{1}\right)+\mathbf{0}\left(\sigma_{2}\right) & \left(\sigma_{1} \oplus \sigma_{2}\right)^{\prime}=\sigma_{1}{ }^{\prime} \oplus \sigma_{2}^{\prime} \\
\mathbf{0}(-\sigma)=-\mathbf{O}(\sigma) & (-\sigma)^{\prime}=-\sigma^{\prime} \\
\mathbf{O}\left(\sigma_{1} \otimes \sigma_{2}\right)=\mathbf{0}\left(\sigma_{1}\right) \cdot \mathbf{O}\left(\sigma_{2}\right) & \left(\sigma_{1} \otimes \sigma_{2}\right)^{\prime}=\left(\sigma_{1}{ }^{\prime} \otimes \sigma_{2}\right) \oplus\left(\sigma_{1} \otimes \sigma_{2}{ }^{\prime}\right) \\
\mathbf{O}\left(\sigma^{-1}\right)=\mathbf{O}(\sigma)^{-1} & \left(\sigma^{-1}\right)^{\prime}=-\sigma^{\prime} \otimes\left(\sigma^{-1} \otimes \sigma^{-1}\right)
\end{array}
$$

Bisimulation up to union,context \& equivalence

- $f(R)=e(c(r(R \cup S)))) \quad$ least congruence containing R and S

$$
\begin{aligned}
R= & \left\{\left(\sigma \otimes \sigma^{-1}, 1\right) \mid \sigma \in \mathrm{T}\left(\mathrm{R}^{\omega}\right), \mathbf{o}(\sigma) \neq 0\right\} & & \\
S= & & \left\{\left(\sigma_{1} \otimes \sigma_{2}, \sigma_{2} \otimes \sigma_{1}\right)\right. & \\
& \left(\sigma_{1} \otimes\left(\sigma_{2} \otimes \sigma_{3}\right),\left(\sigma_{1} \otimes \sigma_{2}\right) \otimes \sigma_{3}\right) & & \text { associative } \\
& (\sigma \otimes 1, \sigma) & & 1 \text { as unit } \\
& (\sigma \oplus-\sigma, 0)\} & & \text { sum inverse }
\end{aligned}
$$

Bisimulation up to union,context \& equivalence

- $\mathbf{O}\left(\sigma \otimes \sigma^{-1}\right)=\mathbf{O}(\sigma) \cdot \mathbf{O}\left(\sigma^{-1}\right)=\mathbf{O}(\sigma) \cdot \mathbf{O}(\sigma)^{-1}=1=\mathbf{O}(1)$
- $\left(\sigma \otimes \sigma^{-1}\right)^{\prime}=\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(\sigma \otimes\left(\sigma^{-1}\right)^{\prime}\right)$

$$
=\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(\sigma \otimes\left(-\sigma^{\prime} \otimes\left(\sigma^{-1} \otimes \sigma^{-1}\right)\right)\right)
$$

definition \otimes
definition $(-)^{-1}$

$$
c(S)^{*}\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(-\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \otimes\left(\sigma \otimes \sigma^{-1}\right)\right)
$$

associativity

$$
c(R)\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(-\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \otimes 1\right)
$$

coinduction

$$
c(S)^{*}\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus-\left(\sigma^{\prime} \otimes \sigma^{-1}\right)
$$

unit of \otimes

$$
c(S)^{*} 0
$$

sum inverse

$$
=1^{\prime}
$$

definition 1
Thus R is a bisimulation-up-to union, context \& equivalence but not a bisimulation.

Bisimulation up to union,context \& equivalence

- $\mathbf{O}\left(\sigma \otimes \sigma^{-1}\right)=\mathbf{O}(\sigma) \cdot \mathbf{O}\left(\sigma^{-1}\right)=\mathbf{O}(\sigma) \cdot \mathbf{O}(\sigma)^{-1}=1=\mathbf{O}(1)$

■ $\left(\sigma \otimes \sigma^{-1}\right)^{\prime}=\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(\sigma \otimes\left(\sigma^{-1}\right)^{\prime}\right)$

$$
=\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(\sigma^{\otimes}\left(-\sigma^{\prime} \otimes\left(\sigma^{-1} \otimes \sigma^{-1}\right)\right)\right) \quad \text { definition }
$$

$$
c(S)^{*}\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(-\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \otimes\left(\sigma \otimes \sigma^{-1}\right)\right) \quad \text { associativity }
$$

$$
c(R)\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus\left(-\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \otimes 1\right) \quad \text { coinduction }
$$

$$
c(S)^{*}\left(\sigma^{\prime} \otimes \sigma^{-1}\right) \oplus-\left(\sigma^{\prime} \otimes \sigma^{-1}\right)
$$

$$
c(S)^{*} 0
$$

$$
=1^{\prime}
$$

Thus R is a bisimulation-up-to union, context \& equivalence but not a bisimulation.

Soundness of bisimulation up to techniques

- Bisimulation up to equivalence is not sound in general.
- Bisimulation up to bisimilarity is not sound in general.
- Composition of sound techniques needs not to be sound.

Bisimulation up to equivalence is not sound

- $\mathrm{FX}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in \mathrm{X}^{3} \mid \mathrm{x}_{1}=\mathrm{x}_{2}\right.$ or $\mathrm{x}_{1}=\mathrm{x}_{3}$ or $\left.\mathrm{x}_{2}=\mathrm{x}_{3}\right\}$

$$
\begin{array}{llrl}
X & \rightarrow \text { FX } & \mathrm{R} & \rightarrow \\
0 & \mapsto(0,1,0) & (2,0) & \mapsto \\
1 & \mapsto(0,0,1) & (2,1) & \mapsto(\mathrm{Fe}(\mathrm{R}) \\
2 & \mapsto(0,0,0),(0,1),(0,0)) \\
2 & & (0,0),(0,0),(0,1))
\end{array}
$$

- R is a bisimulation up to equivalence because $(0,0)$ and $(0,1)$ are not in R, but in $e(R)$.
- However 0 is not bisimilar to 1 because ($(0,0),(1,0),(0,1))$ contains three different pairs!

Bisimulation up to bisimilarity

- Bisimulation up to bisimilarity is not sound for weighted automata:

$x_{2}-x_{3} \sim 0$
$\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right\}$ is a bisimulation up to bisimilarity
x_{1} is not bisimilar to y_{1}

Soundness

Two directions to prove soundness:

1. using behavioral equivalence
[Rot,--,Rutten 2012]
2. using the abstract theory of enhancements
[Rot, Bonchi,--,Rutten, Pous,Silva]

Relators

- F:Set \rightarrow Set
- Relator: $\mathrm{F}^{\oplus}:$ Rel \rightarrow Rel

$$
\begin{aligned}
& F^{\circledR}(X)=X \\
& F^{\circledR}(R)=F\left(\pi_{2}\right) \circ F\left(\pi_{1}\right)^{-1}
\end{aligned}
$$

- The following are equivalent: [Trnkova, Rutten, Gumm\&Schroeder]

1. F preserves weak pullback
2. F^{\circledR} is a functor
3. The composition of two F-bisimulations is a F-bisimulation

Bisimulations as functions

- $\delta: \mathrm{X} \rightarrow \mathrm{FX}$

$R \subseteq X \times X$

- Relational lifting:

$$
\varphi_{\delta}(\mathrm{R})=\left\{(\mathrm{x}, \mathrm{y}) \mid(\delta(\mathrm{x}), \delta(\mathrm{y})) \in \mathrm{F}^{\oplus}(\mathrm{R})\right\}
$$

- R is a bisimulation iff $R \subseteq \varphi_{\delta}(R)$
- R is a bisimulation up to f iff $R \subseteq \varphi_{\delta}(f(R))$
- F preserves weak pullbacks $\Leftrightarrow \varphi_{\delta}(R) \circ \varphi_{\delta}(S)=\varphi_{\delta}(R \circ S)$

Compatible functions

- Let b and f monotone functions on a complete lattice L. The function f is said to be b-compatible if

$$
f \circ b \leq b \circ f
$$

- b-compatible functions are b-sound if $g f p(b \circ f) \leq g f p(b)$
- b-compatible functions are closed under functional composition and arbitrary unions.
- If $b(R) \circ b(S) \leq b(R \circ S)$ then $b-c o m p a t i b l e ~ f u n c t i o n s ~ a r e ~ c l o s e d ~$ also under relational composition (i.e. $(f \bullet g)(R)=f(R) \circ g(R))$.

Soundness via compatibility

> If $\mathrm{f}: \mathcal{P}(\mathrm{X} \times \mathrm{X}) \rightarrow \mathcal{P}(\mathrm{X} \times \mathrm{X})$ is φ_{δ}-compatible then bisimulation up to f is sound for $\delta: \mathrm{X} \rightarrow \mathrm{FX}$.

- Equivalence closure is φ_{δ}-compatible.
- If $S \subseteq \sim_{\delta}$ then union with S is φ_{δ}-compatible.

■ Contextual closure is φ_{δ}-compatible for λ-bialgebras, where λ is a distributive law of a monad T over a functor F

- Any combination of the above is φ_{δ}-compatible.

Soundness

Two directions to prove soundness:

1. using behavioral equivalence
[Rot,--,Rutten 2012]
2. use the abstract theory of enhancements
[Rot, Bonchi,--,Rutten, Pous,Silva]

Behavioral equivalence

- F-behavioral equivalence
$R \subseteq X x X$

- Any F-bisimulation is a F-behavioral equivalence. If F preserves weak pullbacks then the converse is true.
- Maximal F-behavioral equivalence $\quad \approx_{\delta} \subseteq \mathrm{X} \times \mathrm{X}$

Behavioral equivalence up to

- F-behavioral equivalence up to f $f(R) \subseteq X x X$

■ Behavioral equivalence up to f is sound wrt an F-coalgebra (X, δ) if $R \subseteq \approx_{\delta}$ for any R behavioral equivalence up to f

Soundness: behavioral equivalence-up-to

- Behavioral equivalence up to equivalence is sound.
- If $S \subseteq \approx$ then behavioral equivalence up to union with S is sound.
- Behavioral equivalence up to contextual closure is sound for λ bialgebras, where λ is a distributive law of a finitary monad T over a functor F.
- Any combinations of the above is sound.

Soundness: bisimulation-up-to

- Any bisimulation up to f is a behavioral equivalence up to f.
- If F preserves weak pullback then soundness of behavioral equivalence up to (union,context and) equivalence implies soundness of analogous bisimulation up to (union,context and) equivalence.
- In all previous examples about deterministic automata and streams bisimulation up to union, context and equivalence is sound.

Conclusions

- A general theory of bisimulation up to techniques for coinduction
- Interesting proof method for behavioral equivalence.
- Presenting SOS rule formats using up-to context techniques?
- New proof systems for rational behavior?
- Other categories than Set (for example for syntax with bindings)

