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Upper and Lower Bounds for Fixpoints

Let f: L — IL be a monotone function over a complete lattice L.
By Knaster-Tarski it has a least fixpoint uf and a greatest fixpoint
vf.

Any pre-fixpoint (¢ € L with f(¢) C ¢) is an upper bound for uf
and any post-fixpoint (¢ € L with ¢ C £(¢)) is a lower bound for
vf.

Can we find suitable witnesses guaranteeing that £ € L is a lower
bound for pf or an upper bound for vf?

Applications: termination probability, behavioural distances,
bisimilarity . ..



Aims of Working Group 1.3

To support and promote the systematic development of
the fundamental mathematical theory of systems specifi-
cation. To investigate the theory of formal models for
systems specification, development, transformation and

verification.

~» fixpoints as a fundamental mathematical technique for system
verification (reachability analysis, dataflow analysis,
model-checking, ...)



Fixpoint Theory

@ The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

@ We have the following proof rules for upper and lower bounds:

f(H)ce LT f(L)
uf C 4 (Cvf

o Kleene iteration: whenever f is (co-)continuous
o uf =|iey fi(L) (least fixpoint)
o vf =[1;en F'(T) (greatest fixpoint)




Fixpoint Theory

If f is not (co-)continuous:

~» Kleene iteration over the ordinals

(beyond w)
N/
w+2—w-2
T
w+1
N
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Fixpoint Theory

The following proof rules (based on Kleene iteration) provide
guarantees for the opposite bounds. By i we denote some ordinal.

(Cfi(L) fi(myce
LT pf vf T/

This is related to ranking functions that are e.g. used in
termination analysis.

Problems: there is no straightforward witness that guarantees
these bounds, (ordinals are involved)

Our aim: provide proof rules of the form

¢ C f(¢) + extra conditions f(¢) C ¢ + extra conditions
LT uf vfC/




Termination Probability
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Termination Probability

(X, T, (px)xex\T) where
o X is the finite state space,
@ T C X are the terminal states and
@ py: X — [0,1] is a probability distribution

Termination probability given by uf where f: [0,1]X — [0, 1]X and
for a: X = [0,1], x € X:

1 ifxeT
f(a)(x) = { Zyex px(y) - a(y) otherwise




Termination Probability




Termination Probability
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Least fixpoint, giving the termination probability for x




Termination Probability
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A different fixpoint, not providing a lower bound for the termation
probability of x




Termination Probability

We can not trust a fixpoint or pre-fixpoint to give us a lower
bound on the termination probability (given by a least fixpoint).

> Can we detect those fixpoints that are not least fixpoints?
Where is the culprit?

In the example: y and z convince each other incorrectly (!) that
they have termination probability 1 ~» vicious cycle
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Termination Probability

Idea: compute the set of states that still has some “wiggle room”
or “slack”. That is, those states that can say:

“If all my successors would reduce their value by §, | could
also reduce my value by 6."

This can be computed as a greatest fixpoint on a finite set P(X)
(instead of the infinite lattice that we considered before).

If the function is sufficiently well-behaved and this set (= greatest
fixpoint) is empty

= we know that we have reached the least fixpoint (respectively a
pre-fixpoint below the least fixpoint).



Abstractions for Determining the “Wiggle Room”

We use Galois connections (pairs of abstraction and concretization)
in order to determine the “wiggle room” or “slack” of a fixpoint.

Requirements

The lattice is of the form I. = MX (set of functions of the form
X — M), where
o X finite

@ M is a totally ordered lattice living in a group (inverses: we
can add and subtract!)

We will now consider the dual problems: given f: MX — MX and
a: X —->M

@ assume that f(a) = a. Is a the greatest fixpoint?

@ assume that f(a) C a. Is a above the greatest fixpoint?
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Abstractions for Determining the “Wiggle Room”

Qa0 aa’g(Y) = a-+0y
— - Ya0(b) = {xeX|a(x)+6C b(x)}

" wherefor YC X, 0M, fy: X — M with

Va0 Oy (x) = 0 ifxeY
Y=Y 0 otherwise

[To be more precise:
o MX should be replaced by {b: X =M |aC bC a+6}

@ f restricts to this set whenever f(a+0) C f(a) + 6
(Condition 1)

]
~  arbaraKoénig Fixpoint Theory — Upside Down 13



Abstractions for Determining the “Wiggle Room”

B - (a is the “baseline™)

a0 - Y:{X1;X37X4} = T T T
X1 X_2 X3 Xa X5 Xp

s p= T =Y ={x1,x3,xa}




B e
Abstractions for Determining the “Wiggle Room”

(a0, 7a,0) satisfy the properties of a Galois connection:

@ (39,70 are monotone

© idp(x) € Va0 0 Qap
@ y00 729 C idyx
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Galois Connections and Fixpoints

~ ™~
ff=yofoaC A C DOf
~__

v

We have vf# = v(vf) whenever
@ yof Cf#foy=ryofoaoy
(equivalent to coyo f E foaon)

(see also [Cousot/Cousot], [Bonchi/Ganty/Giacobazzi/Pavlovic])
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Galois Connections and Fixpoints

In our setting:

)

= f P(X T T
30 7330 © oaa70 C ( ) M D f
~_

Va,0

Whenever f(a) = a, a # vf for a: X - M
= 30 30 3x € X: a(x)+ 0 C vf(x)
= 0 # 7a0(vF) = 1]

Contraposition: If z/fa# = (), then a = vf.
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Galois Connections and Fixpoints

Unfortunately, we do not know this 6. But things work fine if we
require that for each fixpoint a there exists 6, such that for each ¢:

@ Q50,0760 fCfo a0, © Va8

Since we want a proof rule for pre-fixpoints, we need the following
requirement (Condition 2):

® Qf(a),0, © Vf(a)o 0 F EFoaap, 075
Ay 5
N
o, C P(X) X f
~_

Ya,é



- Motivation Example: Termination Probability Galois Connections Proof Rule Applications Conclusion
Proof Rule

f(a)Ta vff, =0

vfLCa

This proof rule is sound and complete in the following sense:

Let b: X — M with vf C b. Then there exists a: X — M such
that aC b, f(a) C a and vl = .




- Motivation Example: Termination Probability Galois Connections Proof Rule Applications Conclusion
Proof Rule

The function f# = f#; can usually be defined directly on P(X)
and can hence be computed efficiently. In the case of termination
probability:

fAY)={xeY|x&T,Q(x)C YnNP,}
where
o P,={xe X]|a(x) >0}
e 6, =min{a(x) | x € X,x € P,}
o Q(x)={y e X|px(y) >0} for x e X\T.

f#(Y') contains those states of Y that are non-terminating
and whose successors are in Y and have values larger than
0 (i.e. they have the potential for reduction or “slack”).
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Applications

Despite the restrictions, this approach provides witnesses for:

lower bounds of termination probabilities

°
@ lower bounds for maximal paths
@ non-bisimilarity of states

°

lower bounds for behavioural distances
It can be used to iterate to vf from below (and to iterate to uf
from above):

@ Perform Kleene iteration starting from _L until a fixpoint a is
reached. Test whether it is the greatest fixpoint.

o If it is not, continue with & = a + (0,) .+ -
a,05
This method was developed for the special case of behavioural

metrics by [Fu] and [Bacci, Bacci,Larsen, Mardare, Tang, van
Breugel]. It gave us the inspiration to look for a generalization.



- Motivation Example: Termination Probability Galois Connections Proof Rule Applications Conclusion
Future Work

@ Is it possible to lift some of the restrictions? In particular: is it
possible to handle partial (instead of total) orders?

@ Does it make sense to generalize the Galois connection?

e Compositionality: if f, g satisfy the requirements, does the
same hold for f o g7
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