## A Hybrid Dynamic Logic for Event/Data-based Systems

#### Rolf Hennicker

Ludwig-Maximilians-Universität München

Alexandre Madeira

CIDMA, Universidade de Aveiro & QuantaLab, Universidade do Minho

Alexander Knapp

Universität Augsburg

## Specifying Event/Data-based Systems (1)

### Event/Data-based systems

- behaviour controlled by events
- data states may change in reaction to events

#### Specification of event/data-based systems

- Model-oriented approaches (constructive specification)
  - Event-B, symbolic transition systems, UML behavioural/protocol state machines
- Property-oriented approaches (abstract specification)
  - modal (temporal, dynamic) logics, TLA
- Checking whether a concrete model satisfies certain abstract properties

## Specifying Event/Data-based Systems (2)

#### Goals

- Common logical formalism for specifying event/data-based systems on various levels of abstraction
- Program development by stepwise refinement ("correct by construction")
  - based on rigorous formal semantics

### Approach — $\mathcal{E}^{\downarrow}$

- Integrate dynamic and hybrid logic features
  - Dynamic logic for abstract requirements (safety, liveness, ...)
  - Hybrid logic for concrete process structure
- Apply Sannella & Tarlecki's refinement methodology in the context of event/data-based systems

### Example: Specifying an ATM

Events {insertCard, enterPIN, ejectCard, cancel}, data attributes {chk}

Axiomatic specification using formulæ, like

$$[E^*; ( ext{enterPIN}// ext{chk}' = tt) + ext{cancel}/\langle E^*; ext{ejectCard} \rangle ext{true}$$

"Whenever either a correct PIN has been entered or the transaction has been cancelled, the card can eventually be ejected."

$$\downarrow \! x_0$$
 .  $[E^*; ( ext{enterPIN}/\!\!/ ext{chk}' = tt) + ext{cancel}] \langle E^*; ext{ejectCard} 
angle x_0$ 

"Whenever either a correct PIN has been entered or the transaction has been cancelled, the card can eventually be ejected and the ATM starts from the beginning."

## Syntax: Event/Data Actions and Formulæ (1)

Ed signature  $\Sigma = (E, A)$  with events E and data attributes A

- ▶ data state  $\omega \in \Omega(\Sigma) = A \to \mathcal{D}$
- state predicates  $\varphi \in \Phi(\Sigma)$  with  $\omega \models^{\mathcal{D}}_{A} \varphi$
- ▶ transition predicates  $\psi \in \Psi(\Sigma)$  with  $(\omega, \omega') \models^{\mathcal{D}}_{A} \psi$

### $\Sigma$ -ed actions $\lambda \in \Lambda(\Sigma)$

$$\lambda ::= e /\!\!/ \psi \mid \lambda_1 + \lambda_2 \mid \lambda_1; \lambda_2 \mid \lambda^*$$

- lacktriangle transition specification  $e/\!\!/\psi$  for event e and effect specification  $\psi$ 
  - ▶ abbreviate  $e_1$  // true  $+ \ldots + e_k$  // true by  $\{e_1, \ldots, e_k\}$ ,  $E(\Sigma)$  by  $E, \ldots$
- complex actions with "or" +, "sequence";, and "iteration" \*

### Example: $E^*$ ; enterPIN//chk' = tt

"a finite sequence of events with arbitrary effects followed by event enterPIN such that afterwards attribute chk is *tt*"

## Syntax: Event/Data Actions and Formulæ (2)

$$\begin{array}{l} \Sigma\text{-ed formulæ}\;\varrho\in\mathrm{Frm}^{\mathcal{E}^\downarrow}(\Sigma)\\ \varrho::=\varphi\;\mid\;x\;\mid\;\downarrow x\;.\;\varrho\;\mid\;@x\;.\;\varrho\;\mid\;\langle\lambda\rangle\varrho\;\mid\;[\lambda]\varrho\;\mid\;\mathrm{true}\;\mid\;\neg\varrho\;\mid\;\varrho_1\vee\varrho_2 \end{array}$$

- ightharpoonup state predicates  $\varphi$
- ightharpoonup control state variables  $x \in X$
- ▶ hybrid logic "bind"  $\downarrow x$  and "jump" @x
- dynamic logic "diamond"  $\langle \lambda \rangle$  and "box"  $[\lambda]$
- usual propositional connectives

Example:  $\downarrow x_0$ .  $[E^*; (\text{enterPIN}//\text{chk}' = tt) + \text{cancel}] \langle E^*; \text{ejectCard} \rangle x_0$  "Whenever a correct PIN has been entered or the transaction has been cancelled, the card can eventually be ejected and the ATM starts from the beginning."

## Semantics: Event/Data Transition Systems

$$\Sigma$$
-edts  $M = (\Gamma, R, \Gamma_0) \in Edts^{\mathcal{E}^{\downarrow}}(\Sigma)$ 

- $\blacktriangleright$  configurations  $\Gamma\subseteq C\times\Omega(\Sigma)$  of control states C and data states  $\Omega(\Sigma)$
- ▶ transition relations  $R \subseteq (R_e \subseteq \Gamma \times \Gamma)_{e \in E(\Sigma)}$
- ▶ initial configurations  $\Gamma_0 \subseteq \{c_0\} \times \Omega_0$  with  $\Omega_0 \subseteq \Omega(\Sigma)$ 
  - all configurations required to be reachable

Interpretation of  $\Sigma$ -ed actions over M as  $(R_{\lambda} \subseteq \Gamma \times \Gamma)_{\lambda \in \Lambda(\Sigma)}$  defined by

$$\blacktriangleright R_{e/\!\!/\psi} = \{((c,\omega),(c',\omega')) \in R_e \mid (\omega,\omega') \models^{\mathcal{D}}_{A(\Sigma)} \psi\}$$

- $R_{\lambda_1+\lambda_2}=R_{\lambda_1}\cup R_{\lambda_2}$
- $R_{\lambda_1;\lambda_2} = R_{\lambda_1}; R_{\lambda_2}$
- $R_{\lambda^*} = (R_{\lambda})^*$

### Semantics: Event/Data Satisfaction Relation

Given  $\Sigma$ -edts M, valuation  $v: X \to C(M)$ , configuration  $\gamma \in \Gamma(M)$ 

$$\mathit{M}, \mathit{v}, \gamma \models^{\mathcal{E}^{\downarrow}}_{\Sigma} \varphi \text{ iff } \omega(\gamma) \models^{\mathcal{D}}_{\mathit{A}(\Sigma)} \varphi$$

$$M, v, \gamma \models^{\mathcal{E}^{\downarrow}}_{\Sigma} x \text{ iff } c(\gamma) = v(x)$$

$$M, v, \gamma \models_{\Sigma}^{\mathcal{E}^{\downarrow}} \downarrow x \cdot \varrho \text{ iff } M, v\{x \mapsto c(\gamma)\}, \gamma \models_{\Sigma}^{\mathcal{E}^{\downarrow}} \varrho$$

$$M, v, \gamma \models_{\Sigma}^{\mathcal{E}^{\downarrow}} @x \cdot \varrho \text{ iff } M, v, \gamma' \models_{\Sigma}^{\mathcal{E}^{\downarrow}} \varrho \text{ for all } \gamma' \in \Gamma(M) \text{ with } c(\gamma') = v(x)$$

$$\mathit{M}, \mathit{v}, \gamma \models^{\mathcal{E}^\downarrow}_\Sigma \langle \lambda \rangle \varrho \text{ iff } \mathit{M}, \mathit{v}, \gamma' \models^{\mathcal{E}^\downarrow}_\Sigma \varrho \text{ for some } \gamma' \in \Gamma(\mathit{M}) \text{ with } (\gamma, \gamma') \in \mathit{R}(\mathit{M})_\lambda$$

. . .

$$M \models^{\mathcal{E}^\downarrow}_\Sigma \varrho \text{ for } \Sigma\text{-ed sentences if } M, \gamma_0, v \models^{\mathcal{E}^\downarrow}_\Sigma \varrho \text{ for all } \gamma_0 \in \Gamma_0(M)$$

## Axiomatic Event/Data Specifications

Axiomatic ed specification  $Sp = (\Sigma, Ax)$  over ed signature  $\Sigma$ 

ightharpoonup set of  $\Sigma$ -ed sentences Ax as axioms

(Loose) semantics of  $\mathit{Sp}$  given by model class  $\mathrm{Mod}(\mathit{Sp})$  of edts

$$Mod(Sp) = \{ M \in Edts^{\mathcal{E}^{\downarrow}}(\Sigma) \mid M \models_{\Sigma}^{\mathcal{E}^{\downarrow}} Ax \}$$

Example: Specification  $ATM_0$  with  $\Sigma_0 = (\{\text{insertCard}, ...\}, \{\text{chk}\})$  and  $Ax_0$ :

$$[E^*; ( ext{enterPIN}/chk' = tt) + ext{cancel}]\langle E^*; ext{ejectCard} 
angle ext{true} \; , \quad \dots$$

Example: Specification  $ATM_1$  with  $\Sigma_1 = \Sigma_0$  and  $Ax_1$ :

$$\downarrow x_0$$
.  $[E^*; (enterPIN//chk' = tt) + cancel] \langle E^*; ejectCard \rangle x_0 \langle insertCard//chk' = ff \rangle true \wedge [insertCard//-(chk' = ff)] false \wedge [-insertCard] false , ....$ 

Stepwise refinement in  $\mathcal{E}^{\downarrow}$ :  $ATM_0 \rightsquigarrow ATM_1 \rightsquigarrow \dots$ 

# Refining $\mathcal{E}^{\downarrow}$ -Specifications (1)

Simple refinement (or implementation) relation for specifications

$$\mathit{Sp} \leadsto \mathit{Sp}' \text{ if } \Sigma(\mathit{Sp}) = \Sigma(\mathit{Sp}') \text{ and } \operatorname{Mod}(\mathit{Sp}') \supseteq \operatorname{Mod}(\mathit{Sp})$$

no signature changes, no construction of an implementation

Constructor  $\kappa$  from  $(\Sigma'_1, \ldots, \Sigma'_n)$  to  $\Sigma$ 

- ▶ (total) function  $\kappa : Edts^{\mathcal{E}^{\downarrow}}(\Sigma'_1) \times \ldots \times Edts^{\mathcal{E}^{\downarrow}}(\Sigma'_n) \to Edts^{\mathcal{E}^{\downarrow}}(\Sigma)$
- constructor composition by usual function composition

 $\langle Sp'_1,\ldots,Sp'_n\rangle$  constructor implementation via  $\kappa$  of Sp

 $\blacktriangleright Sp \leadsto_{\kappa} \langle Sp'_1, \ldots, Sp'_n \rangle \text{ if } \kappa(M'_1, \ldots, M'_n) \in \operatorname{Mod}(Sp) \text{ for all } M'_i \in \operatorname{Mod}(Sp'_i)$ 

(Sannella, Tarlecki 1988)

# Refining $\mathcal{E}^{\downarrow}$ -Specifications (2)

#### Refinement chain

$$Sp_1 \leadsto_{\kappa_1} Sp_2 \leadsto_{\kappa_2} \ldots \leadsto_{\kappa_{n-1}} Sp_n$$

### Constructors for $\mathcal{E}^{\downarrow}$ -specifications

- ightharpoonup relabelling  $\kappa_{
  ho}$ 
  - ightharpoonup ho-reduct of edts for a bijective ed signature morphism ho
- ightharpoonup restriction  $\kappa_{\iota}$ 
  - $\blacktriangleright$   $\iota$ -reduct of edts for an injective ed signature morphism  $\iota$
- $\blacktriangleright$  event refinement  $\kappa_{\alpha}$ 
  - ightharpoonup ho-reduct of edts for an ed signature morphism ho to composite events

$$\theta ::= e \mid \theta + \theta \mid \theta; \theta \mid \theta^*$$

- ightharpoonup parallel composition  $\kappa_{\otimes}$ 
  - ▶ binary constructor:  $Sp \leadsto_{\kappa_{\infty}} \langle Sp'_1, Sp'_2 \rangle$
  - synchronous product of edts with composable signatures

## Operational Event/Data Specifications (1)

More constructive specification style

- graphical representation (like STS, UML protocol state machines)
- lacktriangle can be faithfully expressed in  $\mathcal{E}^\downarrow$

Example: Specification  $ATM_2$  with  $\Sigma_2 = (\{\text{insertCard}, \ldots\}, \{\text{chk}, \text{trls}\})$ 



Stepwise refinement in  $\mathcal{E}^{\downarrow}$ :  $ATM_0 \rightsquigarrow ATM_1 \stackrel{?}{\leadsto} ATM_2$ 

## Operational Event/Data Specifications (2)

Operational ed specification  $O = (\Sigma, C, T, (c_0, \varphi_0))$  over ed signature  $\Sigma$ 

- control states C
- ▶ transition relation specification  $T \subseteq C \times \Phi(\Sigma) \times E(\Sigma) \times \Psi(\Sigma) \times C$ 
  - lacktriangle separate precondition in  $\Phi(\Sigma)$  and transition predicate in  $\Psi(\Sigma)$
- ▶ initial control state  $c_0 \in C$ , initial state predicate  $\varphi_0 \in \Phi(\Sigma)$ 
  - $\triangleright$  all control states syntactically reachable from  $c_0$

(Loose) semantics of O given by model class of edts with  $M \in \operatorname{Mod}(O)$  if

- ▶ *R*(*M*) only shows transitions allowed by *T* 
  - ▶ for all  $((c, \omega), (c', \omega')) \in R(M)_e$  there is a  $(c, \varphi, e, \psi, c') \in T$  with  $\omega \models_{A(\Sigma)}^{\mathcal{D}} \varphi$  and  $(\omega, \omega') \models_{A(\Sigma)}^{\mathcal{D}} \psi$
- R(M) realises T for satisfied preconditions
  - $\bullet \ \, \text{for all } (c,\varphi,e,\psi,c') \in T \text{ and } \omega \models^{\mathcal{D}}_{A(\Sigma)} \varphi \text{, there is a} \\ ((c,\omega),(c',\omega')) \in R(M)_e \text{ with } (\omega,\omega') \models^{\mathcal{D}}_{A(\Sigma)} \psi$

# Expressiveness of $\mathcal{E}^{\downarrow}$

Theorem For every operational ed specification O with finitely many control states there is an ed sentence  $\varrho_O$  such that

$$M \in \operatorname{Mod}(O) \iff M \models^{\mathcal{E}^{\downarrow}}_{\Sigma(O)} \varrho_O$$

### Example



$$\begin{array}{l} \downarrow Card \ . \ \langle insertCard /\!\!/ chk' = f\!\!f \wedge trls' = 0 \rangle \\ \downarrow PIN \ . \ @Card \ . \ [insertCard /\!\!/ chk' = f\!\!f \wedge trls' = 0] PIN \wedge \\ [insertCard /\!\!/ chk' = f\!\!f \vee trls' \neq 0] false \wedge \\ [\{enterPIN, cancel, ejectCard\}] false \wedge \dots \end{array}$$

# ATM-Example: Refinement in $\mathcal{E}^{\downarrow}$ (1)

Refinement chain for ATM specification

$$ATM_0 \rightsquigarrow ATM_1 \rightsquigarrow_{\kappa_\iota} ATM_2 \rightsquigarrow_{\kappa_\otimes;\kappa_\alpha} \langle ATM_3, CC \rangle$$

For  $ATM_1 \leadsto_{\kappa_\iota} ATM_2$ 

▶ restriction constructor with  $\iota : \Sigma_1 \hookrightarrow \Sigma_2$  injective

For 
$$ATM_2 \leadsto_{\kappa_{\infty};\kappa_{\alpha}} \langle ATM_3, CC \rangle$$

- event refinement constructor  $\kappa_{\alpha}$
- lacktriangleright parallel composition constructor  $\kappa_{\otimes}$  to two components

### ATM-Example: Components



# ATM-Example: Refinement in $\mathcal{E}^{\downarrow}$ (2)

Refinement chain for ATM specification

$$ATM_0 \rightsquigarrow ATM_1 \rightsquigarrow_{\kappa_{\iota}} ATM_2 \rightsquigarrow_{\kappa_{\otimes};\kappa_{\alpha}} \langle ATM_3, CC \rangle$$

Replace 
$$ATM_2 \leadsto_{\kappa_{\otimes};\kappa_{\alpha}} \langle ATM_3, CC \rangle$$
 by

$$ATM_2 \leadsto_{\kappa_{\alpha}} ATM_3 \parallel CC \leadsto_{\kappa_{\otimes}} \langle ATM_3, CC \rangle$$

syntactic parallel composition of operational ed specifications

### ATM-Example: Syntactic Parallel Composition



## ATM-Example: Event Refinement



### $ATM_2 \leadsto_{\kappa_\alpha} ATM_3 \parallel CC$

- $\blacktriangleright$  {chk, trls}  $\subseteq$  {chk, trls, cnt}
- α(enterPIN) = (enterPIN; verifyPIN; (correctPIN + wrongPIN))

# ATM-Example: Refinement in $\mathcal{E}^{\downarrow}$ (3)

$$\begin{array}{c} \textit{ATM}_0 & \leadsto \textit{ATM}_1 & \stackrel{\kappa_\iota}{\leadsto} \textit{ATM}_2 & \stackrel{\kappa_\otimes; \kappa_\alpha}{\leadsto} & \langle \textit{ATM}_3, \textit{CC} \rangle \\ & \stackrel{\kappa_\alpha}{\leadsto} \searrow & \stackrel{\kappa_\omega}{\leadsto} & \\ & \textit{ATM}_3 \parallel \textit{CC} \end{array}$$

Proposition Let  ${\cal O}_1, {\cal O}_2$  be operational ed specifications with composable signatures. Then

$$Mod(O_1) \otimes Mod(O_2) \subseteq Mod(O_1 \parallel O_2)$$

(Converse inclusion does not hold.)

Theorem Let Sp be an (axiomatic or operational) ed specification,  $O_1, O_2$  operational ed specifications with composable signatures, and  $\kappa$  a constructor from  $\Sigma(O_1)\otimes \Sigma(O_2)$  to  $\Sigma(Sp)$ . Then

if 
$$Sp \leadsto_{\kappa} O_1 \parallel O_2$$
, then  $Sp \leadsto_{\kappa_{\bigotimes};\kappa} \langle O_1, O_2 \rangle$ 

### Conclusions and Future Work

### Specifying event/data-based systems in $\mathcal{E}^{\downarrow}$

- Expressive logic through combination of dynamic and hybrid features
- Support for both abstract requirements specifications and concrete implementations
- ▶ Support for stepwise refinement through constructor implementations
- ▶ Integrate other formalisms into  $\mathcal{E}^{\downarrow}$ -development process
  - ▶ TLA; similar to operational specifications: Event-B, UML state machines
- Separation of events into input and output
  - communication compatibility
- Beyond bisimulation invariance for hybrid-free sentences
- ▶ Institutionalise  $\mathcal{E}^{\downarrow}$
- ▶ Proof system for  $\mathcal{E}^{\downarrow}$ , including data states