
Joint work with Hernan Melgratti & Christian Roldan

On the semantics of
replicated data types

Fabio Gadducci
University of Pisa

The quickest background, I

❖ Distributed systems replicate their state over different nodes in
order to satisfy non-functional requirements.

❖ Strong consistency (every request receives the most recent
update) of replicated data is in conflict with availability (every
request is eventually executed) and tolerance to network
partitions (the system operates even in the presence of failures
that temporarily prevent communication among components).

❖ CAP theorem: it is impossible to simultaneously achieve strong
Consistency, Availability and Partition tolerance [GL2002].

The quickest background, II

❖ Weak consistency: replicas may (temporarily) exhibit
discrepancies (every request receives a correct update).

❖ How are the data specified? States, state transitions and
returned values should account for the different views
that a data item may simultaneously have.

❖ In the end, consistency has to be eventually guaranteed (if
no new updates are made to a data item, eventually all
accesses to that item will return the most recent update).

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register
register	r	=	0

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	0

r	=	0

r	=	0

register	r	=	0

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	0

r	=	0

r	=	0wr(1)

register	r	=	?

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

register	r	=	?

A register

r	=	0

r	=	0

r	=	0

r	=	1wr(1)

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

register	r	=	?

A register

r	=	1

r	=	0

r	=	1

r	=	1wr(1)

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

register	r	=	?

A register

r	=	1

r	=	0

r	=	1

r	=	1wr(1)

rd

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

register	r	=	?

A register

r	=	1

r	=	0

r	=	1

r	=	1wr(1)

rd

The	result	depends	on	
the	visible	opera:ons

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	0

r	=	0

r	=	0wr(1)

register	r	=	?

wr(2)

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	2

r	=	0

r	=	1wr(1)

register	r	=	?

wr(2)

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	2

r	=	0

r	=	1wr(1)

register	r	=	?

wr(2)

rd

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	2

r	=	?

r	=	1wr(1)

register	r	=	?

rd

wr(2)

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A register

r	=	0

r	=	2

r	=	?

r	=	1wr(1)

register	r	=	?

rd

The result depends
on the relative order
of visible operations

wr(2)

Replicated Data Types

op	:	VIS	×	ARB	→	RVAL	

❖ VISibility:	A	par:al	order	of	opera:ons	over	a	replica	

❖ ARBitra:on:	A	total	order	of	such	opera:ons	

❖ Return	VALue:	The	value	returned	by	the	last	opera:on

[BURCKHARDT,	GOTSMAN,YANG,	ZAWIRSKI	2015]	

A register

❖ Two operations
❖ rd(_,_) = ?

❖ wr(k)(_,_) = ok

A register

❖ Two operations
❖ rd(_,_) = ?

❖ wr(k)(_,_) = ok

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

VISibility

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

VISibility

ARBitration

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

rd

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

rd

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

rd

A register
Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

wr(1)

wr(2)

rd

Last-write-wins

Understanding RDTs

❖ Implementing RTDs means to provide a communication mechanism
among replicas, to ensure its compatibility wrt. the behaviour of the
operations and to guarantee that some global properties (e.g. eventual
convergence of replicas) are preserved.

❖ But first…

❖ Is it possible to get a traditional presentation of RTDs?

❖ Is there any implicit assumption on the arbitrations?

❖ Are RDTs compositional? I.e., are arbitrations of larger visibility
orders explained in terms of smaller ones?

Internalising values

,

Internalising values

,

Internalising values

,

Internalising values

,

A	specifica:on	goes	
from	configura:ons	
to	sets	of	arbitra:ons

Internalising values

,

A	specifica:on	goes	
from	configura:ons	
to	sets	of	arbitra:ons

0

Recovering RDTs: saturation

,

A	specifica:on	goes	
from	configura:ons	
to	sets	of	arbitra:ons

Recovering RDTs: saturation

,

A	specifica:on	goes	
from	configura:ons	
to	sets	of	arbitra:ons

Recovering RDTs: determinism

,
1

Recovering RDTs: determinism

,
1

value-determinis:c:	empty	intersec:on	(aYer	removing	the	last	event)

Recovering RDTs: determinism

,
1

value-determinis:c:	empty	intersec:on	(aYer	removing	the	last	event)

determinis:c:	empty	intersec:on	even	forgeZng	the	value	component

Recovering RDTs: determinism

,
1

value-determinis:c:	empty	intersec:on	(aYer	removing	the	last	event)

determinis:c:	empty	intersec:on	even	forgeZng	the	value	component

RTDs	have	chosen	the	
second	path,	thus	e.g.	
forbidding	write	failures

Recovering RDTs: coherence

,

Recovering RDTs: coherence

,

Recovering RDTs: coherence

,

Admissible	arbitra:ons	
never	increases	when	
extending	the	visibility	

Recovering RDTs: the theorem

❖ There	is	a	one-to-one	correspondence	between	RTDs	and	
saturated,	determinis:c,	and	coherent	specifica:ons

Recovering RDTs: the theorem

❖ There	is	a	one-to-one	correspondence	between	RTDs	and	
saturated,	determinis:c,	and	coherent	specifica:ons

….which	is	bad	for	RDTs

Recovering RDTs: the theorem

❖ There	is	a	one-to-one	correspondence	between	RTDs	and	
saturated,	determinis:c,	and	coherent	specifica:ons

….which	is	bad	for	RDTs

both	satura:on	and	determinism	are	bad!!

Recovering RDTs: the theorem

❖ There	is	a	one-to-one	correspondence	between	RTDs	and	
saturated,	determinis:c,	and	coherent	specifica:ons

….which	is	bad	for	RDTs

both	satura:on	and	determinism	are	bad!!

value-determinis:c,	yet	not	determinis:c

From specifications to transition systems

states

From specifications to transition systems

states

transi>ons

From specifications to transition systems

an	abstract	transi>on	system	against	which	
to	compare	(by	asynchronous	simula>on)	

those	of	actual	implementa>ons…	

Implementing a specification

❖ Proposed implementation of RDTs [Burckhardt et al.].

❖ Each replica propagates its state to the other replicas.

❖ It is assumed that all replicas have the same behaviour.

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A counter
counter	c	=	5

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A counter
counter	c	=	5

R1 = 1
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A counter
counter	c	=	?

R1 = 2
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 : 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

inc

Consistency Guarantee: Read Your Writes

counter:=0

C

R1

R2

R3

R4

COORDINATION 2016 Christian Roldán (Universidad de Buenos Aires)

A counter
counter	c	=	?

R1 = 2
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 : 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

R1 = 1
R2 = 1
R3 = 2
R4 = 1

rd

an LTS for a counter

an LTS for a counter

the resulting LTS is correct wrt. the abstract LTS
(via a suitable simulation)

an LTS for multiple counters

the resulting LTS is still correct wrt. the abstract LTS

Conclusions & future works

Conclusions & future works

❖ We	provided		a	denota:onally-flavoured		characterisa:on	of	
a	well-accepted	defini:on	of	replicated	data	types	

❖ thus	making	explicit	some	implicit	assump:ons

Conclusions & future works

❖ We	provided		a	denota:onally-flavoured		characterisa:on	of	
a	well-accepted	defini:on	of	replicated	data	types	

❖ thus	making	explicit	some	implicit	assump:ons

❖ …&	a	mechanism	for	proving	correctness	of	implementa:ons	

Conclusions & future works

❖ We	provided		a	denota:onally-flavoured		characterisa:on	of	
a	well-accepted	defini:on	of	replicated	data	types	

❖ thus	making	explicit	some	implicit	assump:ons

❖ …&	a	mechanism	for	proving	correctness	of	implementa:ons	

❖ We	are	looking	for	a	categorical	presenta:on	

❖ …in	order	to	get	operators	for	composing	specifica:ons

Conclusions & future works

❖ We	provided		a	denota:onally-flavoured		characterisa:on	of	
a	well-accepted	defini:on	of	replicated	data	types	

❖ thus	making	explicit	some	implicit	assump:ons

❖ …&	a	mechanism	for	proving	correctness	of	implementa:ons	

❖ We	are	looking	for	a	categorical	presenta:on	

❖ …in	order	to	get	operators	for	composing	specifica:ons

❖ We	plan	to	recast	guarantee	proper:es	via	the	abstract	LTS

