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Behavioural Equivalences, Modal Logics & Games

Games are interesting since ...
@ they explain the essence of behavioural equivalences.
@ they can be used to explain why two states are not
behaviourally equivalent (x +¢ y) by giving the spoiler strategy.
@ they can be used to prove interesting theorems (for instance
the van Benthem/Rosen theorem: “the bisimulation-invariant

fragment of first-order logic corresponds to propositional
modal logics").

There is little work on games that goes beyond labelled transition
systems [Desharnais et al., Fijalkow et al.] and only few paper on
games [Baltag, Kupke] in a coalgebraic setting.



Behavioural Metrics

Find a quantitative notion of behavioural equivalence ...

@ Do not insist on the exact same behaviour.
@ Measure the behavioural distance between two states.

@ Make statements such as “the behaviour of two states differs
only by €".

~» Behavioural metrics

Applications: differential privacy [Palamidessi], conformance
testing for cyber-physical systems [Khakpour, Mousavi]

Here: work out the triad of behavioural distance, modal logics and
spoiler-defender games for behavioural metrics.



Behavioural distances

Let X be a set. A pseudo-metric is a function d : X x X — [0, 1]
where for all x,y,z € X:

1. d(x,x) = 0 (reflexivity) (metric if d(x,y) =0= x =y)

2. d(x,y) = d(y, x) (symmetry)

3. d(x,z) < d(x,y)+ d(y, z) (triangle inequality)
A (pseudo-)metric space is a pair (X, d) where X is a set and d is
a (pseudo-)metric.

A directed pseudo-metric must only satisfy reflexivity and the
triangle inequality.
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Example: Probabilistic Transition System

A probabilistic transition system is a tuple P = (X, T, p), where X
is a set of states, T C X is the set of terminal states and every
state x € T is assigned a probability distribution p, : X — [0, 1].

Similar models studied by [Larsen, Skou], [van Breugel, Worrel]
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Example: Probabilistic Transition System

States 4,5,7 are terminal.

What is the distance between states x, y?




Example: Probabilistic Transition System

Compute the smallest fixed-point of

1 ifxeT,y¢Torx¢T,yeT
d(x,y) =<0 fyeT,yeT
dP(px,py) otherwise
What does it mean to compute the distance between two

probability distributions py, p, on a metric space (i.e. to lift the
distance to probability distributions)?
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Example: Probabilistic Transition System

A non-expansive function f: X — Y between two (pseudo-) metric
spaces (X, dx), (Y, dy) satisfies for x,y € X :

dx(x,y) > dy(f(x),f(y))

The category of pseudo-metric spaces and non-expansive functions
is denoted by PMet.
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Example: Probabilistic Transition System
We obtain the distance for two probability distributions
p,q: X — [0,1] by lifting a metric d : X x X — [0, 1] as follows:

Kantorovich lifting for probability distributions

The supremum of | Yy f(x) - p(x) = > . ex f(x) - q(x)| for all
non-expansive functions f: (X, d) — ([0, 1], de)

(where de(a, b) = |a— b]|)

Intuition: we measure the cost of transporting supply p to
demand g from the point of view of a logistics company [Villani]

e f is a price function, which specifies buying/selling prices at
each location

@ Non-expansiveness means f(x) — f(y) < d(x,y) for all x,y.
If this is not satisfied the company is not hired, since it is
cheaper for the customer to perform the transport himself.
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Coalgebras

Coalgebras & Coalgebra Homomorphism

Let F be a functor. A coalgebra is a function o : X — FX (where
X is the state set).

We call f: X — Z a coalgebra homomorphism from « to

B:Y — FY whenever Ff oax = o f.

X « £X Two s.tates X,y e_ X are
behaviourally equivalent
x ~ y) if there exists a

f Ff b~ y)

coalgebra homomorphism f
with f(x) = f(y).

Y — FY

Probabilistic transition system: a: X — DX + 1 where D is the
probability distribution functor and 1 = {,/}.
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Coalgebras & Behavioural Metrics

Aim: Lift the functor F from Set to PMet

We need one parameter: a set I of evaluation maps
~v: F[0,1] — [0, 1].

We define two evaluation maps (one for probability distributions,
one for termination):
e vp: D[0,1] + 1 — [0, 1] with
o 1p(P) = 2 cpoq - P(r), p: X — [0,1] (expectation)
o 1p(v/) =0
® 7.:D[0,1] + 1 — [0, 1] with
° ’Y-(p) =0
° %(v)=1




Functor Lifting via Kantorovich

Let d : X x X — [0, 1] be a pseudo-metric. We define
dT: FX x FX — [0,1]. Let t1, t € FX:

d'(t1, t2) = sup{de(y(FF (1)), 7(Ff(t2))) |
f: (X,d)— ([0,1], de) non-expansive,y € '}

Lifting directed pseudo-metrics: exchange de(a, b) = |a — b| with
ds(a, b) = max{a— b,0}.
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Functor Lifting via Kantorovich

Every evaluation map +y induces a (real-valued) predicate lifting
(f: X = [0,1]) — (yo Ff: FX — [0,1])

We require that this predicate lifting is non-expansive wrt. the
supremum metric (local non-expansivenses, see also [Turi, Rutten]):

de°(vo Ff,vo Fg) < d:°(f, 8)
for all f,g: X — [0,1]. (The same holds if we replace d. by ds.)

Supremum metric: d*°(f, g) = sup,cx d(f(x), g(x))

In the directed case this condition generalizes monotonicity.



Defining Distances in Coalgebras

Given a set of evaluation maps I and coalgebra o : X — FX in
Set, compute its associated behavioural metric d : X x X — [0, 1]
as the smallest fixed-point of:

d=d"o(axa)

where d'T is the Kantorovich lifting.

This instantiates to the earlier definition of probabilistic
behavioural metric.
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Real-Valued Modal Logics

Behavioural metrics in the probabilistic case are often associated
with real-valued modal logics with formulas that assign real
numbers to states (instead of truth values 0, 1), indicating the
“degree” up to which a formula holds.

Given a coalgebra a: X — FX, the semantics of a formula ¢ is
given by a function J¢]o: X — [0, 1].

©: 1| Dy.verl min(4, ¢')
[¢la: || 1] vo Fl¢]aca | min{[¢]a, [¥']a}

©: - Yogq
[oloa: || 1= [¥]a | [¥]a©q

The modalities [y]y) are based on the evaluation maps v € T.

Every function [¢] is non-expansive (analogue of
bisimulation-invariant).



Real-Valued Modal Logics

The formula ¢ = [yp][7e]1 distinguishes the states x, y.
@ 1) = [7,]1 assigns 1 to terminating states and 0 to
non-terminating states.
@ x makes a transition to a terminating state with probability %
= [¢l(x) = o (D¥](a(x) = 3.
Similarly: [¢](y) = 3 +e.
Hence dL(x,y) > de([¢](x), [¢](y)) = . (In fact we have
equality.)
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A Hennessy-Milner Theorem Real-Valued Modal Logics

Let a: X — FX, x,y € X:

di(x,y) = sup{de([£]a(x), [¢]a(¥)) | ©}-

Assume that the fixpoint d, is reached in w steps.
Then behavioural distance equals logical distance: d, = dé.

Proof strategy (adapted from [van Breugel/Worrel]):

@ Show that the lifted functor preserves total boundedness.

@ Show that the set {[¢]: X — [0,1] | ¢} is dense in the
non-expansive functions.



~ Motivation Behavioural Metrics Coalgebras and Behavoural Metrics Real-Valued Modal Logics Games for Behavioural Distances
Games for behavioural distances

Metric bisimulation game for a coalgebra av: X — FX
e Initial situation: (x,y,e) where € € [0,1].
e Step 1: Spoiler (S) chooses s € {x, y} and a (real-valued)
predicate p;: X — [0, 1].
o Step 2: Defender (D) takes t € {x,y}\{s} and has to answer
with a predicate py: X — [0, 1], which satisfies
do(v(Fp1(a(s))), 7(Fpa(a(t)))) < € forall y e T.
@ Step 3: S chooses p; with i € {1,2} and a state x’ € X.
@ Step 4: D chooses y' € X with p;j(x") < pj(y’) where j # i
o Next round: (x',y’,¢") with &’ = p;(y’) — pi(x’).
D wins the game if the game continues forever or if S has no move
at Step 3. If D has no move at Step 2 or Step 4, S wins.

v




Games for behavioural distances

e Initial situation: (x,y,¢)

@ Step 1: S chooses x with p;(4) =1 (0 otherwise).

e Step 2: D plays pp with pa(4) = p2(5) = p2(7) =1 (0
otherwise).

- (10(Dp(0(x))), 10(Dpa(0(y) = o5, 5 +2) =0 < &
(Similar for ~.)

o Step 3/4: If S picks a terminating state x’ and p;, D can also
pick a terminating state y’ and p; with p;(y’) — pi(x’) =0
(similarly for non-terminating states).

New situation: (x’,y’,0) where x" ~ y’.
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Games for behavioural distances

For a coalgebra a: X — FX the game distance is defined as:

d®(x,y) = inf{e | D has a winning strategy for (x,y,e)}

The behavioural distance equals the game distance: d, = dg.




Games for behavioural distances

Take a modal formula ¢ # 1 with do([¢](x), [¢](y)) > €.

@ v = [y]Y: S chooses x, p1 = [¢/] at Step 1 and can play in
such a way that de([¢'](X'), [%](y")) > €.
~> the game continues in the situation (x’,y’,¢’) with the
formula .

e ¢ =min(1,v'): either de([¢](x), [¥](y)) > € or
de(['](x), [¥'](y)) > € and S picks ¢ or 1)/,

@ ¢ = —): S takes .

e o =19 O q: S takes .




Open Questions & Future Work

Open Questions

@ Hennessy-Milner theorem if the fixpoint d, is not reached in w
steps.

@ Does the Kantorovich lifting preserve completeness of metrics?
e Can we replace [0, 1] by [0, o0]?

Current & Future Work

@ Work out the real-valued modal logics for various functors
(in the paper: metric transition systems [de Alfaro, Faella,
Stoelinga], functor FX = [0, 1] x PX)

@ van Benthem/Rosen theorem(s)
~> Fuzzy case: [Wild, Schréder, Pattinson, K., LICS "18]

e Up-to techniques for behavioural metrics [Bonchi, K.,
Petrisan, CONCUR '18]
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