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Background: Rewriting Logic and Maude

• Rewriting logic [Meseguer’90]

• data types defined by algebraic equational specifications
• dynamic behaviors defined by rewrite rules

l : t −→ u if cond

• Maude : language and tool for rewriting logic
• simulation
• reachability analysis
• LTL model checking
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Background: Rewriting Logic and Maude (II)

Rewriting logic:

• expressive and general . . .

• . . . yet simple and intuitive
• simple model of concurrent objects
• different forms of communication easily defined
• any computable data type definable
• . . .
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Extend to Real-Time Systems

How to extend Maude to real-time systems?



Real-Time Maude Analysis Applications

Real-Time Maude Ölveczky & Meseguer

• Time advance modeled by tick rewrite rules

crl [l] : {t} => {t ′} in time τ if cond

• global state has form {t}

• “Ordinary” rewrite rules model instantaneous change
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Specifying OO Real-Time Systems

Tick rule for OO systems:

var τ : Time .

crl [l] : {t} => {timeEffect(t, τ)} in time τ if τ <= mte(t)
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Example: “Retrograde” Clock

• state: {clock(r)} or {stopped-clock(r)}

• dense time domain

• clock can stop at any time

• retrograde clock: clock(24) must be reset to clock(0)
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Real-Time Maude Specification

(tmod DENSE-CLOCK is pr POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System .

vars R R’ : Time .

crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’

if R’ <= 24 - R .

rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ .

rl [reset] : clock(24) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm)
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Main Challenge

How to deal with dense time?
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Time Sampling

• Tick rules “cover” dense time domain
• not executable

• “On-the-fly discretization:” time sampling strategies
• advance time by default value ∆
• advance time as much as possible (“event-driven simulation”)

• Analysis not sound/complete: all behaviors not covered
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Real-Time Maude Analysis

• Timed rewriting
• simulate system to time T

• Timed reachability analysis

• LTL model checking
• unbounded/time-bounded
• clocked/un-clocked

• Timed CTL model checking
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Reachability Analysis

Define time sampling:

Maude> (set tick def 1 .)

• analysis w.r.t. this strategy

• Can {clock(25)} be reached?

(utsearch [1] {clock(0)} =>* {clock(25)} .)

• State {clock(1/2)} not found:

(utsearch [1] {clock(0)} =>* {clock(1/2)} .)
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In Context (I)

• Timed automata
• restricted formalism . . .
• . . . many properties decidable
• state-of-the-art tools: Uppaal, RED

• Time(d) Petri nets
• fixed model of comminication

• IF, TE-LOTOS, etc:
• separate formalisms for data types, dynamic behavior, and time
• based on fixed communication primitives

• Moby/RT
• designs specified as PLC-automata
• translated into timed automata for model checking

• BIP (Behavior, Interaction, Priority)
• “Behavior is described as a Petri net extended with data and

functions described in C”
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In Context (II)

Real-Time Maude:

• simple and intuitive

• expressive

• any data type

• unbounded data structures

• dynamic object/message creation/deletion

• hierarchical structures

• easy to define communication forms

- properties in general undecidable

- discrete abstraction may not exist in general
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• Real-Time Maude analyses “incomplete” for dense time

• formalism too general for “region graphs”

• Can we have sound/complete maximal time sampling analysis?
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Sound/Complete Untimed Analysis [Ölveczky–Meseguer’06]

Time-robust theories:

• “well-behaved” timed behavior

• no instantaneous actions between maximal ticks (that ...)

• Conditions for OO specifications:
• mte(timeEffect(t, r)) = mte(t) −· r , for all r ≤ mte(t).
• timeEffect(t, 0) = t.
• timeEffect(timeEffect(t, r), r ′) = timeEffect(t, r + r ′),

for r + r ′ ≤ mte(t).
• mte(σ(l)) = 0 for each ground instance σ(l) of a left-hand side

of an instantaneous rewrite rule.
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Ticks and Propositions

• Atomic propositions P tick-stabilizing
• valuation of set of propositions P changes at most once in any

sequence of ticks between two maximal tick steps

• P tick-invariant
• P unchanged by applying tick rules
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Sound/Complete Untimed Analysis (II)
• Analysis with maximal time sampling satisfies the same

LTL \ {©} formulas as the timed fair paths in R if
• R is time-robust
• P tick-stabilizing

R, LP , t0 |=tf Φ if and only if RmaxDef (r),nz , LP , t0 |= Φ.

• Holds for time-bounded model checking if R time-robust and
P tick-invariant
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Timed Temporal Logic

• So far: untimed LTL model checking
• “the airbag must eventually deploy after crash detected”
• “BO eventually closes G”

• Timed temporal logics
• “the airbag must deploy within 10ms after crash”
• “BO closes G within one year of inauguration”
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Real-Time Maude’s TCTL Model Checker

• Explicit-state timed CTL model checker for Real-Time Maude

• TCTL: temporal operators with time intervals: ∃ φ U[r1,r2] φ′
• ∀2 (crash =⇒ ∀3≤10ms airbagDeployed)
• ∀2((inauguration(BO)∧open(G )) =⇒ ∀3≤one year closed(G ))

D. Lepri, E. Ábrahám, P.C. Ölveczky: Sound and complete timed CTL model

checking of timed Kripke structures and real-time rewrite theories. Science of

Computer Programming 99 (2015)
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Intended Semantics

What is the intended semantics of a Real-Time Maude model?

{clock(R)}→ {clock(R + R ′)} in time R ′ if R ′ ≤ 24− R

• Should ∀3[1,2] True hold from {clock(0)}?

• Pointwise semantics

- only visited states into account
- ∀3[1,2] True does not hold from {clock(0)}

• Continuous semantics

- tick rule interpreted as representing continuous process
- ∀3[1,2] True holds from {clock(0)}
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Soundness and Completeness

Soundness and completeness for maximal time sampling analyses
of untimed TL do not carry over to timed CTL

• maximal time sampling analysis does not satisfy ∃3[1,2] True

• ... or ∀3[1,2] True
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From Continuous to Pointwise

• Reduce model checking under continuous semantics to
pointwise case

• For timed Kripke structures

s0p s1 p

s2 ps3q

4

00

2

2
0

4
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From Continuous to Pointwise for Timed
Kripke Structures

• Assume
• dense time (abstract axiomatization of time)
• tick-invariance

• Idea: stop time advance “when something could happen”

• Dense time: γ is the gcd of
• any non-zero time value in the TCTL formula
• any non-zero maximal tick duration
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From Continuous to Pointwise for Timed
Kripke Structures (II)

Advancing time by γ (= gcd(durations, formulaBounds)) is not
sufficient

s0 s1 s2

p

s3
2 0 0

2

• pointwise behavior

π = ¬p
2−→ ¬p

0−→ p
0−→ ¬p

2−→ ¬p
2−→ · · · (¬p forever)

• ϕ is ∃ (∃3=2 p) U=2 true

• γ is 2: splitting into γ-steps gives no additional runs!

• ϕ holds in pointwise semantics but not in continuous



Real-Time Maude Analysis Applications

From Continuous to Pointwise for Timed
Kripke Structures (II)

Advancing time by γ (= gcd(durations, formulaBounds)) is not
sufficient

s0 s1 s2

p

s3
2 0 0

2

• pointwise behavior

π = ¬p
2−→ ¬p

0−→ p
0−→ ¬p

2−→ ¬p
2−→ · · · (¬p forever)

• ϕ is ∃ (∃3=2 p) U=2 true

• γ is 2: splitting into γ-steps gives no additional runs!

• ϕ holds in pointwise semantics but not in continuous



Real-Time Maude Analysis Applications

From Continuous to Pointwise for Timed
Kripke Structures (II)

Advancing time by γ (= gcd(durations, formulaBounds)) is not
sufficient

s0 s1 s2

p

s3
2 0 0

2

• pointwise behavior

π = ¬p
2−→ ¬p

0−→ p
0−→ ¬p

2−→ ¬p
2−→ · · · (¬p forever)

• ϕ is ∃ (∃3=2 p) U=2 true

• γ is 2: splitting into γ-steps gives no additional runs!

• ϕ holds in pointwise semantics but not in continuous



Real-Time Maude Analysis Applications

From Continuous to Pointwise for Timed
Kripke Structures (II)

Advancing time by γ (= gcd(durations, formulaBounds)) is not
sufficient

s0 s1 s2

p

s3
2 0 0

2

• pointwise behavior

π = ¬p
2−→ ¬p

0−→ p
0−→ ¬p

2−→ ¬p
2−→ · · · (¬p forever)

• ϕ is ∃ (∃3=2 p) U=2 true

• γ is 2: splitting into γ-steps gives no additional runs!

• ϕ holds in pointwise semantics but not in continuous



Real-Time Maude Analysis Applications

From Continuous to Pointwise for Timed
Kripke Structures (III)

• Solution: split each step into steps of length γ/2

• Previous system split into:

(s0, 0) (s0, 1) (s1, 0) (s2, 0)

p

(s3, 0) (s3, 1)
1 1 0 0

1

1

• ∃ (∃3=2 p) U=2 true does not hold here!
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One More Subtlety
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π : (Continuous)
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From Continuous to Pointwise for Timed
Kripke Structures (IV)

Main result:

T K, s, |=cont ϕ ⇐⇒ T Kγ/2a , (s, 0) |=pointwise β(α(ϕ))

• α transforms formula to one with closed intervals

• β transforms formula to solve previous slide
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Model Checking Timed Kripke Structures

Model checking timed Kripke structures:

• Extends and optimizes algorithm by Laroussinie, Markey, and

Schoebelen

• formula into normal form
• recursively compute sets of states sastifying subformulas
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TCTL Model Checking for Real-Time Maude

Sound and complete TCTL model checking using maximal time
sampling and the γ/2-transformation:

T Kt(Rmax ,AP)
γ/2
a , (t, 0) |=pointwise β(α(ϕ))

m

T K(R,AP), t |=cont ϕ

since

T K(Rmax ,AP), t |=cont ϕ ⇐⇒ T K(R,AP), t |=cont ϕ

when R time-robust and AP tick-invariant
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TCTL Model Checker for Real-Time Maude

• With/without γ/2-transformation

• Implemented in Maude (meta-level)

• No counterexample provided!
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Crossing the Bridge

• Initial state and property

eq init(N) = person(5 * N,false) person(10 * N,false)

person(20 * N,false) person(25 * N,false)

lamp(false) .

op safe : -> Prop .

eq {person(T:Time, false) S:System} |= safe = false .

eq {S:System} |= safe = true [owise] .

• Model checking:

Maude> (mc-tctl {init(1)} |= AG EF[<= than 85] safe .)
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Benchmarking

Initial state TSMV Real-Time Maude RED 7.0
(pointwise) (continuous)

init(1) 0.074 0.149 1.266 0.429
init(10) 0.148 0.168 0.999 0.408
init(100) 1.443 0.168 1.012 0.404
init(1000) 57.426 0.327 1.014 0.426
init+(2) 0.191 0.746 6.864 1.044
init+(4) 0.280 1.772 17.752 2.153
init+(8) 0.759 5.227 57.580 16.912
init+(12) 1.080 11.198 129.957 79.319
init+(16) 1.515 19.620 233.414 241.098

Execution times for the bridge crossing problem (in seconds).
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communication models; hierarchical objects; dynamic object
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Are there systems where Real-Time Maude’s expressiveness needed

and

Real-Time Maude analysis yields interesting results?
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Classes of Applications

• “Concrete” systems/protocols

• Semantic framework for real-time systems

• Formal analysis tool for other languages

• ...
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AER/NCA [with C. Talcott and others]

AER/NCA :

• Multicast for active networks
• 50 pages of use cases
• involves link capacity and propagation delay, packet sizes, etc.

• Real-Time Maude analysis found all known design errors

• . . . and additional unknown serious design errors

Key Real-Time Maude features:

• detailed parametric model of communication

• laaaaarge functions

• multiple class inheritance to combine subprotocols
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CASH Scheduling Algorithm [with M. Caccamo]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures
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OGDC Wireless Sensor Network Algorithm
[with S. Thorvaldsen]

OGDC : density control algorithm for wireless sensor networks

• Simulated by developers using ns-2 with wireless extension

• New form of communication: radio transmission
• easy to specify communication in Real-Time Maude

• Real-Time Maude simulations found unknown major flaw

• Performance estimation as good as WSN simulation tool

Key Real-Time Maude features:

• easy to define “new” model of communication

• complex data types and functions (areas, angles, distances)

• simulation
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Megastore : Google’s distributed data store
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• Megastore:
• consistency for transactions accessing one entity group

• Megastore-CGC:
• consistency for transactions accessing multiple entity groups

Key Real-Time Maude features:

• simple and intuitive language

• automatic “testing” highly appreciated

• analysis of performance and correctness
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Some Other “Concrete” Applications

• Found several bugs in embedded car software used by major
car makers (Japan)
• bugs not found by model-checking tools employed in industry

• ERMTS/ETCS railway signaling and control system

• Leader election for mobile ad hoc networks

• EIGRP Cisco routing protocol (Riesco, Verdejo)

• Parts of NORM multicast protocol developed by IETF
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Formal Semantics and Analysis for MDE
Languages

• Modeling languages for embedded systems
• intuitive domain-specific modeling
• often lack formal semantics and analysis

• Real-Time Maude semantic framework and formal analysis
tool for such languages
• modeling languages used in industry

• Ptolemy II DE models
• AADL avionics modeling standard (subset)
• DOCOMO’s L language

• timed model transformations
• Real-Time MOMENT-2
• e-Motions

• Orc, Timed Rebeca, . . .
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Ptolemy II DE Models [joint work with Kyungmin Bae et al.]

Ptolemy II

• graphical modeling and simulation tool from UC Berkeley

• hierarchical composition of actors

• different models of computation

• Discrete Event (DE) models:
• timed
• fixed-point semantics of synchronous languages

Key Maude features:

• hierarchical configurations

• expressiveness

• unbounded data structures

• parametric atomic propositions
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Ptolemy II: Fault-Tolerant Traffic Lights

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight



Real-Time Maude Analysis Applications

Formal Analysis of Ptolemy DE Models

Predefined parametric propositions:

actorId | var1 = value1 , . . . , varn = valuen

actorId @ location

actorId | port p is value

actorId | port p is status



Real-Time Maude Analysis Applications

A Timed CTL Property

Car light will show only yellow within time 1 of a failure:

AG ((’HierarchicalTrafficLight . ’Decision |

port ’Error is present)

=> AF[<= 1] (’HierarchicalTrafficLight |

’Cyel = 1, ’Cgrn = 0, ’Cred = 0))



Real-Time Maude Analysis Applications

Analyzing Ptolemy II Models Within Ptolemy



Real-Time Maude Analysis Applications

Concluding Remarks

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories
• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains
• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages
• model checker for free for those languages
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Needed Future Work

• Combine timed and probabilistic behaviors

• Scale up model checking; extend sound/complete analysis:
• symbolic analysis; SMT solving

• Counterexamples/witnesses for timed CTL model checking
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