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Abstract Eilenberg-type correspondences, relating varieties of languages
(e.g. of finite words, infinite words, or trees) to pseudovarieties of finite
algebras, form the backbone of algebraic language theory. Numerous such
correspondences are known in the literature. We demonstrate that they
all arise from the same recipe: one models languages and the algebras
recognizing them by monads on an algebraic category, and applies a
Stone-type duality. Our main contribution is a variety theorem that
covers e.g. Wilke’s and Pin’s work on ∞-languages, the variety theorem
for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two
previous categorical approaches of Bojańczyk and of Adámek et al. In
addition it gives new results, such as an extension of the local variety
theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.

1 Introduction

Algebraic language theory investigates the behaviors of finite machines by relating
them to finite algebraic structures. This has proved very fruitful. For example,
regular languages are precisely the languages recognized by finite monoids, and
the decidability of star-freeness rests on Schützenberger’s theorem [33]: a regular
language is star-free iff it is recognized by a finite aperiodic monoid. At the heart
of algebraic language theory are results establishing generic correspondences of
this kind. The prototype is Eilenberg’s celebrated variety theorem [15]: it states
that varieties of languages (classes of regular languages closed under boolean oper-
ations, derivatives, and homomorphic preimages) and pseudovarieties of monoids
(classes of finite monoids closed under quotients, submonoids, and finite products)
are in bijective correspondence. This together with Reiterman’s theorem [28],
stating that pseudovarieties of monoids can be specified by profinite equations,
establishes a firm connection between automata, languages, and algebras.

In the past decades numerous further Eilenberg-type theorems were discovered
for regular languages [17,23,27,34], treating varieties with weaker closure prop-
erties, but also for machine behaviors beyond finite words, including weighted
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languages over a field [29], infinite words [24,35], words on linear orderings [8,9],
ranked trees [5], binary trees [32], and cost functions [14]. This plethora of similar
results has raised interest in category-theoretic approaches to algebraic language
theory which allow to derive all the above results as special instances of only one
general variety theorem (that therefore would rule them all). An important first
step was achieved by Bojańczyk [11]. He extends the classical notion of language
recognition by monoids to algebras for a monad on sorted sets, and proves a
generic Eilenberg theorem. Our previous work in [1–3, 13] takes an orthogonal
approach: one keeps monoids but considers them in categories D of (ordered)
algebras such as posets, semilattices, and vector spaces. In this way we uniformly
covered five Eilenberg theorems for languages of finite words [15,23,27,29,34].

To obtain the one Eilenberg theorem, a unification of the two approaches is
required. On the one hand, one needs to take the step from sets to more general
categories D to capture the proper notion of language recognition; e.g. for the
treatment of weighted languages [29] one needs to work over the category of vector
spaces. On the other hand, to deal with machine behaviors beyond finite words,
one has to replace monoids by other algebraic structures. The main contribution
of this paper is a variety theorem that achieves the desired unification, and in
addition encompasses many Eilenberg-type correspondences captured by neither
of the previous generic results, including the work [8,9, 14,24,32,35]. Thus, we
hope to convince the reader that our results make a substantial step towards the
desired one Eilenberg theorem. Our approach starts with the observation that all
Eilenberg theorems in the literature emerge essentially from the same four steps:

1. Identify an algebraic theory such that the languages in mind are the ones
recognized by finite algebras. For example, for regular languages take monoids.

2. Find a presentation of the finite algebras in terms of unary operations; e.g.,
monoids can be presented by left and right multiplication with fixed elements.

3. Infer the form of the syntactic algebras, i.e. the minimal recognizers of
languages, and the derivatives under which varieties of languages are closed.

4. Establish a bijective correspondence between varieties of languages and
pseudovarieties of algebras by relating languages to their syntactic algebras.

It turns out that all these steps can be facilitated or even completely automatized.
For Step 1, putting a common roof over Bojańczyk’s and our own previous

work, we consider a variety D and algebras for a monad T on DS , the category
of S-sorted D-algebras for some finite set S of sorts. For example, to capture
regular languages one takes the monad TΣ = Σ∗ on Set representing monoids.
For regular ∞-languages one takes the monad T(Σ,Γ ) = (Σ+, Σω +Σ∗×Γ ) on
Set2 representing ω-semigroups.

For Step 2, Bojańczyk gave a generic unary presentation for any monad on
sorted sets. However, this presentation is often too unwieldy. For example, in the
case of monoids it contains all unary operations associated to words with one
variable, but one wants to restrict to words where the variable appears only once.
Thus we make our setting parametric in a choice of a unary presentation of T.

We emphasize that non-trivial work still lies in proving that the languages
of interest are precisely those recognized by finite T-algebras, and in finding a
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good unary presentation of T. However, our work here shows that then Steps 3
and 4 are completely generic: after choosing a unary presentation, the syntactic
algebras (Theorem 3.10) and the variety theorem (Theorem 5.7) come “for free”.
In fact, Theorem 3.10 even shows that a unary presentation is necessary and
sufficient for constructing syntactic algebras. Our main result is the following
Variety Theorem. Varieties of languages recognizable by finite T-algebras are
in bijective correspondence with pseudovarieties of T-algebras.
The proof relies on two main ingredients. The first one is duality: besides D we
also consider a variety C that is dual to D on the level of finite algebras. Varieties
of languages live in C , while over DS we form pseudovarieties of T-algebras. This
duality-based approach is inspired by the work of Gehrke, Grigorieff, and Pin [17]
who interpret the original Eilenberg theorem [15] in terms of Stone duality (C =
boolean algebras, D = sets). Our second ingredient is the profinite monad of T,
introduced in [12]. It generalizes the classical construction of the free profinite
monoid, and allows for the introduction of topological methods to our setting. For
example, Pippenger’s result [26] that the boolean algebra of regular languages
dualizes to the free profinite monoid holds at the level of monads (Theorem 3.3).

Together with our generalization of Reiterman’s theorem in [12], showing
that pseudovarieties of T-algebras are presentable by profinite equations, the
variety theorem establishes a conceptual and highly parametric framework for
algebraic language theory. To illustrate its strength, we demonstrate in Section 6
that it instantiates to roughly a dozen Eilenberg correspondences known in the
literature. In addition, it yields new results, e.g. an extension of the local variety
theorem of [17] from finite to infinite words.

2 The Profinite Monad

We start by introducing our categorical framework for algebraic language theory.
Readers should be familiar with basic concepts from category theory such as
monads, limits, and duality [21]. The appendix contains a brief categorical toolkit.

Assumptions 2.1. Throughout this paper fix a variety C of algebras and a
variety D of algebras or ordered algebras. Thus, D is presented by equations
or inequations. We assume that (i) C and D are locally finite, i.e. all finitely
generated algebras are finite; (ii) the full subcategories Cf and Df on finite
algebras are dually equivalent; (iii) the signature of C contains a constant; (iv)
epimorphisms in D are surjective. Finally, fix a finite set S of sorts and a monad
T = (T, η, µ) on the product category DS with T preserving epimorphisms.

Notation 2.2. Recall that an object of DS is a family D = (Ds)s∈S of objects
in D , and a morphism f : D → D′ in DS is a family (fs : Ds → D′s)s∈S of
morphisms in D . We usually write f for fs if the sort s is clear from the context.

Example 2.3. The following categories C and D satisfy our assumptions:

1. C = BA (boolean algebras) and D = Set: Stone duality [18] yields a dual
equivalence BA

op
f ' Setf , mapping a finite boolean algebra to its atoms.
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2. C = DL01 (distributive lattices with 0 and 1) and D = Pos (posets): Birkhoff
duality [10] gives a dual equivalence (DL01)opf ' Posf , mapping a finite
distributive lattice to the poset of its join-irreducible elements.

3. C = D = JSL0 (join-semilattices with 0): there is a self-duality of (JSL0)f
mapping a finite semilattice (X,∨) to its opposite semilattice (X,∧).

4. C = D = VecK (vector spaces over a finite field K): the familiar self-duality
maps a finite(-dimensional) space X to its dual space X∗ = VecK(X,K).

Example 2.4. Our monads T of interest represent structures in language theory.

1. Let T∗ be the free-monoid monad on Set. Languages of finite words correspond
to subsets of T∗Σ = Σ∗. The category of T∗-algebras is isomorphic to the
category of monoids.

2. Languages of finite and infinite words (i.e. ∞-languages) are represented by
the monad T∞ on Set2 associated to the algebraic theory of ω-semigroups.
Recall that an ω-semigroup is a two-sorted set A = (A+, Aω) equipped with
a binary product A+ × A+

·−→ A+, a mixed binary product A+ × Aω
·−→ Aω

and an ω-ary product Aω+
π−→ Aω satisfying all (mixed) associative laws [22].

The free ω-semigroup on (Σ,Γ ) is (Σ+, Σω +Σ∗×Γ ) with products given by
concatenation. Thus T∞(Σ,Γ ) = (Σ+, Σω+Σ∗×Γ ), and an∞-language over
the alphabet Σ corresponds to a two-sorted subset of T∞(Σ, ∅) = (Σ+, Σω).

3. Weighted languages L : Σ∗ → K over a finite field K are represented by the
monad TK on VecK constructing free K-algebras. Thus for the vector space
KΣ with finite basis Σ we have TK(KΣ) = K[Σ], the space of polynomials∑
i<n kiwi with ki ∈ K and wi ∈ Σ∗. Since K[Σ] has the basis Σ∗, weighted

languages correspond to linear maps from TK(KΣ) to K.

Remark 2.5. The variety D has the factorization system of surjective morph-
isms and injective (resp. order-reflecting) morphisms, extending sortwise to DS .
We denote by Algf T and Alg T the categories of (finite) T-algebras and T-
homomorphisms. Since T preserves epimorphisms, the factorization system of DS

lifts to Alg T: every T-homomorphism factorizes into a sortwise surjective homo-
morphism followed by a sortwise injective (resp. order-reflecting) one. Quotients
and subalgebras in Alg T are taken in this factorization system.

Recall that the Stone space Σ̂∗ of profinite words over an alphabet Σ is formed
as the inverse (a.k.a. cofiltered) limit of all finite quotient monoids of Σ∗. In
[12] we generalized this construction from the free-monoid monad T∗ on Set to
arbitrary monads T as follows.

Notation 2.6. For a variety D of algebras, let Stone(D) denote the category of
topological D-algebras carrying a Stone topology, and continuous D-morphisms.
Similarly, if D is a variety of ordered algebras, let Priest(D) denote the category
of ordered topological D-algebras carrying a Priestley topology, and monotone
continuous D-morphisms. Denote by D̂ the full subcategory of Stone(D) (resp.
Priest(D)) on profinite D-algebras, i.e. inverse limits of algebras in Df . We
view Df as a full subcategory of D̂ , by identifying objects of Df with profinite
D-algebras carrying the discrete topology.
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Example 2.7. We have Ŝet = Stone, P̂os = Priest, ĴSL0 = Stone(JSL0)
and V̂ecK = Stone(VecK), see Johnstone [18]. Thus, in all these examples every
algebra in Stone(D) (resp. Priest(D) is profinite.

Construction 2.8 (see [12]). For any objectD ∈ DS
f form the poset Quof (TD)

of all finite quotient algebras e : TD � (A,α) of the free T-algebra TD =
(TD, µD), ordered by e ≤ e′ iff e factors through e′. Define T̂D in D̂S to be the
inverse limit of the diagram Quof (TD)→ D̂S mapping (e : TD � (A,α)) to A.
We denote the limit projection associated to e by e+ : T̂D � A. In particular, for
any finite T-algebra (A,α) we have the limit projection α+ : T̂A→ A because
α : TA� (A,α) is a surjective T-homomorphism.

Theorem 2.9 (see [12]). The object map D 7→ T̂D from DS
f to D̂S extends

(via inverse limits) to a functor T̂ : D̂S → D̂S. Further, T̂ can be equipped with
the structure of a monad T̂ = (T̂ , η̂, µ̂) called the profinite monad of T. Its
unit η̂D and multiplication µ̂D for D ∈ DS

f are determined by the commutative
diagram (2.1) for all e : TD � (A,α) in Quof (TD).

D
η̂D //

eηD $$

T̂D
e+
����

T̂ T̂D
µ̂Doo

T̂ e+
����

A T̂A
α+

oooo

(2.1)

Example 2.10. The monad T̂∗ on Stone assigns to each finite set (i.e. each
finite discrete space) Σ the space Σ̂∗ of profinite words. Similarly, the monad T̂K

on Stone(VecK) assigns to each finite vector space KΣ the Stone-topological
vector space obtained as the limit of all finite quotient spaces of K[Σ].

Remark 2.11. 1. If (A,α) is a finite T-algebra, (A,α+) is a T̂-algebra: putting
e = α in (2.1) gives the unit and associative law. By [12, Prop. 3.10] this yields
an isomorphism Algf T ∼= Algf T̂ given by (A,α) 7→ (A,α+) and h 7→ h.

2. Let V : D̂S → DS denote the forgetful functor. If D ∈ D̂S
f we often write D for

V D. By [12, Rem. B.6] there is a natural transformation ι : TV → V T̂ whose
component ιD : TV D → V T̂D for D ∈ DS

f is determined by V e+ · ιD = e
for all finite quotient algebras e : TD � A of TD in Alg T. More generally,
we call a finite quotient e : TD � A in DS extensible if V ê · ιD = e for some
ê : T̂D � A in D̂S . Thus every finite quotient of TD in Alg T is extensible.

Remark 2.12. 1. D̂ is the pro-completion (the free completion under inverse
limits) of Df , see [18, Remark VI.2.4]. Moreover, since C is locally finite,
C is the ind-completion (the free completion under filtered colimits) of Cf .
Thus the dual equivalence between Cf and Df extends to a dual equivalence
between C and D̂ . We denote the equivalence functors by P : D̂

'−→ C op and
P−1 : C op '−→ D̂ . For C = BA and D = Set (with D̂ = Stone), this is the
classical Stone duality [18]: P maps a Stone space to the boolean algebra of
clopens, and P−1 maps a boolean algebra to the Stone space of all ultrafilters.
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2. We write |−| for the forgetful functors of C and D̂ into Set, and 1 for the free
objects on one generator both in C and D̂ . The two finite objects OC := P1
and OD := P−11 play the role of a dualizing object (also called a schizophrenic
object in [18]) of C and D̂ . This means that there is a natural isomorphism
between |−| · P and D̂(−, OD) given for all D ∈ D̂ by

|PD| ∼= C (1, PD) ∼= D̂(P−1PD,OD) ∼= D̂(D,OD).

Analogously |P−1| ∼= C (−, OC ). In particular, the objects OC and OD have the
same underlying set up to isomorphism, since |OD | ∼= D̂(1, OD) ∼= |P1| = |OC |

3. Subobjects in the variety C are represented by monomorphisms (= injective
morphisms). Dually, quotients in D̂ are represented by epimorphisms, which
can be shown to be precisely the surjective morphisms. Quotients of T̂-algebras
are thus represented by sortwise surjective T̂-homomorphisms.

3 Recognizable Languages and Syntactic T-Algebras

A language L ⊆ Σ∗ may be identified with its characteristic function L : Σ∗ →
{0, 1}. To get a notion of language in our categorical setting, we replace the
one-sorted alphabet Σ by an S-sorted alphabet Σ in SetSf , and represent it
in DS via the free object � ∈ DS

f generated by Σ (w.r.t. the forgetful functor
|−| : DS → SetS). The set {0, 1} is replaced by a finite “object of outputs” in
DS
f , viz. the object with OD ∈ Df in each sort. We denote this object of DS

f also
by OD . This leads to the following definition, unifying concepts in [11] and [2].

Definition 3.1. A language over the alphabetΣ ∈ SetSf is a morphism L : T�→
OD in DS . It is recognized by a T-homomorphism h : T�→ (A,α) if there is a
morphism p : A→ OD in DS with L = p · h. A language is T-recognizable if it is
recognized by some T-homomorphism with finite codomain. We denote the set
of all T-recognizable languages over Σ by Rec(Σ).

Example 3.2. 1. T = T∗ on Set with OSet = {0, 1}: a language L : T∗Σ →
{0, 1} corresponds to a classical language L ⊆ Σ∗ of finite words. It is re-
cognized by a monoid morphism h : Σ∗ → A iff L = h−1[Y ] for some subset
Y ⊆ A. Recognizable languages coincide with regular languages, i.e. languages
accepted by finite automata; see e.g. [25].

2. T = T∞ on Set2 with OSet = {0, 1}: since T∞(Σ, ∅) = (Σ+, Σω), a language
L : T∞(Σ, ∅) → {0, 1} corresponds to an ∞-language L ⊆ Σ+ ∪ Σω. It is
recognized by an ω-semigroup morphism h : (Σ+, Σω) → A iff L = h−1[Y ]
for some two-sorted subset Y ⊆ A. Recognizable ∞-languages coincide with
regular ∞-languages, i.e. languages accepted by finite Büchi automata [22].

A key observation for the topological approach to automata theory is that regular
languages over Σ correspond to clopen subsets of the Stone space Σ̂∗ of profinite
words, i.e. to continuous maps from Σ̂∗ into the discrete space {0, 1}; see [25, Prop.
VI.3.12]. This generalizes from the monad T∗ on Set to arbitrary monads T:
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Theorem 3.3. Recognizable languages over Σ correspond bijectively to morph-
isms from T̂� to OD in D̂S.

Proof (Sketch). For any recognizable language L : T� → OD , choose a finite
quotient algebra e : T� � (A,α) and a morphism p : A → OD with L = e · p.
This yields the morphism L̂ := p · e+ : T̂� → OD in D̂S , where e+ is the limit
projection of Construction 2.8. Conversely, every morphism L̂ : T̂�→ OD in D̂S

restricts to the recognizable language L := V L̂ · ι� : T�→ OD , cf. Remark 2.11.2.
The maps L 7→ L̂ and L̂ 7→ L can be shown to be mutually inverse. ut

Remark 3.4. From the above theorem and Remark 2.12.2 we get

Rec(Σ) ∼= D̂S(T̂�, OD) ∼=
∏
s

D̂((T̂�)s, OD) ∼=
∏
s

|P (T̂�)s| (3.1)

Thus we can consider Rec(Σ) as an object of C isomorphic to
∏
s P (T̂�)s. One

can show that Rec(Σ) forms a subobject of
∏
sO
|T�|s
C : the embedding Rec(Σ) �∏

sO
|T�|s
C maps a language L : T� → OD to the tuple (|T�|s

|L|−−→ |OD |
∼=−→

|OC |)s∈S , using the bijection |OD | ∼= |OC | of Remark 2.12.2. Consequently the
C -algebraic structure of Rec(Σ) is determined by OC . For example, for C = BA

with OBA = {0, 1}, the boolean structure of Rec(Σ) is given by union, intersection
and complement. For T = T∗ on Set, we thus recover a result of Pippenger [26]:
the boolean algebra of regular languages over Σ is dual to the Stone space Σ̂∗ of
profinite words; in fact, in this one sorted case (3.1) states Rec(Σ) ∼= P (Σ̂∗).

An important tool for the algebraic approach to regular languages is the syntactic
monoid of a language, viz. the smallest monoid recognizing it. We now introduce
syntactic algebras for T-recognizable languages, unifying the two corresponding
concepts introduced in [11] and [2].

Definition 3.5. Let L : T�→ OD be a recognizable language. A syntactic T-
algebra of L is a finite T-algebra AL together with a surjective T-homomorphism
eL : T� � AL (called a syntactic morphism of L) such that (i) eL recognizes
L, and (ii) eL factors through any surjective T-homomorphism e : T� � A
recognizing L, i.e. eL = h · e for some h : A� AL in Alg T.

Example 3.6. 1. T = T∗ on Set: the syntactic monoid [25] of a recognizable
language L : Σ∗ → {0, 1} is the quotient monoid eL : Σ∗ � Σ∗/≡L, where
≡L is the monoid congruence on Σ∗ defined by v ≡L w iff L(xvy) = L(xwy)
for all x, y ∈ Σ∗.

2. T = T∞ on Set2: the syntactic ω-semigroup [22] of a recognizable lan-
guage L : (Σ+, Σω) → {0, 1} is the quotient ω-semigroup eL : (Σ+, Σω) �
(Σ+, Σω)/≡L, where ≡L is the following ω-semigroup congruence on (Σ+, Σω):
for v, w ∈ Σ+ put v ≡L w iff L(xvy) = L(xwy), L(xvz) = L(xwz) and
L(x(vy)ω) = L(x(wy)ω) for all x, y ∈ Σ∗ and z ∈ Σω. And for v, w ∈ Σω put
v ≡L w iff L(xv) = L(xw) for all x ∈ Σ∗.
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3. Let T be any monad on SetS . Generalizing work of Almeida [5] on algebras for
a finitary signature, Bojańczyk [11] showed that every T-recognizable language
L : TΣ → {0, 1} has a syntactic T-algebra, constructed as follows. Denote by
1s ∈ SetS the S-sorted set with one element in sort s and otherwise empty;
thus a morphism 1s → A in SetS chooses an element of As. A polynomial
over Σ is a morphism p : 1s′ → T (Σ + 1s) with s, s′ ∈ S, i.e. a “term” of
output sort s′ in a variable of sort s. Every polynomial induces an evaluation
map (TΣ)s

[p]−→ (TΣ)s′ that inserts elements of (TΣ)s for the variable. The
syntactic T-algebra of L is given by eL : TΣ � TΣ/≡L, where ≡L is the
equivalence relation defined on sort s by x ≡L y iff L · [p] (x) = L · [p] (y) for
all polynomials p : 1s′ → T (Σ + 1s) with s′ ∈ S.

In each of the above examples, ≡L is based on unary operations. For monoids
one uses the operations v 7→ xvy on Σ∗. They determine the syntactic morphism
because the monoid structure on any quotient of Σ∗ can be recovered from them.
For ω-semigroups, ≡L uses the operations v 7→ xvy on Σ+, v 7→ xvz from Σ+ to
Σω, v 7→ x(vy)ω from Σ+ to Σω, and v 7→ xv on Σω. They determine any finite ω-
semigroup, see [22,35]. In the last example, the operations are (TΣ)s

[p]−→ (TΣ)s′ ,
and again this works as any finite quotient of TΣ is determined by the polynomials.
Here is a categorical formulation of this phenomenon:

Definition 3.7. Let Σ ∈ SetSf . By a unary operation on T� is meant a morph-
ism u : (T�)s → (T�)s′ in D , where s and s′ are arbitrary sorts. A set UΣ of
unary operations on T� is a unary presentation of T over Σ if for any extensible
finite quotient e : T� � A in DS (see Rem. 2.11.2) the following are equivalent:

(i) e is a T-algebra congruence on T�, i.e. there exists a T-algebra structure
(A,α) on A for which e : T� � (A,α) is a T-homomorphism.

(ii) Each operation u : (T�)s → (T�)s′ in UΣ has a lifting along e, i.e. a
morphism uA : As → As′ in D with e · u = uA · e.

Notation 3.8. For any set U� of unary operations on T�, we denote by UΣ(s)
the subset of all members with domain (T�)s, and by UΣ the closure of UΣ
under composition and identity morphisms.

Definition 3.9. Let UΣ be a set of unary operations on T� and L : T�→ OD

be a language. If D is a variety of algebras, the syntactic equivalence of L (w.r.t.
UΣ) is the S-sorted equivalence relation ≡L on |T�| defined as follows: for
elements x, y ∈ |T�|s put

x ≡L y iff L · u(x) = L · u(y) for all u ∈ UΣ(s).

If D is a variety of ordered algebras, the syntactic preorder of L (w.r.t. UΣ) is
the S-sorted preorder ≤L on |T�| defined on sort s by

x ≤L y iff L · u(x) ≤ L · u(y) for all u ∈ UΣ(s).
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Let D be a variety of ordered algebras. Recall that a congruence on D ∈ DS

is an S-sorted preorder ≤ = (≤s)s∈S on |D| such that the preorder ≤s on |D|s
extends the order of Ds and respects all operations of Ds. The ordered quotient
algebra π : D � D/≤ induced by ≤ is carried by the equivalence classes of the
S-sorted equivalence relation ≡ = (≤ ∩≥), with induced algebraic structure and
order. Clearly ≤L is a congruence on T�. Likewise, in the unordered case, ≡L is
a congruence on T�. Thus one can form the quotient eL : T� � T�/≤L (resp.
eL : T� � T�/≡L) in DS and it is natural to ask when it forms a syntactic
morphism for L. This turns out to hold whenever UΣ is a unary presentation:

Theorem 3.10. Let UΣ be a set of unary operations on T�. Then the following
statements are equivalent:

(i) UΣ is a unary presentation of T over Σ.
(ii) For each recognizable language L : T� → OD , the morphism eL : T� �

T�/≡L (resp. eL : T� � T�/≤L) is a T-algebra congruence on T� and
forms a syntactic morphism of L.

Example 3.11. 1. T = T∗ on Set: by Example 3.6.1 and Theorem 3.10, we have
for all Σ ∈ Setf the unary presentation UΣ = {Σ∗ x·−·y−−−→ Σ∗ : x, y ∈ Σ∗ }.

2. T = T∞ on Set2: by Example 3.6.2 and Theorem 3.10, we have for all Σ =
(Σ, ∅) ∈ Set2

f the unary presentationUΣ consisting of the maps Σ+ x·−·y−−−→ Σ+,

Σ+ x·−·z−−−→ Σω, Σ+ x·(−·y)ω−−−−−→ Σω and Σω x·−−−→ Σω with x, y ∈ Σ∗ and z ∈ Σω.
3. Let T be any monad on SetS . By Example 3.6.3 and Theorem 3.10 we

have for all Σ ∈ SetSf the unary presentation UΣ = { (TΣ)s
[p]−→ (TΣ)s′ :

p is a polynomial over Σ }.

4 Pseudovarieties of T-algebras

In this section we investigate pseudovarieties of T-algebras, the “algebraic half” of
any Eilenberg-type correspondence, and their connection to profinite T̂-algebras.

Definition 4.1. A Σ-generated T-algebra is a quotient e : T� � A of T� in
Alg T. The subdirect product of ei : T� � Ai (i = 0, 1) is the image e : T� � A
of the T-homomorphism 〈e0, e1〉 : T�→ A0 ×A1. We call e1 a quotient of e0 if
e1 factors through e0. A local pseudovariety of Σ-generated T-algebras is a class
of Σ-generated finite T-algebras closed under subdirect products and quotients.

The class of local pseudovarieties over Σ is a complete lattice w.r.t. intersection.

Definition 4.2. A T̂-algebra is profinite if it is an inverse limit of finite T̂-
algebras (cf. Remark 2.11.1). By a Σ-generated profinite T̂-algebra is meant a
quotient e : T̂� � A of T̂� in Alg T̂ with A profinite. Σ-generated profinite
T̂-algebras are ordered by e ≤ e′ iff e factors through e′.

Proposition 4.3. For each Σ ∈ SetSf , the lattices of local pseudovarieties of
Σ-generated T-algebras and Σ-generated profinite T̂-algebras are isomorphic.
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Proof (Sketch). For any Σ-generated profinite T̂-algebra e : T̂� � A, form the
local pseudovariety Pe consisting of all Σ-generated finite T-algebras arising as
quotients of A (cf. Remark 2.11.1). Then e 7→Pe gives the isomorphism. ut

Remark 4.4. If D is a variety of ordered algebras, Proposition 4.3 can be
interpreted in terms of profinite inequations. By a profinite inequation over Σ
is meant a pair of elements u, v ∈ |T̂�|s in some sort s. A Σ-generated finite
T-algebra e : T� � A satisfies the equation u ≤ v if e+(u) ≤ e+(v). From 4.3 it
easily follows that local pseudovarieties are precisely the classes of Σ-generated
finite T-algebras presentable by profinite inequations over Σ. Likewise, if D is a
variety of algebras, local pseudovarieties are presentable by profinite equations.

Eilenberg’s variety theorem deals, in lieu of languages over a fixed alphabet, with
all alphabets at once. We will do the same in all our one-sorted applications.
However, Example 2.4.2 shows that in a many-sorted setting one often needs to
make a suitable choice of alphabets in SetSf .

Notation 4.5. For the rest of this paper, we fix a class A ⊆ SetSf of alphabets.

Definition 4.6. A T-algebra A is A-generated if there exists a surjective T-
homomorphism e : T� � A for some Σ ∈ A. By a pseudovariety of T-algebras
is meant a class of A-generated finite T-algebras closed under quotients and
A-generated subalgebras of finite products.

Remark 4.7. In most applications all finite products of A-generated T-algebras
are A-generated. In this case the definition of a pseudovariety simplifies: it is
a class of A-generated finite T-algebras closed under quotients, A-generated
subalgebras, and finite products.

Example 4.8. 1. Every finite T-algebra (A,α) is SetSf -generated: since D is
locally finite, there exists an epimorphism e : � � A with Σ ∈ SetSf , so
(A,α) is a quotient of T� via (T�

Te−−→ TA
α−→ (A,α)). Thus, for A = SetSf ,

a pseudovariety of T-algebras is a class of finite T-algebras closed under
quotients, subalgebras, and finite products. This concept was studied in [12].
For the monad T∗ on Set we get the original concept of Eilenberg: a class of
finite monoids closed under quotients, submonoids, and finite products.

2. Let T = T∞ on Set2. As suggested by Example 2.4.2, we choose A = { (Σ, ∅) :
Σ ∈ Setf }. A finite T∞-algebra (= finite ω-semigroup) A is A-generated iff it
is complete, i.e. every element a ∈ Aω can be expressed as an infinite product
a = π(a0, a1, . . .) for some ai ∈ A+. Clearly complete ω-semigroups are closed
under finite products. Thus a pseudovariety of T∞-algebras is a class of finite
complete ω-semigroups closed under quotients, complete ω-subsemigroups,
and finite products. This concept is due to Wilke [35]; see also [22].

The following definition generalizes a notion introduced for monoids in [13].

Remark 4.9. Every T-homomorphism g : TD′ → TD with D,D′ ∈ DS
f ex-

tends to a T̂-homomorphism ĝ : T̂D′ → T̂D with ιD ·g = V ĝ ·ιD′ , cf. Rem. 2.11.2.
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Definition 4.10. A profinite theory is a family ϕ = (ϕΣ : T̂� � PΣ)Σ∈A of Σ-
generated profinite T̂-algebras such that for every T-homomorphism g : T�→ T�
with Σ,∆ ∈ A there exists a T̂-homomorphism gP : P∆ → PΣ with ϕΣ · ĝ =
gP · ϕ∆. We put ϕ ≤ ϕ′ iff ϕΣ factors through ϕ′Σ for each Σ ∈ A.

Proposition 4.11. The lattice of pseudovarieties of T-algebras (ordered by in-
clusion) is isomorphic to the lattice of profinite theories.

Proof (Sketch). For any profinite theory ϕ = (ϕΣ : T̂� � PΣ)Σ∈A, form the
pseudovariety Vϕ of all finite T-algebras (A,α) for which (A,α+) (cf. Rem. 2.11.1)
is a quotient of some PΣ . The map ϕ 7→ Vϕ gives the isomorphism. ut

Remark 4.12. If D is a variety of ordered algebras, this result can again be
interpreted via inequations. A finite T-algebra A satisfies a profinite inequation
u ≤ v over Σ ∈ A if e+(u) ≤ e+(v) for all surjective T-homomorphisms e : T� �
A. Pseudovarieties are the classes of A-generated finite T-algebras presentable by
profinite inequations over A. In the unordered case, take equations u = v in lieu
of inequations. For A = SetSf , this was proved in [12, Thm. 4.12 and Rem. 5.7].

5 The Variety Theorem

In this section we present our variety theorem. We assume throughout that, for
each Σ ∈ SetSf , a unary presentation UΣ of T over Σ is given.

Remark 5.1. Recall that the variety C is assumed to have a constant in the
signature. Choosing a constant gives a natural transformation from C1 : C → C ,
the constant functor on 1 ∈ C , to the identity functor IdC . It dualizes to a natural
transformation ⊥ : Id

D̂
→ COD . The idea is that ⊥ models the empty set. For the

categories D of Example 2.3 we have OSet = {0, 1}, OPos = OJSL0 = {0 < 1}
(the two-chain) and OVecK = K, and in each case we choose ⊥ : D → OD for
D ∈ D̂ to be the constant morphism with value 0.

Definition 5.2. Let L : T�→ OD be a language over Σ ∈ SetSf .

1. The derivative u−1L of L w.r.t. an operation u : (TΣ)s → (TΣ)s′ in UΣ is
the language over Σ given on sort s by (T�)s

u−→ (T�)s′
Ls′−−→ OD and on sorts

t 6= s by (T�)t
ι�−→ (V T̂�)t

V⊥−−→ OD .
2. The preimage g−1L of L under a T-homomorphism g : T� → T� is the

language over ∆ defined by T�
g−→ T�

L−→ OD .

Example 5.3. 1. T = T∗ on Set: let UΣ as in Example 3.11.1. The derivatives
of L ⊆ Σ∗ w.r.t. UΣ are the languages x−1Ly−1 = { v ∈ Σ∗ : xvy ∈ L } for
x, y ∈ Σ∗. These are the classical derivatives for languages of finite words.

2. T = T∞ on Set2: let UΣ (with Σ = (Σ, ∅)) as in Example 3.11.2. The
derivatives of L ⊆ Σ+ ∪ Σω w.r.t. the operations in UΣ are the languages
{ v ∈ Σ+ : xvy ∈ L }, { v ∈ Σ+ : xvz ∈ L }, { v ∈ Σ+ : x(vy)ω ∈ L }, and
{ v ∈ Σω : xv ∈ L }, where x, y ∈ Σ∗ and z ∈ Σω. These are the derivatives
for ∞-languages studied by Wilke [35].
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3. Let T be a monad on SetS , and take the polynomial presentation UΣ of
Example 3.11.3. The derivatives of a language L ⊆ TΣ w.r.t. UΣ are the
languages p−1L ⊆ TΣ with (p−1L)s = { v ∈ (TΣ)s : [p](v) ∈ Ls′ } and
(p−1L)t = ∅ for t 6= s, where p : 1s′ → T (Σ + 1s) is a polynomial over Σ.
These are the polynomial derivatives studied by Bojańczyk [11].

Proposition 5.4. Derivatives and preimages of recognizable languages are re-
cognizable.

Remark 5.5. Recall the isomorphism Rec(Σ) ∼=
∏
s P (T̂�)s of Remark 3.4. In

the following we study subobjects WΣ ⊆ Rec(Σ) in C . However, for technical
reasons we restrict ourselves to subobjects of the form

∏
sms :

∏
s(W ′Σ)s �∏

s P (T̂�)s, where ms : (W ′Σ)s � P (T̂�)s is a monomorphism in C :

WΣ
//

⊆
//

∼=
��

Rec(Σ)
∼=��∏

s(W ′Σ)s //∏
s
ms

//
∏
s P (T̂�)s

Such subobjects are called admissible. Clearly, for S = 1, any subobject of
Rec(Σ) is admissible. More importantly, if C is one of the categories of Example
2.3 and UΣ contains all identity morphisms, one can show that any subobject
WΣ ⊆ Rec(Σ) closed under derivatives (i.e. L ∈ WΣ implies u−1L ∈ WΣ for
all u ∈ UΣ) is admissible. Thus, in these cases the admissibility condition in
Definition 5.6.1 below can be dropped. For Definition 5.6.2, recall from the
previous section that we work with a fixed class A ⊆ SetSf of alphabets.

Definition 5.6. 1. A local variety of languages over an alphabet Σ is an ad-
missible subobject WΣ ⊆ Rec(Σ) closed under derivatives.

2. A variety of languages is a family of local varieties (WΣ ⊆ Rec(Σ))Σ∈A closed
under preimages, i.e. L ∈ WΣ implies g−1L ∈ W∆ for all Σ,∆ ∈ A and all
T-homomorphisms g : T�→ T�.

We are ready to state our main result, which holds under the Assumptions 2.1.
Theorem 5.7 (Variety Theorem).

1. The lattice of local varieties of languages over Σ ∈ SetSf (ordered by inclusion)
is isomorphic to the lattice of local pseudovarieties of Σ-generated T-algebras.

2. The lattice of varieties of languages (ordered by inclusion) is isomorphic to
the lattice of pseudovarieties of T-algebras.

Proof (Sketch). Duality! For the first isomorphism one shows that an admiss-
ible subobject WΣ ⊆ Rec(Σ), represented by a morphism ( ms : (W ′Σ)s �
P (T̂�)s )s∈S in C S , is closed under derivatives iff its dual ( P−1ms : (T̂�)s �
P−1(W ′Σ)s )s∈S in D̂S carries a Σ-generated profinite T̂-algebra. Then Proposi-
tion 4.3 gives the isomorphism. For the second isomorphism, one shows that a
family (WΣ)Σ∈A of local varieties is closed under preimages iff its dual family
forms a profinite theory. Then Proposition 4.11 gives the isomorphism. ut
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Remark 5.8. Straubing [34] studied C-varieties of regular languages which
are defined as Eilenberg’s varieties of regular languages, except that closure
under preimages is required only w.r.t. a given class C of monoid morphisms. By
making a class C of T-homomorphisms an additional parameter of our framework,
Theorem 5.7 (and its duality-based proof) easily generalize to a monad version
of Straubing’s variety theorem for C-varieties.

6 Applications

(a) Languages of finite words. Let D be a commutative variety of algebras or
ordered algebras, i.e. for any two objects A,B ∈ D the hom-set D(A,B) carries
a subobject of B|A| in D . All varieties D of Example 2.3 are commutative. A D-
monoid is an object D ∈ D with a monoid structure (|D|, •, 1) on the underlying
set such that the multiplication is a bimorphism; that is, for every x ∈ |D| the
maps x•− : |D| → |D| and −•x : |D| → |D| carry endomorphisms on D. Let TM

be the monad on D constructing free D-monoids. In [1] we showed that the free
D-monoid on � ∈ D is (�∗, •, ε), where �∗ is the free D-object on the set Σ∗, the
multiplication • extends the concatenation of words, and the unit ε is the empty
word. Thus TM� = �∗. A language L : TM� → OD is TM -recognizable iff its
adjoint transpose L′ : Σ∗ → |OD | (via the right adjoint |−| : D → Set) is regular,
i.e. computed by some finite Moore automaton with output set |OD |. Generalizing
Example 3.6.1, we showed in [2] that each recognizable language L : �∗ → OD has
a syntactic D-monoid eL : �∗ � �∗/≡L, where v ≡L w iff L(x•v•y) = L(x•w•y)
for all x, y ∈ Σ∗. For ordered varieties D , e.g. Pos, one uses in lieu of ≡L the
preorder ≤L on �∗ defined by v ≤L w iff L(x•v•y) ≤ L(x•w•y) for all x, y ∈ Σ∗,
and forms the induced poset �∗/≤L. Theorem 3.10 gives the unary presentation
UΣ = {�∗

x•−•y−−−−→ �∗ : x, y ∈ Σ∗ } for all Σ ∈ Setf . Instantiating Definition 5.6
to T = TM , a variety of regular languages in C associates to each Σ a set of
regular languages over Σ closed under C -algebraic operations (see Remark 3.4),
derivatives (see Example 5.3.1) and preimages of D-monoid morphisms. Theorem
5.7 then specializes to the main results of our papers [1,3, 13]:

Theorem 6.1. The lattice of (local) varieties of regular languages in C is iso-
morphic to the lattice of (local) pseudovarieties of D-monoids.

For the categories of Example 2.3 we recover the Eilenberg theorems listed in
the table below. The third column describes the C -algebraic operations under
which (local) varieties of languages are closed, and the fourth column states what
D-monoids instantiate to. All these correspondences are known in the literature,
and are uniformly covered by Theorem 6.1.

C D (local) var. of lang. closed under ∼= (local) pseudovarieties of proved in
BA Set boolean operations monoids [15, 17]
DL01 Pos union and intersection ordered monoids [17,23]
JSL0 JSL0 union idempotent semirings [27]
VecK VecK addition of weighted languages K-algebras [29]
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(b) Polynomial varieties. Let T be any monad on SetS . Choose A = SetSf
and UΣ as in Example 3.11.3. A polynomial variety of T-recognizable languages
associates to each Σ ∈ SetSf a set of T-recognizable languages over Σ closed under
boolean operations, polynomial derivatives (see Example 5.3.3), and preimages of
T-homomorphisms. Theorem 5.7 yields the following Eilenberg correspondence.
Its non-local part is due to Bojańczyk [11].

Theorem 6.2. The lattice of (local) polynomial varieties of T-recognizable lan-
guages is isomorphic to the lattice of (local) pseudovarieties of T-algebras.

Next, we consider correspondences that are not covered by Theorem 6.1 and
6.2, but are either instances of our Theorem 5.7, or emerge by introducing new
parameters to our setting.
(c) Languages of ∞-words. Let T = T∞ on Set2 with A = { (Σ, ∅) : Σ ∈
Setf }, and consider the unary presentation of Example 3.11.2. A variety of
∞-languages associates to each Σ ∈ Setf a set of regular ∞-languages over Σ
closed under boolean operations, derivatives (see Example 5.3.2) and preimages
of ω-semigroup morphisms. Theorem 5.7 gives

Theorem 6.3. The lattice of (local) varieties of ∞-languages is isomorphic to
the lattice of (local) pseudovarieties of ω-semigroups.

The non-local part is Wilke’s theorem for ∞-languages [35] (in the formulation
of [22]), while the local part is a new result, extending the corresponding result
of Gehrke, Grigorieff, and Pin [17] for finite words. Similarly, one can take the
monad T∞,≤ on D = Pos representing ordered ω-semigroups. Since C = DL01,
we obtain positive varieties of ∞-languages, emerging from Wilke’s concept by
dropping closure under complement. Then Theorem 5.7 gives the result below.
Its non-local part is due to Pin [24], and the local part is again a new result.

Theorem 6.4. The lattice of (local) positive varieties of ∞-languages is iso-
morphic to the lattice of (local) pseudovarieties of ordered ω-semigroups.

Let us outline three further examples that could be treated with the same
techniques as above; we postpone the details to a journal version of this paper.
(d) Ordered words. A natural generalization of ∞-words are words on linear
orderings, for which Bedon et al. [8,9] establish two variety theorems. Both are
instances of Theorem 5.7.
(e) Tree languages. Languages of binary trees are represented by the monad T

on Set3 associated to Wilke’s tree algebras [36]. The free tree algebra on (Σ, ∅, ∅)
is T (Σ, ∅, ∅) = (Σ,TΣ , CΣ) where TΣ is the set of Σ-labeled finite binary trees
(labeled at every node) and CΣ is the set of contexts, i.e. (Σ+{∗})-labeled binary
trees where ∗ appears only at a single leaf. We take A = { (Σ, ∅, ∅) : Σ ∈ Setf }.
Tree languages are subsets of TΣ , or equivalently, subsets of T (Σ, ∅, ∅) that are
empty in the first and third sort. On the algebraic side, one needs to restrict to
reduced tree algebras. These are A-generated T-algebras A determined by the
second sort, in the sense that a quotient e : A� B is an isomorphism whenever
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it is bijective in the second sort. The variety theorem of Salehi and Steinby [32]
establishes a bijective correspondence between varieties of tree languages and
pseudovarieties of reduced tree algebras. This is not a direct instance of Theorem
5.7, as languages are restricted to a subset of the sorts. However, by making our
setting parametric in a subset S0 ⊆ S, we can cover this result with our methods.
(f) Cost functions. Daviaud, Kuperberg, and Pin [14] study varieties of regular
cost functions, a quantitative version of regular languages. The corresponding
algebras are called stabilization algebras. These are ordered algebras whose axioms
involve inequations but also an implication. Consequently stabilization algebras
do not form a variety of ordered algebras and are not represented by a monad
on Pos. However, one can take the monad TS on Pos associated to the theory
of stabilization algebras minus the implication. Then, as shown in [14], regular
cost functions correspond to languages L : TSΣ → {0 < 1} recognized by finite
stabilization algebras (rather than arbitrary finite TS-algebras).

To cover stabilization algebras in our categorical setting, we need an additional
parameter: a quasivariety Q ⊆ Algf T of finite T-algebras, i.e. a subclass closed
under subalgebras and finite products. (In the above example, Q is taken to be
the quasivariety of all finite stabilization algebras, that is, finite TS-algebras
satisfying the implication.) In lieu of the profinite monad T̂ we form the pro-Q
monad T̂Q on D̂S , where T̂QD, for D ∈ DS

f , is the inverse limit of all quotients of
TD in Q. Profinite T̂-algebras are replaced by pro-Q algebras for T̂Q, i.e. quotient
algebras of T̂Q arising as inverse limits of algebras in Q. A pseudovariety of
T-algebras relative to Q is a subclass of Q closed under quotients (in Q) and
A-generated subalgebras of finite products. Theorem 5.7 and its proof then easily
generalize to a correspondence between varieties of Q-recognizable languages and
pseudovarieties of T-algebras relative to Q. For the above monad TS on Pos and
Q = finite stabilization algebras, we recover the variety theorem of [14]: varieties
of cost functions correspond to pseudovarieties of stabilization algebras.

7 Conclusions and Future Work

We presented a duality-based framework for algebraic language theory that cap-
tures the bulk of Eilenberg theorems in the literature. Besides working out the
details of (d)–(f) above, there are several interesting directions for future work.
We aim to investigate additional parameters, e.g. use an abstract factorization
system in D and D̂ , and use in lieu of free objects � arbitrary (finite) objects as
“alphabets”. This would put even more examples under the roof of our theory,
e.g. infinitary Eilenberg-type correspondences as in [6,31] that relate varieties of
(not necessarily finite) algebras to varieties of (not necessarily recognizable) lan-
guages. By studying the free-category monad on the category of graphs, we expect
a variety theorem for languages of finite paths vs. pseudovarieties of categories, a
counterpart to the Reiterman theorem for finite categories of Jones [19]. It should
also be interesting to investigate whether by using ideas from our framework
it is possible to obtain a variety theory for data languages based on nominal
Stone duality [16]. Putting all this under one roof might then truly yield the

One Eilenberg Theorem to Rule Them All.
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This appendix contains all proofs and additional details we omitted due to space
restrictions.

A Categorical toolkit

We review some concepts from category theory we will use throughout this paper.
For details we refer to standard textbooks such as [21], and also to [4] for an
introduction to locally presentable categories.

A.1 Monads. A monad on a category A is a triple T = (T, η, µ) consisting
of an endofunctor T : A → A and two natural transformations η : Id→ T and
µ : TT → T (called the unit and multiplication of T) such that the following
diagrams commute:

T
ηT
//

id
!!

TT

µ

��

T

T
Tη
//

id
!!

TT

µ

��

T

TTT
Tµ
//

µT

��

TT

µ

��

TT
µ
// T

Given two monads S = (S, ηS, ηS) and T = (T, ηT, µT) on A , a monad morphism
ϕ : S→ T is a natural transformation ϕ : S → T making the following diagrams
commute:

Id ηS
//

ηT
��

S

ϕ

��

T

SS
Sϕ
//

µS

��

ST
ϕT
// TT

µT

��

S
ϕ

// T

A.2 Algebras for a monad. Let T = (T, η, µ) be a monad on a category
A . By a T-algebra is meant a pair (A,α) of an object A ∈ A and a morphism
α : TA→ A satisfying the unit and associative laws:

A

id
!!

ηA // TA

α

��

A

TTA

Tα
��

µA // TA

α

��

TA
α

// A

Given two T-algebras (A,α) and (B, β), a T-homomorphism h : (A,α)→ (B, β)
is a morphism h : A → B in A such that h · α = β · Th. Denote by Alg T

the category of T-algebras and T-homomorphisms. There is a forgetful functor
U : Alg T→ A given by (A,α) 7→ A on objects and h 7→ h on morphisms. It has a
left adjoint assigning to each object A of A the T-algebra TA = (TA, µA), called
the free T-algebra on A, and to each morphism h : A→ B the T-homomorphism
Th : TA → TB. Note that for any T-algebra (A,α) the associative law states
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precisely that α : TA → (A,α) is a T-homomorphism. Moreover, the unit law
implies that α is a (split) epimorphism in A .

A.3 Limits of T-algebras. The forgetful functor U : Alg T→ A preserves
limits, being a right adjoint (see A.2). More importantly, it also creates limits.
That is, given a diagram D : S → Alg T and a limit cone (ps : A→ UDs)s∈S

over UD in A , there exists a unique T-algebra structure (A,α) on A such that
all ps are T-homomorphisms, and moreover (ps : (A,α)→ Ds)s∈S forms a limit
cone over D in Alg T. In case A is complete, it follows that Alg T is complete
and that U reflects limits. That is, a cone (ps : (A,α)→ Ds)s∈S over D is a limit
cone whenever (ps : A→ UDs)s∈S is a limit cone over UD.

A.4 Comma categories. Let F : B → A be a functor and A an object in
A . The comma category (A ↓ F ) has as objects all morphisms (A f−→ FB) in
A with B ∈ B, and its morphisms from (A f1−→ FB1) to (A f2−→ FB2) are
morphisms h : B1 → B2 in B with f2 = Fh · f1. If F : B ↪→ A is the inclusion
of a subcategory B, we write (A ↓ B) for (A ↓ F ).

A.5 Kan extensions. The right Kan extension of a functor F : A → C
along K : A → B is a functor R : B → C together with a universal natural
transformation ε : RK → F , i.e. for every functor G : B → C and every natural
transformation γ : GK → F there exists a unique natural transformation γ† : G→
R with γ = ε · γ†K. If A is small and C is complete, this extension exists, and
the object RB for B ∈ B is the limit of the diagram

(B ↓ K) QB−−−→ A
F−−→ C

that maps (B f−→ KA) to FA and h : (B f1−→ KA1)→ (B f2−→ KA2) to Fh.

A.6 Codensity monads. Let ε : RK → K be the right Kan extension of a
functor K : A → B along itself. Then R can be equipped with a monad structure
R = (R, ηR, µR) where the unit ηR is (idK)† : Id → R and the multiplication
µR is (ε ·Rε)† : RR→ R. The monad R is called the codensity monad of K, see
e.g. [20].

A.7 Final functors. Let K be a cofiltered category (see A.8). A functor
F : K → B is called final if

(i) for any object B of B, there exists a morphism f : FK → B for some
K ∈ K , and

(ii) given two parallel morphisms f, g : FK → B with K ∈ K , there exists a
morphism k : K ′ → K in K with f · Fk = g · Fk.

The importance of final functors is that they facilitate the construction of
limits. If F : K → B is final, then a diagram D : B → A has a limit iff the
diagram DF : K → A has a limit, and in this case the two limit objects agree.
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Specifically, any limit cone (pB : A→ DB)B∈B over D restricts to a limit cone
(pFK : A→ DFK)K∈K over DF .

A.8 Cofiltered limits and inverse limits. A category K is cofiltered if
for every finite subcategory D : K ′ � K there exists a cone over D. This is
equivalent to the following three conditions:

(i) K is nonempty.
(ii) For any two objects Y and Z of K , there exist two morphisms f : X → Y

and g : X → Z with a common domain X.
(iii) For any two parallel morphisms f, g : Y → Z in K , there exists a morphism

e : X → Y with f · e = g · e.

A cofiltered limit in a category A is a limit of a diagram K → A with cofiltered
scheme K . It is also called an inverse limit if K is a (co-directed) poset. For
any small cofiltered category K , there exists a final functor F : K0 → K where
K0 is a small co-directed poset. Consequently, a category has cofiltered limits
iff it has inverse limits, and a functor preserves cofiltered limits iff it preserves
inverse limits.

The dual concept of a cofiltered limit is a filtered colimit.

A.9 Finitely copresentable objects. An object A of a category A is called
finitely copresentable if the hom-functor A (−, A) : A → Setop preserves cofiltered
limits. Equivalently, for any cofiltered limit cone (pi : B → Bi)i∈I in A the
following two statements hold:

(i) Every morphism f : B → A factors through some pi.
(ii) For any i ∈ I and any two morphisms s, s′ : Bi → A with s · pi = s′ · pi,

there exists a connecting morphism bji : Bj → Bi in the given diagram with
s · bji = s′ · bji.

A.10 Locally finitely copresentable categories. A category A is called
locally finitely copresentable if it satisfies the following three properties:

(i) A is complete;
(ii) the full subcategory Af of finitely copresentable objects is essentially small,

i.e. the objects of Af (taken up to isomorphism) form a set;
(iii) any object A of A is a cofiltered limit of finitely copresentable objects; that

is, there exists a cofiltered limit cone (A→ Ai)i∈I in A with Ai ∈ Af for
all i ∈ I.

If A is locally finitely copresentable, so is any functor category A S , where S is
an arbitrary small category. In particular, this holds for any product category
A S (where S is set) and for the arrow category A→. The latter has as objects
all morphisms of A , and as morphisms from (A f−→ B) to (C g−→ D) all pairs
of morphisms (a : A → C, b : B → D) in A with b · f = g · a. The finitely
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copresentable objects of A→ are precisely the arrows with finitely copresentable
domain and codomain.

A.11 Cofiltered limits in locally finitely copresentable categories. Let
A be a locally finitely copresentable category. A cone (pi : B → Bi)i∈I over a
cofiltered diagram in A is a limit cone iff

(i) every morphism f : B → A with A ∈ Af factors through some pi, and
(ii) this factorization is essentially unique: given i ∈ I and s, s′ : Bi → A with

s · pi = s′ · pi, there exists a morphism bji : Bj → Bi in the diagram with
s · bji = s′ · bji.

Note that if all pi’s are epimorphisms, condition (ii) is trivial.

A.12 Canonical diagrams. Let A be a locally finitely copresentable cat-
egory. Then for each object A ∈ A the comma category (A ↓ Af ) is essen-
tially small and cofiltered. The canonical diagram of A is the cofiltered diagram
KA : (A ↓ Af ) → A that maps an object (A f−→ A1) to A1 and a morphism
h : (A f1−→ A1) → (A f2−→ A2) to h : A1 → A2. Every object A of A is the
cofiltered limit of its canonical diagram, that is, KA has the limit cone

(f : A→ KAf)f∈(A↓Af ).

A.13 Pro-completions. Let B be a small category. By a pro-completion (or
a free completion under cofiltered limits) of B is meant a category Pro B together
with a full embedding I : B � Pro B such that

(i) Pro B has cofiltered limits.
(ii) For any functor F : B → C into a category C with cofiltered limits, there

exists a functor F : Pro B → C , unique up to natural isomorphism, such
that F preserves cofiltered limits and F · I is naturally isomorphic to F .

The universal property determines Pro B uniquely up to equivalence of categories.
If the category B has finite limits, then Pro B is locally finitely copresentable,
and its finitely copresentable objects are up to isomorphism the objects IB
(B ∈ B). Conversely, every locally finitely copresentable category A arises in
this way: we have A = Pro Af .

The dual concept of a pro-completion is an ind-completion, i.e. the free
completion under filtered colimits.

A.14 Factorization systems. A factorization system in a category A is a
pair (E ,M) where E andM are classes of morphisms of A with the following
properties:

(i) Both E andM are closed under composition and contain all isomorphisms.
(ii) Every morphism f of A has a factorization f = m · e with e ∈ E and

m ∈M.
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(iii) The diagonal fill-in property holds: given a commutative square as shown
below with e ∈ E and m ∈ M, there exists a unique morphism d making
both triangles commute.

A
e // //

f

��

B

g

��

d

~~

C //
m
// D

We will use three standard facts about factorization systems:

(a) Suppose thatM is a class of monomorphisms. If (pi : A→ Ai)i∈I is a limit
cone in A , then the factorization pi = (A ei // // A′i

//
mi // Ai ) with ei ∈ E

and mi ∈M yields another limit cone (ei : A� A′i)i∈I over the same scheme.
(b) Suppose that E is a class of epimorphisms. If T is a monad on A that

preserves E , i.e. e ∈ E implies Te ∈ E , then Alg T has the factorization
system of E-carried andM-carried T-homomorphisms.

(c) Every locally finitely copresentable category A has the (epi, strong mono)
factorization system. Its arrow category A→, see A.10, has the factorization
system of componentwise epimorphic and strongly monomorphic morphisms.

B Topological toolkit

The following lemmas give important properties of cofiltered limits in the category
of compact Hausdorff spaces and continuous maps. The proofs of the first three
lemmas can be found in Chapter 1 of [30].

Lemma B.1. Let τ : D1 → D2 be a natural transformation between cofiltered
diagrams (over the same scheme) in the category of compact Hausdorff spaces.
If each τi : D1i� D2i is surjective, so is the mediating map Lim τ : LimD1 →
LimD2. In particular, if (τi : X � Di) is a cone of surjections over a cofiltered
diagram D, then the mediating map X → LimD is surjective.

Lemma B.2. Let D be a cofiltered diagram in the category of compact Hausdorff
spaces. If all connecting maps D(i f−→ j) are surjective, so is each limit projection
%i : LimD → Di.

Lemma B.3. Let D be a cofiltered diagram of non-empty spaces in the category
of compact Hausdorff spaces. Then LimD is non-empty.

Lemma B.4. Let (pi : X → Xi)i∈I be a cofiltered limit in the category of
compact Hausdorff spaces, where all Xi’s are finite (and thus discrete). For
each i ∈ I, there is some j ∈ I and a connecting map gji : Xj → Xi with
pi[X] = gji[Xj ].

Proof. By A.8 we may assume that I is a codirected poset.
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(i) For each x ∈ Xi \ pi[X], there exists some j ≤ i such that x 6∈ gji[Xj ]. To
see this, suppose the contrary. Then, for each j ≤ i, the set X ′j := { y ∈ Xj :
gji(y) = x } is non-empty. Moreover, for k ≤ j ≤ i, the connecting map
gkj : Xk → Xj restricts to X ′k and X ′j . Thus (X ′j)j≤i forms a subdiagram
of (Xj)j≤i, and by Lemma B.3 its limit (p′j : X ′ → X ′j)j≤i is non-empty.
Consider the unique map g : X ′ → X with pj · g = sj · p′j for all j ≤ i,
where sj : X ′j � Xj is the inclusion. Then, choosing any x ∈ X ′, we have
x = pi(g(x′)), contradicting the assumption that x 6∈ pi[X].

(ii) Since Xi \pi[X] is a finite, by (i) and codirectedness of I there is some j ≤ i
such that gji[Xj ] ⊆ pi[X]. Moreover, we have gji[Xj ] ⊇ pi[X] because (pi)
is a cone. This proves the claim.

ut

C Details for Section 2

Proposition C.1. D̂ is the pro-completion of Df .

A proof is sketched in [18, Remark VI.2.4] for the unordered case, and the
argument given there works analogously for the ordered case. For convenience,
we present a complete proof for the latter.

Proof. Let D be a variety of ordered algebras. Clearly D̂ is complete (with
limits formed on the level of Set) and, by definition, every object of D̂ is a
cofiltered limit of objects in Df . Thus, by A.13, it only remains to show that
every object D ∈ Df is finitely copresentable in D̂ : given a cofiltered limit cone
(pi : X → Xi)i∈I in D̂ and a morphism f : X → D, we need to show that
f factors through the cone essentially uniquely. The uniqueness is clear since,
forgetting the D-algebraic structure, D is finitely copresentable in Priest. Thus
we only need to show the existence of a factorization.

(1) Suppose first that all Xi’s are finite. Since (pi) is a cofiltered limit cone
in Priest and D is a finite poset with discrete topology (and thus finitely
copresentable in Priest), there exists an i ∈ I and a monotone map f ′ : Xi →
D with f ′ · pi = f . Choose j ∈ I and a connecting morphism g : Xj → Xi

with g[Xj ] = pi[X], see Lemma B.4. We claim that the composite h = f ′ · g
is a morphism of D̂ , i.e. preserves all D-operations. Indeed, given an n-ary
operation symbol σ in the signature of D and x1, . . . , xn ∈ Xj , choose x′k ∈ X
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with g(xk) = pi(x′k) for k = 1, . . . , n. Then

h(σ(x1, . . . , xn)) = f ′(g(σ(x1, . . . , xn))) (h = f ′g)
= f ′(σ(g(x1), . . . , g(xn))) (g morphism of D)
= f ′(σ(pi(x′1), . . . , pi(x′n))) (g(x′k) = pi(x′k))
= f ′(pi(σ(x′1, . . . , x′n))) (pi morphism of D)
= f(σ(x′1, . . . , x′n)) (f ′pi = f)

= σ(f(x′1), . . . , f(x′n)) (f morphism of D̂)
= σ(f ′ · pi(x′1), . . . , f ′ · pi(x′n)) (f = f ′pi)
= σ(f ′ · g(x1), . . . , f ′ · g(xn)) (pi(x′k) = g(xk))
= σ(h(x1), . . . , h(xn)) (h = f ′g)

Thus h lies in D̂ . Moreover, we have f = f ′ · pi = f ′ · g · pj = h · pj , i.e. f
factors through pj .

(2) Now let the Xi’s be arbitrary. We may assume that I is a codirected poset,
see A.8. The connecting morphism for i ≤ j is denoted by gij : Xi → Xj .
Form the codirected poset

J = { (i, e) : i ∈ I and e : Xi � Ae is a finite quotient of Xi in D̂ }

ordered by

(i, e) ≤ (j, q) iff i ≤ j and q · gij = g · e for some g : Ae → Aq.

Note that g is necessarily unique. It is easy to verify that the diagram
Q : J → D̂ given by

(i, e) 7→ Ae and ((i, e) ≤ (j, q)) 7→ g

has the limit cone
(e · pi : X → Ae)(i,e)∈J .

By (1), there exists an (i, e) ∈ J and a morphism f ′ : Ae → D with f ′·e·pi = f .
Thus f factors through pi. ut

C.1 Details for Remark 2.12.2

The forgetful functor |−| : D̂ → Set is representable by 1, i.e. it is is naturally
isomorphic to D̂(1,−) via the isomorphisms

|D| ∼= Set({∗}, |D|) ∼= D̂(1, D),

which are natural in D ∈ D̂ . Then, the natural isomorphism |P | ∼= D̂(−, OD)
follows from the observation that the diagram below commutes for all h : D′ → D
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in D̂ :

C (1, PD)
C (1,Ph)

//

∼=
��

C (1, PD′)

∼=
��

D̂(D,OD)
D̂(h,OD)

// D̂(D′, OD)

and similarly for |P−1| ∼= C (−, OC ). ut

C.2 Details for Remark 2.12.3

Notation C.2. Let V denote the two forgetful functors V : D̂ → D and
V : D̂S → DS .

Remark C.3. 1. By Proposition C.1 and A.13, the category D̂ is locally finitely
copresentable, and its finitely copresentable objects are the objects of Df .
Since the set S of sorts is assumed to be finite, this implies that the product
category DS is also locally finitely copresentable and its finitely copresentable
objects are precisely the objects of DS

f . Hence, by A.13 again, the category
D̂S is the pro-completion of DS

f .
2. The forgetful functor V : D̂ → D is a right adjoint and thus preserves limits,

see [12, Proposition 2.8]. Since limits in D̂S and DS are computed sortwise,
the same holds for the S-sorted forgetful functor V : D̂S → DS .

Proposition C.4. Epimorphisms in D̂ are surjective.

Proof. 1. First, observe that all monomorphisms in D̂ are injective because the
right adjoint V : D̂ → D , see Remark C.3.2, preserves monomorphisms.

2. We show that any epimorphism e : A� B in Df is surjective. Since epimorph-
isms in D are assumed to be precisely the surjective morphisms, it suffices to
show that e is an epimorphism in D . Suppose that f, g : B → C are morph-
isms in D with f · e = g · e. Express C as a directed union (ci : Ci � C)i∈I
of finite subobjects, using that D is a locally finite variety. Since B is finite
and the union is directed, the morphisms f and g factor through some ci, i.e.
there exist morphisms f ′, g′ with f = ci · f ′ and g = ci · g′. Then

ci · f ′ · e = f · e = g · e = ci · g′ · e,

and since ci is monic, it follows that f ′ · e = g′ · e. Since e is an epimorphism
in Df and Ci is finite, this implies f ′ = g′ and therefore f = g.

3. We prove that every epimorphism e : A � B in D̂ with finite codomain is
surjective. To see this, factorize e as e = m·q with q surjective andm injective
(resp. order-reflecting). By part 1, the morphism m has finite domain, and
moreover m is an epimorphism since e is. Thus, part 2 shows that m is
surjective, which implies that e is surjective.
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4. Now let e : A � B be an arbitary epimorphism in D̂ . By A.10, one can
express e in the locally finitely copresentable category D̂→ as a cofiltered
limit ((ai, bi) : e → fi)i∈I of morphisms fi : Ai → Bi in Df . Take the (epi,
strong mono) factorizations of ai and bi, see A.14(c). Diagonal fill-in gives a
morphism ei as in the diagram below:

A

ai

��

e // //

a′i
����

B

bi

��

b′i
����

A′i
ei // //

��

a′′i
��

B′i
��

b′′i
��

Ai
fi

// Bi

The objects A′i and B′i are finite by part 1 of the proof. Moreover, since e and b′i
are epimorphic, so is ei, and thus part 2 shows that ei is surjective. Moreover,
by part 3, also a′i is surjective. Finally, observe that ((a′i, b′i) : e→ ei)i∈I is a
cofiltered limit cone in D̂→ by A.14(a),(c). Since limits in D̂→ are computed
componentwise, Lemma B.1 shows that e is surjective.

ut

Remark C.5. From the fact that D̂ is locally finitely copresentable and epi-
morphisms in D̂ are precisely the surjective morphisms, it follows that the
factorization system (epi, strong mono) of D̂ coincides with (surjective, injective)
if D is a variety of algebras, and with (surjective, order-reflecting) if D is a variety
of ordered algebras. Thus, dually, the variety C has the factorization system
(strong epi, mono) = (surjective, injective).

Remark C.6. We list some further properties of the profinite monad T̂. See [12]
for proofs.

1. For any D ∈ DS
f , denote by (TD ↓ Algf T) the comma category of all

T-homomorphisms h : TD → A with finite codomain, see A.4, and by
Quof (TD) its full subcategory on surjective homomorphims. The inclusion
functor Quof (TD) ↪→ (TD ↓ Algf T) is final, cf. A.7. Therefore T̂D, see
Construction 2.8, is also the cofiltered limit of the larger diagram

(TD ↓ Algf T)→ D̂S , (TD h−→ (A,α))→ A.

The limit projections are denoted by h+ : T̂D → A. The following squares
commute for all T-homomorphisms h : TD → (A,α) with (A,α) ∈ Algf T:

D
η̂D //

hηD
  

T̂D

h+

��

T̂ T̂D
µ̂D //

T̂ h+

��

T̂D

h+

��

A T̂A
α+

// A

(C.1)
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2. The profinite monad T̂ is the codensity monad (see A.6) of the forgetful
functor

Algf T→ DS
f

∼=−→ D̂S
f ↪→ D̂S .

The limit formula for right Kan extensions (see A.5) yields the construction
of T̂D and the commutative diagrams (C.1) in C.6.1.

3. Recall from Remark 2.11.1 the isomorphism Algf T
∼=−→ Algf T̂. Its inverse

is given by (B, β) 7→ (B, V β · ιB) and h 7→ h. In the following we will often
tacitly identity finite T-algebras with their corresponding finite T̂-algebras.

4. Every finite T̂-algebra is finitely copresentable in Alg T̂, see A.9.
5. Recall from Remark 2.11.2 the natural transformation ι : TV → V T̂ . Every

T̂-homomorphism h : T̂D → (A,α+) with (A,α) ∈ Algf T and D ∈ DS
f

restricts to a T-homomorphism V h · ιD : TD → (A,α).
6. For any D ∈ DS

f the morphism ιD : TV D → V T̂D is dense, i.e. for each sort
s the image of

ιD : (TV D)s → (V T̂D)s = V (T̂D)s

is a dense subset of the profinite D-algebra (T̂D)s ∈ D̂ . This implies that for
any surjective morphism e : T̂D � A in D̂S with A ∈ D̂S

f , the restricted map
V e · ιD : TD � A is also surjective, as this map is dense and A is discrete.
We will use this property frequently.

7. The functor T̂ preserves epimorphisms (= sortwise surjective morphisms)
of D̂S . Thus the factorization system of DS lifts to Alg T̂: every T̂-homo-
morphism factorizes into a sortwise surjective homomorphism followed by a
sortwise injective one.

Lemma C.7. Every T-homomorphism g : TD′ → TD with D,D′ ∈ DS
f extends

uniquely to a T̂-homomorphism ĝ : T̂D′ → T̂D such that the following diagrams
commute for all T-homomorphisms h : TD → A with A ∈ Algf T:

TD′
g
//

ιD′
��

TD

ιD
��

V T̂D′
V ĝ
// V T̂D

T̂D′
ĝ
//

(hg)+
""

T̂D

h+

��

A

(C.2)

Proof. The morphisms (hg)+ form a compatible family over the diagram defining
T̂D, i.e. for all T-homomorphisms k : A → A′ in Algf T we have (khg)+ =
k · (hg)+. Indeed, this holds when precomposed with the dense map ιD′ :

V (khg)+ · ιD′ = khg = k · V (hg)+ · ιD′ .

Thus there exists a unique ĝ : T̂D′ → T̂D with (hg)+ = h+ · ĝ for all h,
i.e. the right-hand diagram of (C.2) commutes. This also implies that the left-
hand diagram commutes. Indeed, it commutes when postcomposed with every
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morphism V h+:
TD′

g
//

ιD′
��

hg
//

TD

ιD
��

h

��

V T̂D′
V ĝ
//

V (hg)+

))

V T̂D

V h+

""
A

By Remark C.3.2, V preserves limits, thus the V h+ form a jointly monomorphic
family and so we are done. ut

D Details for Section 3

D.1 Proof of Theorem 3.3

We first show that the language L := V L̂ · ι� : T�→ OD is recognizable for any
morphism L̂ : T̂� → OD in D̂S . Since OD is finitely copresentable in D̂S , see
Remark C.3, the morphism L̂ factors through the cofiltered limit cone defining
T̂�, i.e. there exists a T-homomorphism h : T� → A with A ∈ Algf T and a
morphism p : A→ OD in D̂S with L̂ = p · h+. It follows that L is recognized by
h via p, see the diagram below:

T�

ι�
��

h

""

L // OD

V T̂�
V h+

// A

p=V p

OO

(D.1)

Conversely, let L : T�→ OD be any recognizable language. Choose a T-homo-
morphism h : T�→ A with A finite and a morphism p : A→ OD with L = p · h.
This yields the following morphism in D̂S :

L̂ = (T̂�
h+

−−→ A
p−→ OD).

Since L = V L̂·ι� and ι� is dense by Remark C.6.6, the morphism L̂ is independent
of the choice of h and p. Clearly the maps L̂ 7→ L and L 7→ L̂ are mutually
inverse, which proves the claim. ut

D.2 Details for Remark 3.4

We verify that Rec(Σ), viewed as an object of C isomorphic to
∏
s P (T̂�)s, is a

subobject of
∏
sO
|T�|s
C via the map

(T�
L−−→ OD) 7→ (|T�|s

|L|−−−→ |OD |
∼=−−→ |OC |)s∈S
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1. We first show that, for each sort s, the object P (T̂�)s forms a subobject
of O|T�|s

C . For each element x : 1→ (T�)s of |T�|s, the D-morphism (1 x−→
(T�)s

ι�−→ V (T̂�)s) is continuous, because 1 is finite and thus discrete. That
is, there exists a morphism x̂ : 1→ (T̂�)s in D̂ with V x̂ = ι� · x. Since the
morphisms x are jointly surjective, and ι� is dense by Remark C.6.6, the
family (x̂)x : 1→(T�)s forms a jointly epimorphic family in D̂ . Thus the dual
family (Px̂ : P (T̂�)s → OC ) in C is jointly monomorphic, which implies
that the induced morphism ms into the product (making the triangle below
commute for all x) is monomorphic.

P (T̂�)s

P x̂
$$

//
ms // O

|T�|s
C

πx

��

OC

2. It follows that Rec(Σ) is a subobject of
∏
sO
|T�|s
C via the embedding

Rec(Σ) ∼= D̂S(T̂�, OD) ∼=
∏
s

D̂((T̂�)s, OD) ∼=
∏
s

|P (T̂�)s|
∏

s
ms

−−−−→
∏
s

O
|T̂�|s
C .

By applying the definitions of the above three bijections and of the morphisms
ms, one easily verifies that this embedding maps a recognizable language
L : T�→ OD to the element (|T�|s

|L|−−→ |OD |
∼=−→ |OC |)s∈S of

∏
sO
|T�|s
C , as

claimed. ut

D.3 Details for Example 3.6.3

Every polynomial p : 1s′ → T (Σ + 1s) induces an evaluation map [p] : (TΣ)s →
(TΣ)s′ that sends an element x : 1s → TΣ of (TΣ)s to the following element of
(TΣ)s′ :

1s′
p−→ T (Σ+1s)

T (Σ+x)−−−−−→ T (Σ+TΣ) T (η+TΣ)−−−−−−→ T (TΣ+TΣ) T [id,id]−−−−−→ TTΣ
µΣ−−→ TΣ.

D.4 Proof of Theorem 3.10

Lemma D.1. 1. If D is a variety of algebras, then for any object D ∈ DS
f and

any two elements x, y ∈ |D|s with s ∈ S we have

x = y iff ∀(D k−→ OD) : k(x) = k(y).

2. If D be a variety of ordered algebras, then for any object D ∈ DS
f and any

two elements x, y ∈ |D|s with s ∈ S we have

x ≤ y iff ∀(D k−→ OD) : k(x) ≤ k(y).
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Proof. To prove (b), suppose first that S = 1. Given D ∈ Df , its dual object
PD ∈ Cf is finite und thus finitely generated, so there exists a surjective
morphism (i.e. a strong epimorphism)

∐
i∈I 1� PD in Cf , where I = |PD| is

finite. Its dual morphism m : D �
∏
i∈I OD in Df is a strong monomorphism

and thus order-reflecting. Then x 6≤ y in |D| implies m(x) 6≤ m(y), and thus
πim(x) 6≤ πim(y) for some i ∈ I since the product projections πi :

∏
iOD → OD

are jointly order-reflecting. This shows that the morphism k := πi ·m : D → OD

separates x and y, as desired.
Now let S be arbitrary and x 6≤ y ∈ |D|s. By the above argument there

exists a morphism ks : Ds → OD in D with ks(x) 6≤ ks(y). For any sort t 6= s,
pick an arbitrary morphism kt : Dt → OD . Such a morphism exists because,
by our Assumption 2.1 that the signature of C has a constant, we dually have
a morphism 1 → PDt in Cf . Thus k : D → OD is a morphism in DS with
k(x) 6≤ k(y).

The proof of (a) is analogous, using equations in lieu of inequations. ut

Proof (Theorem 3.10). We only treat the case where D is a variety of ordered
algebras; for the unordered case, just replace inequations by equations throughout
the proof. In our proof we will repeatedly use the homomorphism theorem: given
e : A � B and f : A → C in DS with e sortwise surjective, there exists a
morphism g : B → C with g · e = f iff, for all sorts s and a, a′ ∈ |A|s, e(a) ≤ e(a′)
implies f(a) ≤ f(a′). Put AL := T�/≤L.

(i)⇒(ii) Suppose that UΣ is a unary presentation of T over Σ, and let L : T�→
OD be a recognizable language.

(a) We show that there exists a morphism pL : AL → OD in DS with L = pL ·eL,
using the homomorphism theorem. Let x, y ∈ |T�|s with eL(x) ≤ eL(y),
i.e. x ≤L y. Since UΣ contains all identities, putting u := id(T�)s in the
definition of ≤L (see Definition 3.9) yields L(x) ≤ L(y). The homomorphism
theorem gives the desired pL.

(b) Since L is recognizable, there is a surjective T-homomorphism e : T� � A
into a finite T-algebra A and a morphism p : A→ OD in DS with L = p · e.
Furthermore, since UΣ forms a unary presentation, we can choose for each
u : (T�)s → (T�)s′ inUΣ a lifting uA : As → As′ along e, that is, e·u = uA·e.
We claim that there exists a morphism h : A→ AL in DS with eL = h·e. This
follows from the homomorphism theorem: let x, y ∈ |T�|s with e(x) ≤ e(y).
Then, for all sorts s′ and u : (T�)s → (T�)s′ in UΣ ,

L · u(x) = p · e · u(x) = p · uA · e(x) ≤ p · uA · e(y) = p · e · u(y) = L · u(y).

Thus x ≤L y, or equivalently eL(x) ≤ eL(y), and the homomorphism theorem
gives the desired h.

(c) We show that (I) eL is extensible, and (II) every morphism u : (T�)s →
(T�)s′ in UΣ has a lifting along eL. This implies the claim: since UΣ is
a unary presentation, AL then carries a T-algebra structure making eL a
T-homomorphism. And part (a) and (b) show that eL recognizes L and has
the universal property of a syntactic morphism.
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For (I), the following commutative diagram shows that eL is extensible:

T�
ι�

||
e
����

eL

!! !!

V T̂�
V e+

// // A
h
// // AL

Indeed, the left-hand triangle commutes by Remark 2.11.2, and the right-hand
one by (b). Thus eL has the continuous extension h · e+.
For (II), by the homomorphism theorem we need to show that for all x, y ∈
|T�|s with x ≤L y we have u(x) ≤L u(y). Note that for all sorts s′′ and all
u′ : (T�)s′ → (T�)s′′ in UΣ we have u′ · u ∈ UΣ because UΣ is closed under
composition. Thus x ≤L y implies

L·(u′·u)(x) ≤ L·(u′·u)(x) for all sorts s′′ and u′ : (T�)s′ → (T�)s′′ in UΣ ,

which means precisely that u(x) ≤L u(y).

(ii)⇒(i) Suppose that, for any recognizable language L over Σ, the morphism eL
is a T-algebra congruence, and moreover eL : T� � AL is a syntactic morphism
of L. We verify that UΣ is a unary presentation, i.e. the equivalence of (i) and
(ii) in Definition 3.7 for any extensible finite quotient e : T� � A in DS .
3.7.(i)⇒3.7.(ii) Suppose that A carries a T-algebra structure making e : T� � A
a T-homomorphism. We need to show that every morphism u : (T�)s → (T�)s′
in UΣ has a lifting along e, i.e. there exists a morphism uA : As → As′ with e·u =
uA ·e. This requires another use of the homomorphism theorem. For any morphism
k : A → OD in DS we have the recognizable language Lk := k · e : T� → OD ,
which by hypothesis has the syntactic morphism eLk : T� � ALk . Since eLk
recognizes Lk, there exists a morphism pLk : ALk → OD with Lk = pLk · eLk .
Furthermore, the universal property of the syntactic morphism eLk gives a unique
T-homomorphism hk : A� ALk with eLk = hk · e. Then for all x, y ∈ |T�|s we
have the following implications:

e(x) ≤ e(y) ⇒ ∀(k : A→ OD) : eLk(x) ≤ eLk(y) (eLk = hk · e)
⇔ ∀k : x ≤Lk y (def. eLk)
⇒ ∀k : Lk · u(x) ≤ Lk · u(y) (def. ≤Lk)
⇔ ∀k : k · e · u(x) ≤ k · e · u(y) (def. Lk)
⇔ e · u(x) ≤ e · u(y) (Lemma D.1).

Thus the homomorphism theorem gives the desired lifting uA.
3.7.(ii)⇒3.7.(i) Let e = V ê · ι� : T� � A be an extensible finite quotient in DS ,
and suppose that every u : (T�)s → (T�)s′ in UΣ has a lifting uA : As → As′

along e. We need to show that A carries a T-algebra structure making e a T-
homomorphism. For each k : A→ OD in DS the language Lk := k · e : T�→ OD

is recognizable by Theorem 3.3, since Lk = V (k · ê) · ι�. Thus by hypothesis we
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have the syntactic morphism eLk : T� � ALk . Since eLk recognizes Lk, there
exists a morphism pLk : ALk → OD with Lk = pLk · eLk .

We claim that eLk factors through e. To see this, we use the homomorphism
theorem. Given x, y ∈ |TΣ|s with e(x) ≤ e(y), we have for all u : (T�)s → (T�)s′
in UΣ :

Lk · u(x) = k · e · u(x) (def. Lk)
= k · uA · e(x) (def. uA)
≤ k · uA · e(y) (e(x) ≤ e(y))
= k · e · u(y) (def. uA)
= Lk · u(y) (def. Lk).

Thus x ≤Lk y, or equivalently eLk(x) ≤ eLk(y). The homomorphism theorem
yields a morphism hk with eLk = hk · e.

We are ready to define the desired T-algebra structure (A,α) on A for which
e is a T-homomorphism. Since T preserves epimorphisms, it suffices to find a
morphism α : TA→ A in DS making the following square commute:

TT�
µ� //

Te
����

T�

e
����

TA
α
// A

The construction of α once again rests on the homomorphism theorem. The proof
is illustrated by the diagram below, where αLk is the T-algebra structure of ALk .

TT�
µ� //

Te
����

TeLk

"" ""

T�

e
����

Lk

""

TA
α

//

Thk
����

A

hk
����

k // OD

TALk αLk

// ALk

pLk

<<

For all x, y ∈ |TT�|s with Te(x) ≤ Te(y) we have

k · e · µ�(x) = Lk · µ�(x) (def. Lk)
= pLk · eLk · µ�(x) (def. pLk , eLk)
= pLk · αLk · TeLk(x) (eLk is T-hom.)
= pLk · αLk · Thk · Te(x) (def. hk)
≤ pLk · αLk · Thk · Te(y) (Te(x) ≤ Te(y))
= · · · (compute backwards)
= k · e · µ�(y).

Since this holds for all k : A→ OD , Lemma D.1 implies that e ·µ�(x) ≤ e ·µ�(y).
Thus the homomorphism theorem yields the desired T-algebra structure α. ut
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E Details for Section 4

E.1 Profinite T̂-algebras

In this subsection we develop a few technical results on profinite T̂-algebras that
are subsequently used.

Remark E.1. Every free T̂-algebra T̂D with D ∈ DS
f is profinite. Indeed, since

the forgetful functor from Alg T̂ to D̂S reflects limits, see A.3, the right-hand
square of (C.1) shows that the T̂-algebra T̂D is the cofiltered limit of the diagram

(TD ↓ Algf T)→ Alg T̂, (h : TD → (A,α)) 7→ (A,α+),

with limit projections h+.

Lemma E.2. A T̂-algebra A is profinite iff A is the limit of the cofiltered diagram

(A ↓ Algf T̂)→ Alg T̂, (h : A→ A′) 7→ A′,

with limit projections h : A→ A′.

Proof. The “if” direction is trivial. For the “only if” direction, suppose that A
is profinite, i.e. there exists a cofiltered limit cone (pi : A→ Ai) in Alg T̂ with
Ai ∈ Algf T̂. Since the forgetful functor Û : Alg T̂ → D̂S reflects limits, it
suffices to show that the cofiltered cone (h : ÛA→ ÛA′) in D̂S is a limit cone.
To this end we verify the criterion of A.11.

For (i), let f : ÛA→ B be a morphism in D̂S with B ∈ D̂S
f . Since Û preserves

limits, we have the limit cone (pi : ÛA → ÛAi) in D̂S . Moreover, since B is
finitely copresentable in D̂S , see Remark C.3, there exists an i and morphism
f ′ : ÛAi → B with f = f ′ · pi. This proves that f factors through the cone
(h : ÛA→ ÛA′) via h = pi and f ′, as desired.

For (ii), suppose that h : A→ A′ in (A ↓ Algf T̂) and f ′, f ′′ : ÛA′ → B are
given with f ′ · h = f ′′ · h. Since A′ is finitely copresentable in Alg T̂ by Remark
2.11.4, there exists an i and a T̂-homomorphism h′ : Ai → A′ with h = h′ · pi.
Then (f ′ · h′) · pi = (f ′′ · h′) · pi. Thus, by (ii) applied to the cofiltered limit cone
(pi : ÛA→ ÛAi), we have a connecting morphism aji : Aj → Ai in the diagram
with f ′ ·h′ ·aji = f ′′ ·h′ ·aji. Thus h′ ·aji : pj → h is a morphism in (A ↓ Algf T̂)
that merges f ′ and f ′′, as desired.

ÛA

pj

vv

pi
||

h
��

f

  

ÛAj aji
// ÛAi

h′
// ÛA′

f ′
//

f ′′
// B ut

Notation E.3. Let (A � Algf T̂) be the full subcategory of (A ↓ Algf T̂) on
all surjective T̂-homomorphisms e : A� A′ with finite codomain.
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Corollary E.4. A T̂-algebra A is profinite iff A is the limit of the cofiltered
diagram

(A � Algf T̂)→ Alg T̂, (e : A� A′) 7→ A′,

with limit projections e : A� A′.

Proof. Using Remark C.6.7, one shows that (A � Algf T̂) is a final cofiltered
subcategory of (A ↓ Algf T̂). ut

Lemma E.5. Let UΣ be a unary presentation of T over Σ, and let e : T� � A
and k : A� B be surjective T-homomorphisms with A,B ∈ Algf T. Then the
following diagram commutes for all u : (T�)s → (T�)s′ in UΣ, where uA and
uB are the liftings of u along e and k · e, respectively.

(T�)s
e // //

u

��

As
k // //

uA

��

Bs

uB

��

(T�)s′ e
// // As′

k
// // Bs′

Proof. Clear since e is an epimorphism. ut

Lemma E.6. Let UΣ be a unary presentation of T over Σ. Then every u :
(T�)s → (T�)s′ in UΣ has a unique extension to a morphism û : (T̂�)s → (T̂�)s′
in D̂ making the following square commute.

(T�)s

ι�
��

u // (T�)s′

ι�
��

V (T̂�)s
V û
// V (T̂�)s′

Proof. For each u : (T�)s → (T�)s′ in UΣ , the morphisms uA ·e+ : (T̂�)s → As′

(where e ranges over surjective T-homomorphisms e : T� � A with A ∈ Algf T

and uA is the lifting of u along e) form a compatible family over the diagram
defining (T̂�)s′ by Lemma E.5. Hence there exists a unique morphism û : (T̂�)s →
(T̂�)s′ in D̂ with e+ · û = uA · e+ for all e. Therefore in the diagram below the
outside and all parts except, perhaps, for the upper square commute:

(T�)s

ι�
��

u //

e

&& &&

(T�)s′

ι�
��

e

xxxx

V (T̂�)s

V e+

����

V û // V (T̂�)s′

V e+

����

As uA
// As′
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It follows that the upper square commutes when postcomposed with the morph-
isms V e+. Since by Remark C.3 the functor V preserves limits (and thus the
morphisms V e+ are jointly monomorphic), the upper square commutes. Moreover,
û is unique with this property because ι� is dense (see Remark 2.11.2) and As′ is
a Hausdorff space. ut

Remark E.7. It follows that, for any extensible finite quotient e = V ê · ι� :
T� � A, a morphism uA : As → As′ is a lifting of u : (T�)s → (T�)s′ along e
iff it is a lifting of û along ê, i.e. the following square commutes:

(T̂�)s
û //

ê
����

(T̂�)s′

ê
����

As uA
// As′

The following lemma shows that the lifting property of a unary presentation
extends from finite to profinite algebras:

Lemma E.8. Let UΣ be a unary presentation of T over Σ. Then for any
surjective morphism ê : T̂� � A in D̂S the following statements are equivalent:

(i) There exists a T̂-algebra structure on A making ê : T̂� � A a Σ-generated
profinite T̂-algebra.

(ii) Each u : (T�)s → (T�)s′ in UΣ has a lifting along ê, i.e. there exists a
morphism uA : As → As′ in D̂ for which the following square commutes:

(T̂�)s
û //

ê
����

(T̂�)s′

ê
����

As uA
// As′

(E.1)

Proof. (i)⇒(ii) Let ê : T̂� � A be a Σ-generated profinite T̂-algebra. For
any finite quotient algebra h : A � A′ in Algf T̂ we have the surjective T-
homomorphism e := V (h · ê) · ι� : T� � A′, see Remark C.6.5. Since UΣ is a
unary presentation, each u : (T�)s → (T�)s′ in UΣ has a lifting uA′ : A′s → A′s′
along e.

Since A is profinite, A is the cofiltered limit of the diagram of all finite
quotients h : A� A′, see Lemma E.2. The morphisms uA′ · h : As → A′s′ form
a compatible family over this diagram by Lemma E.5. Therefore there exists a
morphism uA : As → As′ in D̂ with h · uA = uA′ · h for all h. It follows that the
square (E.1) commutes, as it commutes by Remark E.7 when postcomposed with
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the limit projections h.
(T̂�)s

û //

ê
����

(T̂�)s′

ê
����

As
uA //

h
����

As′

h
����

A′s uA′
// A′s′

(ii)⇒(i) Let ê : T̂� � A be an epimorphism in D̂S with the lifting property (E.1).
We need to show that A has a T̂-algebra structure such that A is profinite and ê
is a T̂-homomorphism.

(a) We first prove an auxiliary result. Let g : T̂� � B be a surjective T̂-
homomorphism with B ∈ Algf T̂, and form the pushout p = g′ · ê = e′ · g :
T̂� � P of ê and g in D̂S . We claim that P carries a T̂-algebra structure
making p a T̂-homomorphism. To see this consider the diagram below:

(T̂�)s′

ê

}}}}

g

!! !!

(T̂�)s

p

����

û

OO

ê

||||

g

"" ""

As′

g′

"" ""

As
uAoo

g′ ## ##

Bs
uB //

e′{{{{

Bs′

e′

||||

Ps

uP

��

Ps′

By hypothesis there exists for each u : (T�)s → (T�)s′ in UΣ a morphism uA
making the upper left-hand square commute. Likewise, since UΣ is a unary
presentation, there exists by Remark E.7 a morphism uB making the upper
right-hand square commute. Then the morphisms g′ · uA and e′ · uB form a
compatible family, so by the universal property of the pushout there exists a
unique morphism uP : Ps → Ps′ in D̂ making the two lower squares commute.
Thus the whole diagram above commutes, which shows that uP · p = p · û
for all u : (T�)s → (T�)s′ in UΣ . Since UΣ forms a unary presentation and
P is finite, it follows from Remark E.7 that P carries a T̂-algebra structure
making p a T̂-homomorphism, as desired.

(b) Let Û : Algf T̂ → D̂S denote the forgetful functor, and let S be the full
subcategory of (A ↓ Û) on all surjective morphisms h : A � Û(A′, α′) for
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which h · ê : T̂� � (A′, α′) is a T̂-homomorphism. Let us first verify that
the category S is cofiltered by establishing the three conditions in A.8.
First, S is nonempty because the image of the unique morphism f : A→ 1
into the terminal T̂-algebra lies in S . Second, any two hi : A � Û(A′i, α′i)
(i = 0, 1) in S have a common predecessor. To see this, form the product πi :
A′0 ×A′1 → A′i in Alg T̂ and factorize the morphism 〈h0, h1〉 : A→ A′0 ×A′1
in D̂S as 〈h0, h1〉 = m · h with h surjective and m injective.

T̂�

ê
����

A

h0

����

h1

�� ��

h
����

A′
��

m

��

A′0 A′0 ×A′1π0
oo

π1
// A′1

Since the projections πi are jointly monomorphic and πi ·m · h · ê = hi · ê
is a T̂-homomorphism, so is m · h · ê. Furthermore, since the factorization
system of D̂S lifts to Alg T̂, see Remark C.6.7, there exists a T̂-algebra
structure (A′, α′) on A′ such that h · ê and m are T̂-homomorphisms. Thus
h : A� Û(A′, α′) lies in S and is the desired predecessor of h0 and h1. The
third condition in A.8 is trivially satisfied because S is a poset.
We claim that A is the cofiltered limit of the diagram

S
π−→ D̂S , (h : A� U(A′, α′))→ A′ (E.2)

with limit projections h : A� A′. To this end we verify the criterion of A.11,
i.e. we show that any morphism f : A → X with X ∈ DS

f factors through
some h. The proof is illustrated by the diagram below:

T̂�
g+

// //

p

    
ê

����

B

e′

����
s

��

P

s′

  

A

h
== ==

f
// X

The morphism f · ê factors through the cofiltered limit cone defining T̂�,
because X is finitely copresentable in D̂S (see Remark C.3). That is, there
exists a surjective T-homomorphism g : T� � B with B ∈ Algf T and
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a morphism s : B → X in D̂S with s · g+ = f · ê. Form the pushout
p = h · ê = e′ · g+ : T̂� � P of ê and g+ in D̂S . Then the morphisms f and s
form a compatible family, so the universal property of the pushout yields an
s′ : P → X in D̂S with s′ · e′ = s and s′ · h = f . Moreover, by part (a) the
object P carries a T̂-algebra structure (P, %) making p a T̂-homomorphism.
Since p = h · ê, this implies that h : A � Û(P, %) is an object in S , so
f = s′ · h is the desired factorization of f .

(c) Since the forgetful functor from Alg T̂ to D̂S creates limits, see A.3, it
follows from (b) that there is a unique T̂-algebra structure α : T̂A→ A on A
making (h : (A,α) � (A′, α′)) a cofiltered limit cone in Alg T̂. Thus (A,α)
is profinite. To see that ê : T̂� � (A,α) is a T̂-homomorphism, consider the
diagram below:

T̂ T̂�
µ̂� //

T̂ ê
����

T̂�

ê
����

T̂A
α //

T̂ h
����

A

h
����

T̂A′
α′
// A′

The lower square commutes for all h : A→ Û(A′, α′) in S by the definition
of α, and the outside commutes because by the definition of S the morphism
h · ê is a T̂-homomorphism. Thus also the upper square commutes, as it
commutes when composed with the limit projections h in D̂S . ut

E.2 Proof of Proposition 4.3

Before we come to the proof we develop a number of auxiliary results.

Remark E.9. To prove Proposition 4.3 we first explain how to translate a local
pseudovariety into a Σ-generated profinite T̂-algebra and vice versa.

1. To each local pseudovariety P of Σ-generated T-algebras we associate a
Σ-generated profinite T̂-algebra ϕP : T̂� � PP

Σ as follows. Viewed as
full subcategory of the comma category (T� ↓ Algf T), the category P

is cofiltered because P is closed under subdirect products. Let PP
Σ be the

cofiltered limit of the diagram

P → Alg T̂, (e : T� � A) 7→ A,

and denote the limit projections by e∗P : PP
Σ � A. They are surject-

ive by Lemma B.2. Thus PP
Σ is a profinite T̂-algebra. Moreover, the T̂-

homomorphisms e+ : T̂� � A (where e ranges over all elements of P)
form a compatible family over the above diagram, so there exists a unique
T̂-homomorphism ϕP : T̂� � PP

Σ with e+ = e∗P · ϕP for all e ∈P. Note
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that ϕP is surjective by Lemma B.1. This yields the desired Σ-generated
profinite T̂-algebra ϕP : T̂� � PP

Σ .
2. Conversely, given a Σ-generated profinite T̂-algebra ϕ : T̂� � PΣ , define

Pϕ to be the class of all finite Σ-generated T-algebras of the form

e = (T�
ι� //V T̂�

V ϕ
// //V PΣ

V e′ // //A),

where e′ : PΣ � A is a surjective T̂-homomorphism with A ∈ Algf T̂. Note
that any such morphism e is indeed a surjective T-homomorphism by Remark
C.6.5 and C.6.6. It is easy to see that Pϕ forms a local pseudovariety of
Σ-generated T-algebras.

Lemma E.10. For any local pseudovariety P of Σ-generated T-algebras we
have P = Pϕ where ϕ := ϕP .

Proof. P ⊆ Pϕ: Let (e : T� � A) ∈ P. Then for the corresponding limit
projection e∗P : PP

Σ � A we have

e = ( T�
ι� // V T̂�

V ϕ
// // V PP

Σ

V e∗P // // A )

since e+ = e∗P ·ϕP by the definition of ϕ = ϕP and since e+ · ι� = e by Remark
2.11.2. Therefore e ∈Pϕ by the definition of Pϕ.

Pϕ ⊆ P: Let (e : T� � A) ∈ Pϕ. Thus there exists a surjective T̂-
homomorphism e′ : PP

Σ � A with A ∈ Algf T̂ and

e = ( T�
ι� // V T̂�

V ϕ
// // V PP

Σ
V e′ // // A ).

SinceA is finitely copresentable in Alg T̂, see Remark C.6.4, the T̂-homomorphism
e′ factors through the the limit cone defining PP

Σ ; that is, there exists an
h : T� � A′ in P and a T̂-homomorphism s : A′ � A with e′ = s · h∗P . Since
e′ is surjective, so is s. Then the commutative diagram below shows that e is
a quotient of h ∈ P, and thus lies in P because the latter is closed under
quotients.

T�
ι� //

h

BB BB

e

��

V T̂�

h+

:: ::

V ϕP

// // V PP
Σ

V e′

##V h∗P // // A′
s // // A

ut

Lemma E.11. For each Σ-generated profinite T̂-algebra ϕ : T̂� � PΣ we have
an isomorphism ϕ ∼= ϕP where P := Pϕ.
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More precisely, the lemma states that ϕ and ϕP are isomorphic quotients of T̂�,
i.e. there exists an isomorphism j : PΣ

∼=−→ PP
Σ with ϕP = j · ϕ.

Proof. Let (PΣ � Algf T̂) be the full subcategory of (PΣ ↓ Algf T̂) on all
surjective T̂-homomorphisms e′ : T̂� � A with A ∈ Algf T̂. Consider the
functor

F : (PΣ � Algf T̂)→P

that maps e′ : PΣ � A to the Σ-generated finite T-algebra

F (e′) = ( T�
ι� // V T̂�

V ϕ
// // V PΣ

V e′ // // A ).

and acts as identity on morphisms. Note that F (e′) ∈ P by the definition of
P = Pϕ, so F is well-defined. We claim that F is an isomorphism. Indeed, F is
injective on objects because ϕ is surjective and ι� is dense. The surjectivity on
objects is the definition of P. The bijectivity on morphisms is clear.

Next observe that F commutes with the projection functors π and π′:

(PΣ � Algf T̂) F //

π
&&

P

π′}}

Alg T̂

The limit of π is PΣ by Corollary E.4, and the limit of π′ is PP
Σ by the definition

of P (P)
Σ . Since F is an isomorphism (in particular, a final functor) and limits

are unique up to isomorphism, there is an isomorphism j : PΣ
∼=−→ PP

Σ with
e′ = F (e′)∗P · j for all e′ : PΣ � A in (PΣ � Algf T̂). Thus in the diagram below
the outside and all inner parts except, perhaps, for the upper inner triangle
commute:

T̂�

ι�
��

F (e′)

"" ""

V T̂�

V F (e′)+

qqqq

V ϕ

����

V ϕP

## ##

V PΣ V j //

V e′

����

V PP
Σ

V F (e′)∗P
{{{{

A

It follows that this triangle also commutes, as it commutes when precomposed
with the dense map ι� and postcomposed with the limit projections V F (e′)∗P . ut
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Proof (Proposition 4.3). It suffices to show that the posets of all Σ-generated
profinite T̂-algebras and all local peudovarieties of Σ-generated T-algebras are
isomorphic. By Lemma E.10 and E.11 the maps P 7→ ϕP and ϕ 7→ Pϕ are
mutually inverse and thus give a bijection between the two posets. It only remains
to prove that both maps are order-preserving. Given local pseudovarieties ϕ ≤ ϕ′,
we clearly have Pϕ ⊆ Pϕ′ because every quotient of PΣ is also a quotient
of P ′Σ . Given local pseudovarieties P ⊆ P ′, the morphisms e∗P′ : PP′

Σ � A,
where e ranges over all e : T� � A in P, form a compatible family over
the diagram defining PP

Σ . Indeed, for each morphism h : e → e′ in P ⊆ P ′

(cf. Remark E.9.1) h · e∗P′ = (e′)∗P′ holds for the limit projections. Hence there
exists a unique morphism q : PP′

Σ → PP
Σ with e∗P′ = e∗P · q for all e ∈ P. It

follows that q · ϕP′ = ϕP , because this holds when postcomposed with the limit
projections e∗P .

T̂�

ϕP′

����

ϕP
Σ

!! !!

PP′

Σ

q
// //

e∗
P′
����

PP
Σ

e∗P||||
A

Indeed, the outside of the above diagram commutes because both sides yield e
when we apply V and precompose with the dense map ι�. Therefore we have
ϕP ≤ ϕP′ as desired. ut

E.3 Details for Remark 4.4

Remark E.12. The homomorphism theorem states that given e : A � B and
f : A → C in D̂S with e surjective, there exists a morphism g in D̂S with
g ·e = f iff, for all sorts s and a, a′ ∈ |A|s, e(a) = e(a′) implies f(a) = f(a′) (resp.
e(a) ≤ e(a′) implies f(a) ≤ f(a′) if D is variety of ordered algebras). Indeed,
there clearly is a DS-morphism g with this property, and it is continuous because
A,B,C are compact Hausdorff spaces. Moreover, if A,B,C are T̂-algebras and e
and f are T̂-homomorphisms, so is g. This follows from the fact that T̂ preserves
epimorphisms, see Remark C.6.7.

We consider the case where D is variety of ordered algebras; for the unordered
case, replace all inequations by equations.

For a set E of profinite inequations over Σ, let P[E] denote the class of all
Σ-generated T-algebras satisfying all inequations in E. Conversely, for a class P
of Σ-generated finite T-algebras, let E[P] be set of all profinite inequations over
Σ satisfied by all algebras in P. The claim is that P forms a local pseudovariety
iff P = P[E] for some E.

The “if” direction is a straightforward verification. For the “only if” direction,
suppose that P is a local pseudovariety of Σ-generated T-algebras, and let
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ϕP : T̂� � PP
Σ be the correponding Σ-generated profinite T̂-algebra, see

Remark E.9.1. From the definition of ϕP it immediately follows that a profinite
inequation u ≤ v lies in E[P ] iff ϕP(u) ≤ ϕP(v). We claim that P = P[E[P]].
The inclusion ⊆ is trivial. To prove ⊇, let e : T� � A be an element of
P[E[P]], i.e. e satisfies every equation that every algebra in P satisfies. By
the homomorphism theorem, see Remark E.12, there exists a (surjective) T̂-
homomorphism h : PP

Σ � A with e+ = h · ϕP . Indeed, every pair u, v with
ϕP(u) ≤ ϕP(v) forms a profinite inequation u ≤ v satisfied by P. Thus u ≤ v
is satisfied by e, i.e. e+(u) ≤ e+(v).

We conclude that A lies in P(ϕP) by the definition of P(−), and thus in P
by Lemma E.10). ut

E.4 Details for Example 4.8.2

Let A = {(Σ, ∅) : Σ ∈ Setf}. We prove that a finite ω-semigroup A = (A+, Aω)
is A-generated iff it is complete, i.e. every element a ∈ Aω can be expressed
as an infinite product a = π(a0, a1, . . .) for some ai ∈ A+. For the “only if”
direction, suppose that A is A-generated, i.e. there exists a surjective ω-semigroup
morphism e : (Σ+, Σω) � (A+, Aω) for some Σ ∈ Setf . For each a ∈ Aω, choose
s0s1 . . . ∈ Σω with a = e(s0s1 . . .). Then

a = e(s0s1 . . .) = e(π(s0, s1, . . .)) = π(e(s0), e(s1), . . .),

which shows that A is complete. For the “if” direction, suppose that A is complete.
Let Σ := A+ ∈ Setf , and extend the map (id, ∅) : (Σ, ∅) → (A+, Aω) to an
ω-semigroup morphism e : (Σ+, Σω) → (A+, Aω), using that (Σ+, Σω) is the
free ω-semigroup on (Σ, ∅). Clearly the component e : Σ+ → A+ is surjective
because e(a) = a for all a ∈ A+. To show that also the component e : Σω → Aω
is surjective, let a ∈ Aω and choose elements ai ∈ A+ with a = π(a0, a1, . . .),
using the completeness of A. It follows that

a = π(a0, a1, . . .) = π(e(a0), e(a1), . . .) = e(π(a0, a1, . . .)).

Thus e is surjective, which proves that A is A-generated. ut

E.5 Details for Remark 4.9

See Lemma C.7. ut

E.6 Proof of Proposition 4.11

The proof of Proposition 4.11, establishing the equivalence of profinite theories
and pseudovarieties, is achieved through a sequence of lemmas. First an auxiliary
result:

Lemma E.13. Given Σ,∆ ∈ SetSf , a surjective T̂-homomorphism e : T̂� � A

with A ∈ Algf T̂ and a T̂-homomorphism h : T̂� → A, there exists a T-
homomorphism g : T�→ T� with h = e · ĝ.
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Proof. Let e′ = V e · ι� : T� � A and h′ = V h · ι� : T�→ A be the restrictions
of e and h to T-homomorphisms, see Remark C.6.5. Since the free object �
is projective in the S-sorted variety DS , and e′ is surjective by Remark C.6.6,
there exists a morphism g′ : � → T� in DS with h′ · η� = e′ · g′. Since T�
is the free T-algebra on �, see A.2, we can extend g′ to a T-homomorphism
g : T�→ T�. Then ĝ has the desired property: the lower triangle in the diagram
below commutes, because it does when precomposed by the dense map ι� and
the unit η�.

�

η�

��

g′

$$

T�

ι�
��

g
// T�

e′

!! !!

ι�
��

V T̂�

V h

::V ĝ
// V T̂�

V e
// // A

ut

Lemma E.14. Let ϕ be a profinite theory, and (A,α) be an A-generated finite
T-algebra. The following statements are equivalent:

(i) There exists a surjective T̂-homomorphism e : PΣ � (A,α+) for some
Σ ∈ A.

(ii) Every T̂-homomorphism h : T̂� → (A,α+) with ∆ ∈ A factors through
ϕ∆:

T̂�

h

  

ϕ∆
����

P∆
h′
// A

Proof. (i)⇒(ii) Given a T̂-homomorphism h : T̂�→ A, choose a T-homomorphism
g : T�→ T� with h = e · ϕΣ · ĝ, see Lemma E.13. Since ϕ is a profinite theory,
there exists a T̂-homomorphism gP : P∆ → PΣ with gP · ϕ∆ = ϕΣ · ĝ. Thus
h = (e · gP ) · ϕ∆ is the desired factorization of h through ϕ∆.

T̂�
ĝ
//

ϕ∆
����

h

��

T̂�

ϕΣ
����

P∆ gP
// PΣ e

// // A

(ii)⇒(i) Since A is A-generated, there exists a surjective T-homomorphism
e : T� � A for some Σ ∈ A. By hypothesis the surjective T̂-homomorphism
e+ : T̂� � A factors through ϕΣ . Thus A is a quotient of PΣ . ut
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Lemma E.15. Let ϕ be a profinite theory. Then the class Vϕ of all A-generated
finite T-algebras (A,α) satisfying the equivalent properties of Lemma E.14 forms
a pseudovariety.
Proof. LetAi (i ∈ I) be finitely many objects in Vϕ. Form the product πi :

∏
iAi →

Ai and let m : A �
∏
iAi be an A-generated subalgebra. We show that any

T̂-homomorphism h : T̂� → A factors through ϕ∆. For each i, there exists a
T̂-homomorphism hi : P∆ → Ai with hi ·ϕ∆ = πi ·m · h, because Ai ∈ Vϕ. Then
h factors through ϕ∆ via the diagonal fill-in property, which shows that A ∈ Vϕ.

T�
ϕ∆ // //

h

��

P∆

〈hi〉

����

hi

��

A //
m
//
∏
iAi πi

// Ai

The closure of Vϕ under quotients follows from Lemma E.14(i). ut

The reverse passage from pseudovarieties to profinite theories requires some
preparation.
Lemma E.16. Let V be a class of A-generated finite T-algebras closed under
A-generated subalgebras of finite products. Then for each Σ ∈ A the comma
categories (T� ↓ V ) and (T� � V ) of all (surjective) T-homomorphisms h :
T�→ A with A ∈ V are cofiltered.
Proof. We only show that (T� ↓ V ) is cofiltered; the argument for (T� � V ) is
analogous. To this end we verify the criterion of A.8.
(i) (T� ↓ V ) is nonempty: let h : T� → 1 be the unique T-homomorphism

into the terminal T-algebra, and consider its factorization

h = (T� e // // A //
m // 1)

Then A is an A-generated subalgebra of 1 (the empty product) and thus
lies in V . Hence e ∈ (T� ↓ V ).

(ii) Given hi : T�→ Ai (i = 0, 1) in (T� ↓ V ), form the product πi : A0×A1 →
Ai in Alg T and factorize the T-homomorphism 〈h0, h1〉 : T�→ A0 ×A1
as 〈h0, h1〉 = m · e with e surjective and m injective.

T�
h0

zz

h1

$$

e
����

〈h0,h1〉

��

A0 A
��

m

��

A1

A0 ×A1

π0

dd

π1

::

Then A ∈ V , being an A-generated subalgebra of the product A0 × A1,
and we have the morphisms πi ·m : e→ hi in (T� ↓ V ).
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(iii) Given hi : T�→ Ai (i = 0, 1) in (T� ↓ V ) and two morphisms g, g′ : h0 →
h1, form the equalizer q : E � A0 of g and g′ in Alg T. Since g ·h0 = g′ ·h0,
the universal property of q gives a unique T-homomorphism h : T�→ E
with h0 = q · h. Let h = e ·m be the (surjective, injective) factorization of
h, see the diagram below:

T�

h0

��

h

��

h1

��

e

}}}}

E′
��

m

��

E //
q
// A0

g
//

g′
// A1

Then E′ lies in V , being an A-generated subalgebra of A0 ∈ V . It follows
that q · m : e → h0 is a morphism in (T� ↓ V ) merging g and g′, i.e.
g · (q ·m) = g′ · (q ·m). ut

Remark E.17. We review a construction given in [12]. As in the above lemma,
let V be a class of A-generated finite T-algebras closed under A-generated
subalgebras of finite products.
1. In analogy to the profinite monad T̂, see Theorem 2.9 and Remark C.6.1/2,

one can construct the pro-V monad T̂V = (T̂V , η̂
V , µ̂V ) of T. This is the

codensity monad of the forgetful functor

V ↪→ Algf T→ DS
f

∼=−→ D̂S
f ↪→ D̂S .

By the limit formula for right Kan extensions, the object T̂V D for D ∈ DS
f

is the limit of the diagram

(TD ↓ V )→ D̂S , (h : TD → (A,α)) 7→ A.

We denote the limit projections by

h+
V : T̂V D → A. (E.3)

If D = � with Σ ∈ A, the above limit is cofiltered by Lemma E.16, and
one can restrict to the cofiltered subdiagram (T� � V )→ D̂S (cf. Remark
2.11.1).

2. For each (A,α) ∈ V we have the T-homomorphism α : TA � (A,α), and
thus the limit projection α+

V : T̂V A→ A. Then the following squares commute
for all T-homomorphisms h : TD → (A,α):

D
η̂V
D //

hηD
!!

T̂V D

h+
V

��

T̂V T̂V D
µ̂V
D //

T̂V h
+
V
��

T̂V D

h+
V

��

A T̂V A
α+

V

// A

(E.4)
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3. The universal property of right Kan extensions gives a monad morphism
ϕV : T̂ → T̂V (see A.1). For D ∈ DS

f the morphisms h+ form a com-
patible family over the diagram defining T̂V D, and the component ϕV

D is
the unique morphism in D̂S making the triangle below commute for all
T-homomorphisms h : TD → A with A ∈ V :

T̂D
ϕV
D //

h+

��

T̂V D

h+
V||

A

(E.5)

Note that if h+ is surjective, then so is h+
V . Moreover, by Remark E.17.1 and

Lemma B.1, each component ϕV
� with Σ ∈ A is surjective. Note further that,

since ϕV is a monad morphism, ϕV
� is a T̂-homomorphism

ϕV
� : T̂� � (T̂V �, µ̂V

� · ϕV
T̂V �

).

Lemma E.18. Let V be a pseudovariety of T-algebras. Then the family

ϕV = (ϕV
� : T̂� � T̂V �)Σ∈A

forms a profinite theory.

Proof. (1) For all T-homomorphisms h : T�→ (A,α) with Σ ∈ A and (A,α) ∈
V we have the following commutative diagram.

T̂ T̂V �
ϕV
T̂V �
//

T̂ h+
V
��

T̂V T̂V �
µ̂V

� //

T̂V h
+
V
��

T̂V �

h+
V

��

T̂A
ϕV
A // T̂V A

α+
V // AOO

α+

Indeed, the right-hand square commutes by Remark E.17.2, the left-hand square
commutes by the naturality of ϕV , and for the lower triangle see Remark E.17.3.
Since the forgetful functor from Alg T̂ to D̂S reflects limits, see A.3, this shows
that the T̂-homomorphisms

h+
V : (T̂V �, µ̂V

� · ϕV
T̂V �

)→ (A,α+),

form a cofiltered limit cone in Alg T̂. Hence the T̂-algebra (T̂V �, µ̂V
� · ϕV

T̂V �
) is

profinite.
(2) Given a T-homomorphism g : T�→ T� with Σ,∆ ∈ A, the morphisms

(hg)+
V (where h ranges over all T-homomorphisms h : T� → A with A ∈ V )

form a compatible family over the diagram defining T̂V �. Thus there exists a
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unique g′ : T̂V �→ T̂V � with (hg)+
V = h+

V · g′ for all h. It follows that the upper
square in the following diagram commutes, as it commutes when postcomposed
with the limit projections h+

V (the outside commutes due to Lemma C.7).

T̂�

(hg)+

//

ϕV
�
����

ĝ
// T̂�

ϕV
�
����

h+

oo

T̂V �
g′

//

(hg)+
V !!

T̂V �

h+
V}}

A ut

The following two lemmas demonstrate that the constructions ϕ 7→ Vϕ and
V 7→ ϕV of Lemma E.15 and E.18 are mutually inverse.

Lemma E.19. For any pseudovariety V of T-algebras we have V = Vϕ where
ϕ := ϕV .

Proof. V ⊆ Vϕ: Let A ∈ V . Since A is A-generated, there exists a surjective
T-homomorphism e : T� � A with Σ ∈ A. Then we have the surjective
T̂-homomorphism e+

V : T̂V � � A and therefore A ∈ Vϕ.
Vϕ ⊆ V : Let A ∈ Vϕ. Since A is A-generated, there exists a surjective

T-homomorphism e : T� � A with Σ ∈ A. Thus we have the surjective T̂-
homomorphism e+ : T̂� � A, see Remark E.17.3. By the definition of Vϕ there
exists a (surjective) T̂-homomorphism e′ : T̂V � � A with e+ = e′ · ϕV

� , see
Lemma E.14(ii). Since the finite T̂-algebra A is finitely copresentable in Alg T̂,
see Remark 2.11.4, the homomorphism e′ factors through the limit cone defining
T̂V �; that is, there exist T-homomorphisms h : T�→ B and e′′ : B → A with
B ∈ V and e′ = e′′ · h+

V .

T̂�

e+

����

ϕV
� // // T̂V �

e′
||||

h+
V

��

A B
e′′

oooo

Since e′ is surjective, so is e′′. Hence the closure of V under quotients implies
that A ∈ V . ut

Lemma E.20. For any profinite theory ϕ = (ϕΣ : T̂� � PΣ) we have ϕ ∼= ϕV

where V := Vϕ.

More precisely, for each Σ ∈ A there is an isomorphism jΣ : T̂V �
∼=−→ PΣ with

ϕΣ = jΣ · ϕV
Σ .

Proof. (1) Every surjective T̂-homomorphism e : PΣ � A with A ∈ Algf T̂

yields the surjective T-homomorphism

e′ = (T�
ι� //V T̂�

V ϕΣ // //V PΣ
V e // //A),



48 H. Urbat, J. Adámek, L. T. Chen, S. Milius

see Remark E.9.2. Moreover, A ∈ V by the definition of V , see Lemma E.14.
Thus the map e 7→ e′ defines a functor (acting as identity on morphisms)

F : (PΣ � Algf T̂)→ (T� � V ),

where (PΣ � Algf T̂) and (T� � V ) are the full subcategories of the comma
categories (PΣ ↓ Algf T̂) and (T� ↓ V ) on surjective homomorphisms.

(2) We claim that F is final, see A.7. Since (PΣ � Algf T̂) is cofiltered, this
requires to show that (i) for any object e′ in (T� � V ) there exists a morphism
F (e) → e′ in (T� � V ) for some e ∈ (PΣ � Algf T̂), and (ii) any two parallel
morphisms F (e) ⇒ e′ are merged by some morphism in (PΣ � Algf T̂).

For (i), let e′ : T� � A be an object of (T� � V ). Then we have the surjective
T̂-homomorphism (e′)+ : T̂� � A. Since A ∈ V , there exists a surjective T̂-
homomorphism e : PΣ � A with (e′)+ = e · ϕΣ . Then F (e) = e′, as shown by
the commutative diagram below.

T�

e′

����

ι� // V T̂�

V (e′)+

}}}}

V ϕΣ

����

A V PΣ
V e

oooo

Thus we have the desired connecting arrow id : F (e)→ e′ in (T� � V ).

The property (ii) is trivially satisfied: since (PΣ � Algf T̂) consists only of
surjections, there is at most one morphism F (e)→ e′ for each e in (PΣ � Algf T̂).
This shows the finality of F .

(3) F commutes with the projection functors π and π′:

(PΣ � Algf T̂) F //

π
&&

(T� � V )

π′zz

Alg T̂

The limit of π is PΣ by Corollary E.4, and the limit of π′ is T̂V � by Remark E.17.1.
Thus the finality of F and the uniqueness of limits implies the existence of an
isomorphism jΣ : T̂V �

∼=−→ PΣ with F (e)+
V = e · jΣ for all e : PΣ � A in
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(PΣ � Algf T̂). Now consider the diagram below:

T̂�

ι�
��

F (e)

tt

V T̂�

V (F (e)+)

)) ))

V ϕV
�
����

V ϕΣ

## ##

V T̂V �
V jΣ //

V (F (e)+
V

)
����

V PΣ
V e

zzzz
A

The outside commutes by Remark 2.11.2, and all inner parts except for the
central triangle commute by the definition of jΣ , the definition of F and Remark
E.17.3. It follows that the central triangle also commutes, as it commutes when
precomposed with the dense map ι� and postcomposed with the limit projections
V e. ut

Proof (Proposition 4.11). By Lemmas E.19 and E.20 the maps V 7→ ϕV and
ϕ 7→ Vϕ give mutually inverse object maps between the two posets. It remains to
show that both constructions are order-preserving.

(1) Given profinite theories ϕ ≤ ϕ′, we have Vϕ ⊆ Vϕ′ since, for each Σ ∈ A,
any quotient of PΣ is also a quotient of P ′Σ .

(2) Let V ⊆ V ′ be pseudovarieties. For each Σ ∈ A the morphisms e+
V ′ :

T̂V ′� � A, where e ranges over surjective T-homomorphisms e : T� � A
with A ∈ V , form a compatible family over the diagram defining T̂V �. Indeed,
since V ⊆ V ′, each morphism h : e → e′ in (T� � V ) is also a morphism
in (T� � V

′), and therefore h · e+
V ′ = (e′)+

V ′ hold for the limit projections.
Hence there exists a unique morphism q : T̂V ′� � T̂V � with e+

V ′ = e+
V · q for

all e. It follows that q · ϕV ′

� = ϕV
� , because this holds when postcomposed

with the limit projections e+
V .

T̂�

ϕV ′
� ����

ϕV
�

## ##

T̂V ′�
q
// //

e+
V ′
����

T̂V �

e+
V{{{{

A

The outside of the above diagram commutes because both sides yield e+

by (E.5). Therefore ϕV ≤ ϕV ′ . ut
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E.7 Details for Remark 4.12

We consider the case where D is variety of ordered algebras; for the unordered
case, replace all inequations by equations.

For a class E of profinite inequations over (possibly different) alphabets in
A, let V [E] denote the class of all A-generated finite T-algebras satisfying all
inequations in E. Conversely, for a class V of A-generated finite T-algebras let
E[V ] be the class of all profinite inequations over alphabets Σ ∈ A satisfied by
all algebras in V . We claim that V forms a pseudovariety iff V = V [E] for some
E.

The “if” direction is an easy verification. For the “only if” direction, let V
be a pseudovariety of T-algebras, and let ϕV = (ϕV

� : T̂� � T̂V �)Σ∈A be the
corresponding profinite theory, see Lemma E.18. We claim that V = V [E[V ]].
The inclusion ⊆ is trivial. To prove ⊇, let A ∈ V [E[V ]], i.e. A satisfies every
profinite inequation over A that all algebras in V satisfy. Since A is A-generated,
there is a surjective T-homomorphism e : T� � A with Σ ∈ A. By the definition
of ϕV , any profinite inequation u ≤ v over Σ with ϕV

� (u) ≤ ϕV
� (v) is satisfied by

every algebra in V and thus also by A. Hence e+(u) ≤ e+(v). The homomorphism
theorem then shows that e+ factors through ϕV

Σ . In particular, A is a quotient
of T̂V �, which implies that A lies in V by Lemma E.19. ut

F Details for Section 5

F.1 Proof of Proposition 5.4

Let L : T� → OD be a recognizable language. By Theorem 3.3 there exists a
morphism L̂ : T̂�→ OD in D̂S with L = V L̂ · ι�.

(a) Let u : (T�)s → (T�)s′ in UΣ , and take its continuous extension û, see
Lemma E.6. Then we have the commutative diagrams below (where t 6= s in
the right-hand diagram).

(T�)s

u−1L

&&u //

ι�
��

(T�)s′
L //

ι�
��

OD

V (T̂�)s
V û
// V (T̂�)s′

V L̂

;;
(T�)t

u−1L

''

ι�
// V (T̂�)t

V⊥
// OD

This shows that u−1L corresponds to the morphism T̂�→ OD in D̂S being
L̂·û in sort s and ⊥ in every other sort. By Theorem 3.3, u−1L is recognizable.
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(b) Let g : T�→ T� be a T-homomorphism and ĝ its continuous extension, see
Lemma C.7. Then we have the commutative diagrams below.

T�
g
//

ι�
��

T� L //

ι�
��

OD

V T̂�
V ĝ
// V T̂�

V L̂

<<

This shows that g−1L = L · g corresponds to L̂ · ĝ : T̂�→ OD , whence g−1L
is recognizable by Theorem 3.3. ut

F.2 Details for Remark 5.5

Remark F.1. 1. For each Σ ∈ SetSf and each sort s we have

|P (T̂�)s| ∼= C (1, P (T̂�)s)
∼= D̂((T̂�)s, OD)
∼= { (T�)s

Ls−−→ OD : L ∈ Reg(Σ) }.

The last bijection is given by f̂ 7→ V f̂ · ι�. Indeed, observe that for each
recognizable language L : T� → OD , the language L′ : T� → OD with
L′s = Ls and Lt = V⊥ · ι� for t 6= s is also recognizable (by the same
T-homomorphism, using the naturality of ⊥). From this and Theorem 3.3
the bijection immediately follows.
Thus, from now on we assume that P (T̂�)s is carried by the set {Ls : L ∈
Rec(Σ) }. With this identification, the isomorphism Rec(Σ) ∼=

∏
s P (T̂�)s

of Remark 3.4 maps a recognizable language L : T� → OD to the tuple
((T�)s

Ls−−→ OD)s∈S of its components.
2. For any subobject WΣ ⊆ Rec(Σ) and any sort s, let ms : (W ′Σ)s � P (T̂�)s

be the subobject of P (T̂�)s making the following diagram commute:

WΣ
//

⊆
//

es

����

Rec(Σ)
∼=��∏

s P (T̂�)s
πs
��

(W ′Σ)s // ms
// P (T̂�)s

By point 1 above, (W ′Σ)s is (up to isomorphism) carried by

{ (T�)s
Ls−−→ OD) : L ∈WΣ }.
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For e = 〈es〉s∈S we get the following commutative square:

WΣ
//

⊆
//

e
��

Rec(Σ)
∼=��∏

s(W ′Σ)s // ∏
s
ms

//
∏
s P (T̂�)s

Clearly e is monic. The subobjectWΣ is called admissible if e is also surjective
(i.e. an isomorphism), cf. Remark 5.5. This means precisely that WΣ is closed
under diagonals: for any S-indexed family Ls (s ∈ S) of languages in WΣ ,
the diagonal language L∗ : T�→ OD with L∗s = Lss lies in WΣ .

3. Every subobject WΣ ⊆ Rec(Σ) contains the “empty language”, i.e. the
language with V⊥ · ι� : (T�)t → OD in each sort t. Indeed, by the definition
of ⊥ (the dual of the natural transformation choosing a constant, see Remark
5.1) this language is precisely the constant in Rec(Σ) ∼=

∏
s P (T̂�)s, and

every subobject of Rec(Σ) contains the constant.

Suppose that UΣ contains all identity morphisms, and let C be one of the
varieties of Example 2.3. We claim that any subobject WΣ ⊆ Rec(Σ) closed
under derivatives is admissible, i.e. closed under diagonals, see Remark F.1.2.
Thus suppose that Ls (s ∈ S) is an S-indexed family in WΣ . Since WΣ is
closed under derivatives and UΣ contains all identity morphisms, the language
(id(T�)s)−1Ls lies in WΣ for each s. Recall that ⊥ has been chosen as the zero
map, see Remark 5.1. Therefore this derivative agrees with Ls in sort s, and
is empty in all other sorts. Finally, observe that for C = BA, DL01, JSL0,
the set WΣ is closed under union, since Rec(Σ) �

∏
sO
|T�|s
C by Remark 3.4.

Thus the diagonal language L∗ =
⋃
s(id(T�)s)−1Ls lies in WΣ . Analogously for

C = VecK where WΣ , being a subspace of Rec(Σ), is closed under taking sums
of languages. ut

F.3 Proof of Theorem 5.7

Lemma F.2. Let UΣ be a unary presentation of T over Σ, and letWΣ ⊆ Rec(Σ)
be an admissible subobject of Rec(Σ), represented by subobjects mt : (W ′Σ)t �
P (T̂�)t (t ∈ S). Let u : (T�)s → (T�)s′ in UΣ and û : (T̂�)s → (T̂�)s′
its continuous extension, see Lemma E.6. Then the following statements are
equivalent:

(i) u−1L ∈WΣ for all L ∈WΣ.
(ii) There exists a morphism u′ making the following square commute:

(W ′Σ)s′
u′ //

��

ms′

��

(W ′Σ)s
��

ms
��

P (T̂�)s′
Pû
// P (T̂�)s.

(F.1)
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In particular, WΣ is a local variety (w.r.t. UΣ) iff a morphism u′ with (F.1)
exists for every u ∈ UΣ.

Proof. Recall from Remark F.1 that P (T̂�)t is, up to isomorphism, carried by
the set {Lt : L ∈ Rec(Σ) }, and (W ′Σ)t by the subset {Lt : L ∈WΣ }. From the
definition of û it follows that Pû takes an element Ls′ of P (T̂�)s′ to Ls′ ·u. Thus
(ii) is equivalent to the statement that Ls′ · u ∈ (W ′Σ)s for all L ∈WΣ . From this
observation the implication (i)⇒(ii) follows immediately, since (u−1L)s = Ls′ · u.

Conversely, suppose that (ii) holds, and let L ∈WΣ . By the above argument,
we have Ls′ · u ∈ (W ′Σ)s. Moreover, by Remark F.1.3 the “empty language” with
V⊥ · ι� in each sort lies in WΣ . The admissibility of WΣ (i.e. closure under
diagonals, see Remark F.1) thus implies that the language with Ls′ · u in sort
s and V⊥ · ι� in all sorts t 6= s lies in WΣ . But this is precisely the derivative
u−1L, which proves (ii)⇒(i). ut

Lemma F.3. For Σ,∆ ∈ SetSf let WΣ ⊆ Rec(Σ) and W∆ ⊆ Rec(∆) be ad-
missible subobjects, represented by mΣ

s : (W ′Σ)s � P (T̂�)s and m∆
s : (W ′∆)s �

P (T̂�)s (s ∈ S), respectively. Then for any T-homomorphism g : T�→ T�, the
following statements are equivalent:

(i) g−1L ∈W∆ for all L ∈WΣ.
(ii) There is a morphism g′ : W ′Σ → W ′∆ in C S making the following square

commute for any sort s, where ĝ : T̂�→ T̂� is the continuous extension of
g (see Lemma C.7).

(W ′Σ)s
g′s //

��

mΣs
��

(W ′∆)s
��

m∆s
��

P (T̂�)s
P ĝs

// P (T̂�)s

(F.2)

Proof. Again we use that P (T̂�)s can assumed to be carried by the set {Ls :
L ∈ Rec(Σ) }, and (W ′Σ)s is the subset {Ls : L ∈WΣ}. Analogously for P (T̂�)s
and (W ′∆)s. From the definition of ĝ it follows that P ĝs takes an element Ls of
P (T̂�)s to Ls · gs. Thus (ii) is equivalent to the statement that Ls · gs ∈ (W ′∆)s
for all L ∈ WΣ and all sorts s. From this the implication of (i)⇒(ii) follows
immediately, since (g−1L)s = Ls · gs. Conversely, suppose that (ii) holds, and
let L ∈ WΣ . By the above argument, we have Ls · gs ∈ (W ′∆)s for all s. By
admissability of W∆, this implies that g−1L = L · g lies in W∆, i.e. (ii)⇒(i)
holds. ut

Proof (Theorem 5.7). We first prove the local variety theorem. Let WΣ ⊆ Rec(Σ)
be an admissible subobject, represented by a subobject

m =
(

(W ′Σ)s //
ms // P (T̂�)s

)
s∈S
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in C S . From Lemma F.2 and E.8, it follows that WΣ forms a local variety of
languages iff the dual quotient(

(T̂�)s
∼= // P−1P (T̂�)s

P−1ms // // P−1(W ′Σ)s

)
s∈S

in D̂S carries a Σ-generated profinite T̂-algebra. Then Proposition 4.3 gives the
isomorphism between local varieties of languages over Σ and local pseudovarieties
of Σ-generated T-algebras.

For the non-local variety theorem, observe further that by Lemma F.3, a
family (WΣ ⊆ Rec(Σ))Σ∈A of local varieties forms a variety of languages (i.e., is
closed under preimages) iff the dual family of Σ-generated profinite T̂-algebras
forms a profinite theory. Then Proposition 4.11 gives the isomorphism between
varieties of languages and pseudovarieties of T-algebras. ut

F.4 Details for Remark 5.8

Let C be a family associating to each pair (Σ,∆) ∈ A2 a set C(∆,Σ) of T-
homomorphisms from T� to T�. A C-variety of languages is given as in Definition
5.6.2, but with g restricted to elements of C. Similarly, a profinite C-theory is
given as in Definition 4.10, but with g again restricted to C. This leads to the
following theorem, which for the monad T = T∗ on Set (see Example 2.4.1) is
due to Straubing [34].
Theorem F.4 (Straubing Theorem for T-algebras). The lattice of C-varieties
of languages is isomorphic to the lattice of profinite C-theories.
Proof. This follows via duality from Lemma F.3 and Lemma E.8, in complete
analogy to the proof of Theorem 5.7. ut

G Details for Section 6

We provide some details for the case of finite words. Let D be a commutative
variety of algebras or ordered algebras. Then (D ,⊗,1) is a symmetric monoidal
closed category w.r.t. the usual tensor product ⊗ (representing bimorphisms),
see [7]. Moreover, D-monoids, as introduced in Section 6(a), correspond precisely
to the monoid objects in (D ,⊗,1). A morphism of D-monoids is a morphism in
D that preserves the monoid structure.

Consider the following diagram of left and right adjoints, where Mon and
Mon(D) are the categories of monoids and D-monoids and U,U ′ are the forgetful
functors. Both the outer and the inner square commute.

D
F ′

//

|−|
��

Mon(D)

Ua
��

U ′

>
oo

Set

Ψ`

OO

(−)∗

⊥
//
Mon

|−|
oo

F

OO
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The left adjoint F sends a monoid M = (M, ·, e) to the D-monoid FM =
(Ψ |M |, •, e), where • : Ψ |M |×Ψ |M | → Ψ |M | is the unique bimorphism in D that
extends the multiplication · : |M | × |M | → |M |, and it sends a monoid morphism
h : M →M ′ to Ψ |h| : Ψ |M | → Ψ |M ′|. This implies that the free D-monoid on a
free object � in D is given by

F ′� = F ′ΨΣ = FΣ∗ = (ΨΣ∗, •, ε),

where ε is the empty word and • extends the concatentation of words.
Let TM be the monad on D associated to the adjunction F ′ a U ′, i.e.

constructing free D-monoids on objects of D . Clearly U ′ is monadic, and thus
Alg (TM ) ∼= Mon(D). A language L : TM� = ΨΣ∗ → OD in D corresponds
(via the adjunction Ψ a |−| : D → Set) to a function L′ : Σ∗ → |OD |.

Lemma G.1. L is TM -recognizable iff L′ is regular, i.e. computed by some finite
Moore automaton with output set |OD |.

Proof. For D = Set with OSet = {0, 1}, this is the well-known equivalence of
regular and monoid-recognizable languages, see e.g. [25]. Now let D be any
commutative variety. If L is recognizable, there exists a D-monoid morphism
h : ΨΣ∗ → D, where D is finite, and a morphism p : D → OD in D with L = p ·h.
Then h restricts to a monoid morphism

h′ = (Σ∗ � UΨΣ∗
Uh−−→ UD)

that recognizes L′ via |p|. Thus L′ is regular.
Conversely, suppose that L′ is regular. Then L′ is monoid-recognizable (in

Set), so there exists a monoid morphism h : Σ∗ → M , where M is a finite
monoid, and a function p : M → |OD | such that L′ = p ·h. Let p′ : ΨM → OD in
D be the adjoint transpose of p (via the adjunction Ψ a |−| : D → Set). Then
Ψh : ΨΣ∗ → ΨM is a D-monoid morphism that recognizes L via p′, where ΨM is
finite since D is assumed to be a locally finite variety (see Assumptions 2.1). ut
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