
Nominal Automata with Name Binding

Lutz Schröder1, Dexter Kozen2, Stefan Milius1, and Thorsten Wißmann1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
2 Cornell University

Abstract
Automata models for data languages (i.e. languages over infinite alphabets) often feature either global or
local freshness operators. We show that Bollig et al.’s session automata, which focus on global freshness,
are equivalent to regular nondeterministic nominal automata (RNNA), a natural nominal automaton model
with explicit name binding that has appeared implicitly in the semantics of nominal Kleene algebra (NKA),
an extension of Kleene algebra with name binding. The expected Kleene theorem for NKA is known to
fail in one direction, i.e. there are nominal languages that can be accepted by an RNNA but are not
definable in NKA; via session automata, we obtain a full Kleene theorem for RNNAs for an expression
language that extends NKA with unscoped name binding. Based on the equivalence with RNNAs, we
then slightly rephrase the known equivalence checking algorithm for session automata. Reinterpreting
the data language semantics of name binding by unrestricted instead of clean α-equivalence, we obtain a
local freshness semantics as a quotient of the global freshness semantics. Under local freshness semantics,
RNNAs turn out to be equivalent to a natural subclass of Bojanczyk et al.’s nondeterministic orbit-finite
automata. We establish decidability of inclusion under local freshness by modifying the RNNA-based
algorithm; in summary, we obtain a formalism for local freshness in data languages that is reasonably
expressive and has a decidable inclusion problem.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Nominal sets, automata, data languages, name binding

1 Introduction

Data languages are languages over infinite alphabets, regarded as modeling the communication
of values from infinite data types such as nonces [17], channel names [11], process identifiers [4],
URL’s [1], or data values in XML documents (see [21] for a summary). There is by now a plethora of
automata models for data languages, which can be classified along several axes. One line of division in
terms of presentation is between models that use explicit registers, thus have a finite-state description
(generating infinite configuration spaces) on the one hand, and more abstract models phrased as
automata over nominal sets [22] on the other hand. The latter have infinitely many states but are
typically required to be orbit-finite, i.e. there are only finitely many distinct states up to renaming
implicitly stored letters. There are known correspondences between the two styles; e.g. Bojanczyk et
al.’s nondeterministic orbit-finite automata (NOFA) [3] are equivalent to Kaminski and Francez’ finite
memory automata (FMA) [12] (also called register automata), or more precisely to their extension
with nondeterministic reassignment [14]. A second distinction concerns the semantics of constructs
for reading “fresh” names: global freshness requires that the next letter to be consumed has not been
seen before, while local freshness postulates only that the next letter is distinct from the (boundedly
many) letters currently stored in the registers.

Although local freshness looks computationally more natural, nondeterministic automata models
(typically more expressive than deterministic ones [15]) featuring local freshness tend to have
undecidable inclusion problems. This includes FMAs and NOFAs [21, 3] (unless the putatively larger
FMA has at most two registers [12]) as well as variable automata [10]. Finite-state unification-based
automata (FSUBAs) [13] have a decidable inclusion problem but do not support freshness other than

2 Nominal Automata with Name Binding

in the sense of distinctness from a fixed finite set Θ of read-only symbols. Contrastingly, session
automata, which give up local freshness in favor of global freshness, have a decidable inclusion
problem [4].

Another formalism for global freshness is nominal Kleene algebra (NKA) [8]. It has been shown
that a slight variant of the original NKA semantics satisfies one half of a Kleene theorem [15], which
states that NKA expressions can be converted into a species of nondeterministic nominal automata
with explicit name binding transitions (the exact definition of these automata being left implicit in
op. cit.); the converse direction of the Kleene theorem fails even for deterministic nominal automata.

In the present work, we give an explicit definition of a nondeterministic nominal automaton model
with name binding that we call regular nondeterministic nominal automata (RNNA). The key point in
the definition is to impose finite branching modulo α-equivalence of transitions: a state in an RNNA
with (orbit-finite) state set Q has a finite set of transitions that are either free, i.e. elements of A×Q
where A is the infinite alphabet of names, or bound, i.e. elements 〈a〉q ∈ [A]Q where [A](−) denotes
the abstraction functor [22] and 〈a〉q is read as “bind the name a in q,” taken modulo α-equivalence.
We show first that RNNAs are equivalent to a mild generalization of session automata that we call
nondeterministic finite bar automata (bar NFAs). Immediate consequences are

a full Kleene theorem for RNNAs and a language of regular expressions with unscoped name
binding called regular bar expressions;
a translation of NKA into regular bar expressions, hence, for closed expressions, into session
automata;
decidability in parametrized PSPACE of inclusion for RNNAs, implying the known EXPSPACE

decidability result for NKA [15].
We then go on to modify the semantics of RNNAs: as for NKA [15], their semantics is most naturally
given in terms of strings with name binding, which can be converted into an essentially equivalent
data language by α-renaming bound variables in all possible ways to be mutually distinct, then
removing all binders. By giving up the distinctness requirement, which enforces global freshness, we
obtain a semantics that is essentially a restricted form of local freshness: Following the usual rules
of α-equivalence, a bound name can now stand for any name except those previously bound names
that still appear later in the word. We thus obtain a local freshness semantics as a quotient of global
freshness.

We show that under local freshness, RNNAs correspond to a natural subclass of NOFAs (equiv-
alently, FMAs) defined by excluding nondeterministic reassignment and by enforcing a policy of
name dropping, which in terms of registers can be phrased as “the automaton may keep a letter in
a register only if that letter is going to be used later” (much like teaching your five-year-old not
to monopolize toys that she does not actually want to play with). For example, one cannot accept
the language {ab | a 6= b} but one can accept {aba | a 6= b}. Unsurprisingly, RNNAs with local
freshness semantics are strictly more expressive than FSUBAs (with empty Θ); the relationships of
the various models are summarized in Figure 1. We show that RNNAs nevertheless retain a decidable
inclusion problem, again in parametrized PSPACE, using an algorithm that we obtain by varying the
one for global freshness. We are not aware of any other nondeterministic automata model for local
freshness (with more than two registers) that has a decidable inclusion problem.

Further Related Work A Kleene theorem for deterministic nominal automata and an expression
language with explicit recursion is mentioned in the conclusion of [15]. Kurz et al. [18] introduce
regular expressions for languages over words with explicit scoped binding, which differ technically
from those used in the semantics of NKA and regular bar expressions in that they are taken only
modulo α-equivalence, not the other equations of NKA concerning the extension of the scope of
binders. They satisfy a Kleene theorem for a species of automata that incorporate an explicit bound
on the depth of nesting of bindings, rejecting words that exceed this depth.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 3

RNNAs NOFAsRegister based
Global

Freshness

Local
Freshness

Session
Automata

Finite Memory
Automata

FSUBA (Θ = ∅) name-dropping,
non-spontaneous

non-spontaneous

((

(

Figure 1 Expressivity of selected data language formalisms (restricted to empty initial register assignment)

Surveys on automata for data languages can be found in [2, 10, 23]. Data languages are often
represented as products of a classical finite alphabet and an infinite alphabet; for simplicity, we use
just the set of names as the alphabet (as for example in [21]). Our unscoped name binding construct
is, under local semantics, similar to the binders in regular expressions with memory as introduced by
Libkin et al., who also observe that while such binders have a more imperative than declarative flavor,
they are necessary to obtain equivalence results with automata (in this case, register automata) [19].

2 Preliminaries

G-sets Recall that a group action of a group G on a set X is a map G × X → X , denoted by
juxtaposition or infix ·, such that π(ρx) = (πρ)x and 1x = x for π, ρ ∈ G, x ∈ X . A G-set is a set
X equipped with an action of G. The orbit of x ∈ X is the set {πx | π ∈ G}. A function f : X → Y

between G-sets X,Y is equivariant if f(πx) = π(fx) for all π ∈ G, x ∈ X . Given a G-set X , G
acts on subsets A ⊆ X by πA = {πx | x ∈ A}. For A ⊆ X and x ∈ X , we put

fix x = {π ∈ G | πx = x} and FixA =
⋂
x∈A fix x.

Note that elements of fixA and FixA fix A setwise and pointwise, respectively.

Nominal sets Fix a countably infinite set A of names. We fix G to be the group of finite
permutations on A. Putting πa = π(a) makes A into a G-set. Given a G-set X and x ∈ X , a set
A ⊆ A supports x if FixA ⊆ fix x, and x ∈ X has finite support if some finite A ⊆ A supports x. In
this case, there is a smallest set supporting x, denoted supp(x). For a ∈ A, we say that a is fresh for
x and write a# x if a /∈ supp(x). A nominal set is a G-set all whose elements have finite support.
For every equivariant function f between nominal sets, we have supp(fx) ⊆ supp(x). The function
supp itself is equivariant, i.e. supp(πx) = π(supp(x)) for π ∈ G. It follows that if x1, x2 are in
the same orbit of a nominal set, then]supp(x1) =]supp(x2) (we use] for cardinalities, avoiding
overuse of ‘|’). A subset S ⊆ X is finitely supported (fs) if S has finite support with respect to the
above-mentioned action of G on subsets; equivariant if πx ∈ S for all π ∈ G and x ∈ S (which
implies supp(S) = ∅); and uniformly finitely supported (ufs) if

⋃
x∈S supp(x) is finite [26].

I Lemma 2.1 ([7], Theorem 2.29). If S is ufs, then supp(S) =
⋃
x∈S supp(x).

For a nominal setX , we denote byPfs(X) andPufs(X) the sets of fs and ufs subsets ofX , respectively.
Note that any ufs set is fs but not conversely; e.g. the set A is fs but not ufs. Moreoever, any finite
subset of X is ufs but not conversely; e.g. the set of words an for fixed a ∈ A is ufs but not finite. A
nominal set X is orbit-finite if the action of G on it has only finitely many orbits.

I Lemma 2.2. Ever ufs subset of an orbit-finite set Xis finite.

4 Nominal Automata with Name Binding

On the category Nom of nominal sets and equivariant maps, we have the abstraction functor [A](−)
defined on objects by [A]X = (A×X)/∼, where the relation ∼ abstracts α-equivalence: (a, x) ∼
(b, y) iff (c a) · x = (c b) · y for any fresh c. We write 〈a〉x for the ∼-equivalence class of (a, x).

Coalgebra An F -coalgebra (C, γ) for an endofunctor F : C→ C on a category C consists of a
C-object C of states and a morphism γ : C → FC; here, we are interested in the case C = Nom.
A coalgebra morphism f : (C, γ) → (D, δ) is a morphism f : C → D such that Ffγ = δf . An
F -coalgebra (C, γ) is final if for each F -coalgebra (D, δ), there exists a unique coalgebra morphism
(D, δ)→ (C, γ). A pointed coalgebra is a coalgebra with a distinguished initial state.

For example, F -coalgebras for the functor FX = A×X on Nom consist of equivariant maps
X → A (output) and X → X (next state), thus produce a stream of names at each state x;
equivariance and the finite support of x imply that this stream has finite support, i.e. contains only
finitely many distinct names. Consequently, the final F -coalgebra in this case is the set of finitely
supported streams over A.

3 Nominal Automata and Global Freshness

We next recall the basic definitions in the theory of nominal automata [3] (developed in op. cit. in
the setting of arbitrary symmetries and for general orbit-finite alphabets), and introduce our model
of regular nondeterministic nominal automata. Nondeterministic orbit-finite automata (NOFAs) are
succinctly defined as orbit-finite coalgebras for the functor F on Nom given by

FX = 2× Pfs(A×X)

(where 2 = {>,⊥}), equipped with an equivariant subset of initial states. That is, a NOFA A

consists of an orbit-finite set Q of states, an equivariant set F ⊆ Q of final states (those that map
to > under the first component of the F -coalgebra structure), and an equivariant transition relation
→ ⊆ Q× A×Q, where we write q a−→ p for (q, a, p) ∈ →. We refer to a NOFA whose transition
relation is deterministic as a DOFA. An A-language is a subset of A∗. The A-language L(A)
accepted by A is defined in the standard way: First, we inductively extend the transition relation
to words w ∈ A by putting q ε−→ q, and q aw−−→ p whenever q a−→ q′ and q′ w−→ p for some state
q′. Then, A accepts w ∈ A if there exist an initial state q and a final state p such that q w−→ p, and
L(A) = {w | A accepts w}.

NOFAs are equivalent to finite-memory automata (FMA) with nondeterministic reassignment [3,
14]. These are roughly described as having a finite set of registers in which names from the current
word can be stored if they are locally fresh, i.e. not currently stored in any register; transitions are
labeled with register indices k, meaning that the transition accepts the next letter if it equals the
content of register k. In the equivalence with NOFAs, the names currently stored in the registers
correspond to the support of states. Summing up, NOFAs are an automata model for local freshness.

So far, transitions of a state in Q are elements of A×Q. Given the central role that the abstraction
functor [A](−) (Section 2) plays in nominal sets, it is natural to extend the model to allow bound
transitions also, i.e. elements of [A]Q, and indeed this is what happens in automata models for
nominal Kleene algebra [15]. We can combine this extension with a restriction on branching: while
it does not make much sense to restrict a NOFA to be finitely branching (this would imply that any
initial state could accept only words consisting of the names in its support, i.e. such a NOFA could
never read fresh names), it will turn out that finite branching is technically convenient and still retains
a reasonable level of expressivity in the presence of bound transitions.

I Definition 3.1. A regular nondeterministic nominal automaton (RNNA) is a pointed orbit-finite
coalgebra A = (Q, ξ : Q→ NQ) for the functor N on Nom given by

NX = 2× Pufs(A×X)× Pufs([A]X).

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 5

The degree deg(A) = max{]supp(q) | q ∈ Q} of A is the maximum size of supports of states in A.

The functor N is a nondeterministic variant of the functor KX = 2×XA × [A]X whose coalgebras
are deterministic nominal automata [15]. Explicitly, an RNNA can be described as a tuple A =
(Q,→, s, F) consisting of

an orbit-finite set Q of states;
an equivariant subset→ of Q× Ā×Q, the transition relation, where Ā = A ∪ { a | a ∈ A} and
we write q α−→ q′ for (q, α, q′) ∈ →; transitions of type q a−→ q′ are called free, and those of type
q

a−→ q′ bound;
an equivariant subset F ⊆ Q of final states; and
an initial state s ∈ Q.

These data are required to satisfy the following conditions:
The relation→ is α-invariant, i.e. closed under α-equivalence of transitions, where transitions
q

a−→ q′ and p b−→ p′ are α-equivalent if q = p and 〈a〉q′ = 〈b〉p′.
The relation→ is finitely branching up to α-equivalence, i.e. for each state q the sets {(a, q′) |
q
a−→ q′} and {〈a〉q′ | q a−→ q′} are finite (equivalently ufs, by Lemma 2.2).

We proceed to define the language semantics of RNNAs.

I Definition 3.2. A bar string is a word over Ā, i.e. an element of Ā∗. The set Ā∗ is made into a
nominal set by the letter-wise action of G. The free names occurring in a bar string w are those names
a that occur in w to the left of any occurrence of a. We write FN(w) for the set of free names of w,
and say that w is closed if FN(w) = ∅. We define α-equivalence ≡α on bar strings as the equivalence
(not: congruence) generated by w av ≡α w bu if 〈a〉w = 〈b〉u (for w, v, w ∈ Ā∗). We write [w]α for
the α-equivalence class of w. The set FN(w) is clearly invariant under α-equivalence, so we have a
well-defined notion of free names of bar strings modulo ≡α. We say that a bar string is clean if its
bound variables are mutually distinct and distinct from all its free variables. Clearly, every bar string
is α-equivalent to a clean one. For a bar string w, we denote by ub(w) ∈ A∗ (for unbind) the word
arising from w by replacing all bound names a with the corresponding free name a.

A literal language is a set of bar strings, and a bar language is an fs set of bar strings modulo
α-equivalence, i.e. an fs subset of

M̄ := Ā∗/≡α.

An RNNA A, with data as above, (literally) accepts a bar string w ∈ Ā∗ if s w−→ q for some q ∈ F ,
where we extend the transition notation w−→ to bar strings in the usual way. The literal language
accepted by A is the set L0(A) of bar strings accepted by A, and the bar language accepted by A is
the quotient Lα(A) of L0(A) modulo α-equivalence.

I Remark 3.3. In dynamic sequences [9], there are two dynamically scoped constructs 〈a and a〉
for dynamic allocation and deallocation, respectively, of a name a; in this notation, our a corresponds
to 〈aa. As we discuss later in this section, the bar language model is isomorphic to the ν-string-based
model of NKA [15]. In particular, the bar languages form the final coalgebra for the endofunctor
KX = 2 ×XA × [A]X on Nom for deterministic nominal automata mentioned before, with free
and bound transitions understood in the same way as for RNNA. (There is however an expressivity
gap between deterministic and nondeterministic nominal automata [15, Example 4.13]). The ν-string-
based model is equivalent to an alternative language mode AL [16], which essentially implements
global freshness. That is, AL is defined on closed expressions in terms of A-languages, with bound
names required to be globally fresh, i.e. not previously seen in the current word. Formally, AL is
given by applying to a bar language L the operator N given by

N(L) = {ub(w) | w clean, [w]α ∈ L} ⊆ A∗.

6 Nominal Automata with Name Binding

Summing up, under bar language semantics, RNNAs are a formalism for global freshness, so we
also refer to bar language semantics as global freshness semantics. Since RNNAs will turn out to be
essentially equivalent to session automata under this semantics, we defer examples to Section 4.

A key property of RNNAs is that supports of states evolve in the expected way along transitions
(cf. [15, Lemma 4.6] for the deterministic case):

I Lemma 3.4. Let A be an RNNA. Then the following hold.
1. If q a−→ q′ in A then supp(q′) ∪ {a} ⊆ supp(q).
2. If q a−→ q′ in A then supp(q′) ⊆ supp(q) ∪ {a}.
In fact, the properties in the lemma are clearly also sufficient for ufs branching. From Lemma 3.4, an
easy induction shows that for any state q in an RNNA and any w ∈ L0(q), we have FN(w) ⊆ supp(q).
Furthermore, we immediately have

I Corollary 3.5. Let A be a RNNA. Then Lα(A) is ufs; specifically, if s is the initial state of A and
w ∈ Lα(A), then supp(w) ⊆ supp(s).

We have an evident notion of α-equivalence of paths in RNNAs, defined analogously as for bar
strings (see Remark A.5 in the appendix). Of course, α-equivalent paths always start in the same state.
The set of paths of an RNNA A is closed under α-equivalence (see Lemma A.15 in the appendix).
However, this does not in general imply that L0(A) is closed under α-equivalence; e.g. for A being

s() a−→ t(a) b−→ u(a, b) (1)

(with a, b ranging over distinct names in A), where s() is initial and the states u(−,−) are final, we
have a b ∈ L0(A) but the α-equivalent a a is not in L0(A). Crucially, assuming closure of L0(A)
under α-equivalence is nevertheless without loss of generality, as we show next.

I Definition 3.6. An RNNA A is name-dropping if for every state q in A and every subset
N ⊆ supp(q) there exists a state q|N in A that restricts q to N ; that is, supp(q|N) = N , q|N is final
if q is final, and q|N has at least the same incoming transitions as q (i.e. for all states p in A, if p a−→ q

then p a−→ q|N and if p a−→ q then p a−→ q|N), and as many of the outgoing transitions of q as possible;
i.e. q|N

a−→ q′ whenever q a−→ q′ and supp(q′) ∪ {a} ⊆ N , and q|N
a−→ q′ whenever q a−→ q′ and

supp(q′) ⊆ N ∪ {a}.

The counterexample shown in (1) fails to be name-dropping, as no state restricts q = u(a, b) to
N = {b}.

The following lemma shows that closure under α-equivalence is restored under name-dropping:

I Lemma 3.7. Let A be a name-dropping RNNA. Then L0(A) is closed under α-equivalence, i.e.
L0(A) = {w | [w]α ∈ Lα(A)}.

Finally, we can close a given RNNA under name dropping, preserving the bar language:

I Lemma 3.8. Given an RNNA of degree k with n orbits, there exists a bar language-equivalent
name-dropping RNNA of degree k with at most n2k orbits.

Proof (Sketch). From an RNNA A, construct a name-dropping RNNA with states of the form

q|N := Fix(N)q

where q is a state in A, N ⊆ supp(q), and Fix(N)q denotes the orbit of q under Fix(N). The final
states are the q|N with q final in A, and the initial state is s|supp(s), where s is the initial state of A.
As transitions, we take

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 7

q|N
a−→ q′|N ′ whenever q a−→ q′, N ′ ⊆ N , and a ∈ N , and

q|N
a−→ q′|N ′ whenever q b−→ q′′, N ′′ ⊆ supp(q′′) ∩ (N ∪ {b}), and 〈a〉(q′|N ′) = 〈b〉(q′′|N ′′).

One can show that this yields a name-dropping RNNA that is equivalent to A. J

I Example 3.9. Closing the RNNA from (1) under name dropping as per Lemma 3.8 yields
additional states that we may denote u(⊥, b) (among others), with transitions t(a) b−→ u(⊥, b); now,
〈b〉u(⊥, b) = 〈a〉u(⊥, a), so a a is accepted.

Relation to Nominal Kleene Algebra We recall that expressions r, s of nominal Kleene algebra
(NKA) [8], briefly NKA expressions, are defined by the grammar

r, s ::= 0 | 1 | a | r + s | rs | r∗ | νa. r (a ∈ A).

Kozen et al. [16, 15] give a semantics of NKA in terms of languages over words with binding, so called
ν-strings, which are either 1 or ν-regular expressions formed using only names a ∈ A, sequential
composition, and name binding ν, taken modulo the laws of NKA [8], including α-equivalence and
laws for scope extension of binding. It is easy to see that the nominal set of ν-strings modulo these
laws is isomorphic to M̄ ; one converts bar strings into ν-strings by replacing any occurrence of a
with νa.a, with the scope of the binder extending to the end of the string. In this semantics, a binder
νa is just interpreted as itself, and all other clauses are standard. Kozen et al. show that on closed
expressions, their semantics is equivalent to the one originally defined by Gabbay and Ciancia [8].

I Remark 3.10. On open expressions, the semantics of [8] and [15, 16] differ. For purposes of
expressivity comparisons, we will generally restrict to closed expressions as well as “closed” automata
and languages in the sequel. For automata, this typically amounts to the initial register assignment
being empty, and for languages to being equivariant.

It has been shown by Kozen et al. [15] that a given NKA expression r can be translated into a
nondeterministic nominal automaton whose states are the so-called spines of r, which amounts to
one direction of a Kleene theorem. One can show that the spines in fact form an RNNA. The other
direction of the Kleene theorem is known to fail even for orbit-finite deterministic nominal automata,
i.e. RNNAs are strictly more expressive than NKA:

I Example 3.11. [15] It is easy to construct an orbit-finite deterministic nominal automaton (or an
RNNA, shown explicitly in Example 4.6) accepting the ν-language

{ε, νb.ba, νb.ba(νa.ab), νb.ba(νa.ab(νb.ba)), νb.ba(νa.ab(νb.ba(νa.ab))), . . . },

which requires unbounded nesting depth of ν, hence cannot be defined in NKA.

4 Nondeterministic Finite Bar Automata

We next provide a finite representation of RNNAs by proving their equivalence with ordinary nonde-
terministic finite automata (NFAs) over Ā. These are a mild generalization of session automata [4] and
are equivalent to the latter on closed languages (session automata accept only closed languages); that
is, on closed languages RNNA under global freshness semantics are equivalent to session automata.

I Definition 4.1. A nondeterministic finite bar automaton, or bar NFA for short, over A is an NFA
A over Ā. We call transitions of type q a−→ q in A free transitions and transitions of type q a−→ q

bound transitions. The literal language L0(A) of A is the language accepted by A qua NFA over Ā.
The bar language Lα(A) ⊆ M̄ accepted by A is defined as

Lα(A) = L0(A)/≡α.

8 Nominal Automata with Name Binding

Generally, we denote by L0(q) the Ā-language accepted by the state q in A and by Lα(q) the quotient
of L0(q) by α-equivalence. The degree deg(A) of A is the number of names a ∈ A that occur in
transitions q a−→ q′ or q a−→ q′ in A.

Similarly, a regular bar expression is a regular expression r over Ā; the literal language L0(r) ⊆
Ā∗ defined by r is the language defined by r qua regular expression, and the bar language defined
by r is Lα(r) = L0(r)/≡α. The degree deg(r) of r is the number of free or bound names occurring
in r.

IRemark 4.2. Disregarding an additional finite component of the alphabet, a session automaton [4]
is essentially a bar NFA (where free names a are denoted as a↑, and bound names a as a~). It defines
an A-language and interprets bound transitions for a as binding a to some globally fresh name. In
the light of the equivalence of global freshness semantics and bar language semantics as discussed
in Section 3, session automata are thus essentially the same as bar NFAs; again, the only difference
concerns the treatment of open bar strings: While session automata explicitly reject bar strings that fail
to be closed (well-formed [4]), a bar NFA will happily accept open bar strings. Part of the motivation
for this permissiveness is that we now do not need to insist on regular bar expressions to be closed;
in particular, regular bar expressions are closed under subexpressions. Moreover, standard regular
expressions over A are now (open) regular bar expressions.

I Example 4.3. Phrased in terms of A-languages, bar NFAs, being equivalent to session automata,
can express the language “all letters are distinct” but not the universal language A∗.

I Construction 4.4. We construct an RNNA Ā from a given bar NFA A with set Q of states. For
brevity, we already incorporate closure under name dropping as per Lemma 3.8. For a state q ∈ Q,
we put Nq = supp(Lα(q)). The set Q̄ of states of Ā consists of pairs

(q, πFN) (q ∈ Q, N ⊆ Nq)

where FN abbreviates Fix(N) and πFN denotes a left coset. Note that left cosets for FN can be
identified with injective renamings N → A; intuitively, (q, πFN) restricts q to N and renames N
according to π. (A slightly similar construction with explicit total injections has been used to convert
history-dependent automata into NOFAs [6]). We letG act on states by π1 ·(q, π2FN) = (q, π1π2FN).
The initial state of Ā is (s, FNs), where s is the initial state of A; a state (q, πFN) is final in Ā iff q is
final in A. Free transitions in Ā are given by

(q, πFN) π(a)−−−→ (q′, πFN ′) whenever q
a−→ q′ and N ′ ∪ {a} ⊆ N

and bound transitions by

(q, πFN) a−→ (q′, π′FN ′) whenever q
b−→ q′, N ′ ⊆ N ∪ {b}, 〈a〉π′FN ′ = 〈π(b)〉πFN ′ .

I Theorem 4.5. Ā is a name-dropping RNNA with at most |Q|2deg(A) orbits, deg(Ā) = deg(A),
and Lα(Ā) = Lα(A).

I Example 4.6. The language from Example 3.11 is equivalent to the bar language L =
{ε, ba, ba ab, ba ab ba, ba ab ba ab . . . }. Translating the closed bar language aL equivalently
into an A-language under global freshness, we obtain the language of odd-length words in A∗
with identical letters in positions 0 and 2, and with every letter in an odd position being globally
fresh and repeated three positions later. The language L is defined by the regular bar expression
(ba ab)∗(1 + ba) and accepted by the bar NFA A with four states s, t, u, v, where s is initial and s
and u are final, and transitions s b−→ t

a−→ u
a−→ v

b−→ s. The above construction then produces an

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 9

RNNA that is similar to the one shown for this example in [15]: By the above description of left
cosets for FN , we annotate every state q with a list of]supp(Lα(q)) entries that are either (pairwise
distinct) names or ⊥, indicating that the corresponding name from supp(Lα(q)) has been dropped.
We can draw those orbits of the resulting RNNA that have the form (q, πNq), i.e. do not drop any
names, as

t(c, b)
s(c) u(b)

v(b, c)

cb

cb
for b 6= c, with s(c), u(b) final for all b, c ∈ A and s(c) initial.

Additional states and transitions then arise from name dropping; e.g. for t we have additional states
t(⊥, b), t(c,⊥), and t(⊥,⊥), all with a b-transition from s(c). The states t(⊥,⊥) and t(⊥, b) have
no outgoing transitions, while t(c,⊥) has a c-transition to u(⊥).

We next present the reverse construction, i.e. given an RNNA A we extract a bar NFA A0 (a
subautomaton of A) such that Lα(A0) = Lα(A).

Put k = deg(A). We fix a set A0 ⊆ A of size]A0 = k such that supp(s) ⊆ A0 for the initial state
s of A, and a name ∗ ∈ A − A0. The states of A0 are those states q in A such that supp(q) ⊆ A0.

As this implies that the set Q0 of states in A0 is ufs, Q0 is finite by Lemma 2.2. Note that s ∈ Q0.
For q, q′ ∈ Q0, the free transitions q a−→ q′ in A0 are the same as in A (hence have a ∈ A0 by
Lemma 3.4.1). The bound transitions q a−→ q′ in A0 are those bound transitions q a−→ q′ in A such
that a ∈ A0 ∪ {∗}. A state is final in A0 iff it is final in A. The initial state of A0 is s.

I Theorem 4.7. The number of states in the bar NFA A0 is linear in the number of orbits of A and
exponential in deg(A). Moreover, deg(A0) ≤ deg(A) + 1, and Lα(A0) = Lα(A).

In combination with the previous construction, we obtain the announced equivalence result:

I Corollary 4.8. RNNAs are expressively equivalent to bar NFAs, hence to regular bar expressions.

This amounts to a Kleene theorem for RNNAs. In combination with the discussion in Section 3, this
shows that regular bar expressions are strictly more expressive than NKA. While it might seem that
we can now just give up nominal automata and use bar NFAs instead, it turns out that our decision
procedure for inclusion (Section 6) will actually use both concepts, essentially running a bar NFA in
synchrony with an RNNA.

5 Local Freshness

Recall that the global freshness semantics of RNNA is defined by removing bars from the clean
representatives of the α-equivalence classes of bar strings in the bar language. Alternatively, we can
extract from a bar language L the A-language

D(L) = {ub(w) | [w]α ∈ L}.

That is, D(L) is obtained by taking all representatives of α-equivalence classes in L and removing
all bars. As we show below, RNNAs correspond to a class of NOFAs under the semantics D(Lα(·)),
which we therefore call the local freshness semantics. Note that local freshness is coarser than global
freshness; e.g., Lα(a b+ aa) = {[a b]α, [aa]α} 6= {[a b]α} = Lα(a b), but D(Lα(a b+ aa)) =
A2 = D(a b). The semantics D(Lα(·)) enforces local freshness by blocking α-renamings of bound
names into names that have free occurrences later in the bar string. For example, {ab ∈ A2 | a 6= b}
cannot be accepted by an RNNA under local freshness semantics (e.g. the regular bar expression
a b defines D(a b) = A2, as a b ≡α a a). Contrastingly, the language {aba ∈ A3 | a 6= b} can be
accepted by an RNNA under local freshness semantics, being defined by the regular bar expression
a ba.

10 Nominal Automata with Name Binding

I Example 5.1. UnderD(Lα(·)), the regular expression a(ba ab)∗(1+ ba) (Example 4.6) defines
the A-language consisting of all odd-length words over A that contain the same letters in positions 0
and 2 (if any) and repeat every letter in an odd position three positions later (if any) but no earlier;
that is, the bound names are interpreted as being locally fresh. The reason for this is that, e.g., in the
bar string a ba ab, α-renaming of the bound name b into a is blocked by the occurrence of a after b;
similarly, the second occurrence of a cannot be renamed into b.

Relationship to NOFAs To enable a comparison of RNNAs with NOFAs over A (Section 3), we
restrict our attention in the following discussion to RNNAs that are closed, i.e. whose initial state
has empty support, therefore accept equivariant A-languages. We can convert a closed RNNA A into
a NOFA D(A) accepting D(Lα(A)) by simply replacing every transition q a−→ q′ with a transition
q
a−→ q′. We show that the image of this translation is a natural class of NOFAs:

I Definition 5.2. A NOFA A is non-spontaneous if supp(s) = ∅ for every initial state s, and

supp(q′) ⊆ supp(q) ∪ {a} whenever q
a−→ q′.

Moreover, A is α-invariant if q a−→ q′′ whenever q b−→ q′, b # q, and 〈a〉q′′ = 〈b〉q′ (this condition
is automatic if a# q). Finally, A is name-dropping if for each state q and each set N ⊆ supp(q) of
names, there exists a state q|N that restricts q to N , i.e. supp(q|N) = N , q|N is final if q is final, and

q|N has at least the same incoming transitions as q;
whenever q a−→ q′, a ∈ supp(q), and supp(q′) ∪ {a} ⊆ N , then q|N

a−→ q′;
whenever q a−→ q′, a# q, and supp(q′) ⊆ N ∪ {a}, then q|N

a−→ q′.
In words, A is non-spontaneous if transitions q a−→ q′ in A create no new names other than a in q′.

I Proposition 5.3. A NOFA is of the form D(B) for some (name-dropping) RNNA B iff it is
(name-dropping and) non-spontaneous and α-invariant.

I Proposition 5.4. For every non-spontaneous and name-dropping NOFA, there is an equivalent
non-spontaneous, name-dropping, and α-invariant NOFA.

In combination with Lemma 3.7, these facts imply

I Corollary 5.5. Under local freshness semantics, RNNAs are expressively equivalent to non-
spontaneous name-dropping NOFAs.

I Corollary 5.6. The class of languages accepted by RNNAs under local freshness semantics is
closed under finite intersections.

Proof (Sketch). Non-spontaneous name-dropping NOFAs are closed under the standard product
construction. J

I Remark 5.7. Non-spontaneity is prevalent in automata models for data languages. Every
DOFA is non-spontaneous. Moreover, finite memory automata and register automata are morally
non-spontaneous according to their original definitions, i.e. they can read names from the current
word into the registers but cannot guess names nondeterministically [12, 21]; the variant of finite
memory automata that is proved equivalent to NOFAs in [3] in fact allows such nondeterministic
reassignment [14]. This makes unrestricted NOFAs strictly more expressive than non-spontaneous
ones: the language “the last letter has not been seen before” can be accepted by an unrestricted NOFA
(by guessing the last name at the beginning) but not by a non-spontaneous NOFA [12, 27].

Name-dropping restricts expressivity further, with the mentioned language {ab | a 6= b} being a
separating example. In return, it buys decidability of inclusion (Section 6), while for non-spontaneous
NOFAs even universality is undecidable [3, 21]. DOFAs are incomparable to RNNAs under local
freshness semantics—the language “the last letter has been seen before” is defined by the regular bar
expression (b)∗ a(b)∗a but not accepted by any DOFA.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 11

Relationship to FSUBAs We now compare RNNAs to finite-state unification-based automata
(FSUBAs) [13, 25]. A particular feature of FSUBAs is that they distinguish a finite subset Θ of the
alphabet that is read-only, i.e. cannot be written into the registers. We have no corresponding feature,
therefore restrict to Θ = ∅ in the following discussion. An FSUBA then consists of finite sets Q and
r of states and registers, respectively, a transition relation µ ⊆ Q× r ×Pω(r)×Q, an initial state
q0 ∈ Q, a set F ⊆ Q of final states, and an initial register assignment u. Register assignments are
partial maps v : r ⇀ A, which means a register k ∈ r can be empty (v(k) = ⊥) or hold a name from
A. An FSUBA configuration is a pair (q, v), where q ∈ Q and v is a register assignment. The initial
configuration is (q0, u). A transition (q, k, S, p) ∈ µ applies to a configuration with state q for an
input symbol a ∈ A if register k is empty or holds a; the resulting configuration has state p, with the
input a first written into register k and the register contents from S cleared afterwards. A word is
accepted if there is a sequence of transitions from (q0, u) to a configuration with a final state.

As the name unification-based suggests, FSUBAs can check equality of input symbols, but not
inequality (except with respect to the read-only letters); in other words, they have no notion of
freshness. Thus the above-mentioned language {aba | a 6= b} cannot be accepted by an FSUBA [13].

The configurations of an FSUBAA are a nominal setC under the group action π·(q, v) = (q, π·v).
We show in the appendix that one can equip C with the structure of an RNNA that accepts the same
A-language as A under local freshness semantics; that is, RNNAs are strictly more expressive than
FSUBAs with empty read-only alphabet.

6 Deciding Inclusion under Global and Local Freshness

We next show that under both global and local freshness, the inclusion problem for regular bar
expressions (equivalently bar NFAs) is in EXPSPACE. In view of Remark 4.2, for global freshness,
this just reproves the known decidability of inclusion for session automata [4] in a marginally more
general setting (the complexity bound is not stated in [4] but can be extracted from the decidability
proof), while the result for local freshness appears to be new. Our algorithm is mildly different from
the one suggested in [4] in that it exploits name dropping; we describe it explicitly, as we will modify
it for local freshness.

I Theorem 6.1. The inclusion problem for bar NFAs (or regular bar expressions) is in EXPSPACE;
more precisely, the inclusion Lα(A1) ⊆ Lα(A2) can be checked using space polynomial in the size
of A1 and A2 and exponential in deg(A2) log(deg(A1) + deg(A2) + 1).

The theorem can be rephrased as saying that bar language inclusion of NFA is in parameterized
polynomial space (para-PSPACE) [24], the parameter being the degree.

Proof (Sketch). Let A1, A2 be bar NFAs with initial states s1, s2. We exhibit an NEXPSPACE

procedure to check that Lα(A1) is not a subset of Lα(A2), which implies the claimed bound by
Savitch’s theorem. It maintains a state q of A1 and a set Ξ of states in the name-dropping RNNA Ā2
generated by A2 as described in Construction 4.4, with q initialized to s1 and Ξ to {(s2, idFNs2)}. It
then iterates the following:

1. Guess a transition q α−→ q′ in A1 and update q to q′.
2. Compute the set Ξ′ of all states of Ā2 reachable from states in Ξ via α-transitions (literally, i.e.

not up to α-equivalence) and update Ξ to Ξ′.

The algorithm terminates successfully and reports that Lα(A1) 6⊆ Lα(A2) if it reaches a final state q
of A1 while Ξ contains only non-final states.

Correctness of the algorithm follows from Theorem 4.5 and Lemma 3.7. To analyze space usage,
first recall that cosets πFN can be represented as injective renamings N → A. Note that Ξ will

12 Nominal Automata with Name Binding

only ever contain states (q, πFN) such that the image πN of the corresponding injective renaming
is contained in the set P of names occurring literally in either A1 or A2. In fact, at the beginning,
idNs2 consists only of names literally occurring in A2, and the only names that are added are those
occurring in transitions guessed in Step 1, i.e. occurring literally in A1. So states (q, πFN) in Ξ
can be coded using partial functions Nq ⇀ P . There are only exponentially many such states;
noting that]P ≤ deg(A1) + deg(A2), there are at most k · (deg(A1) + deg(A2) + 1)deg(A2) =
k · 2deg(A2) log(deg(A1)+deg(A2)+1) such states, where k is the number of states of A2. J

I Remark 6.2. The translation from NKA expressions to regular bar expressions from Section 3
increases expression size exponentially but the degree only linearly. Therefore, the EXPSPACE upper
bound on inclusion for NKA expressions [15] follows from Theorem 6.1.

We now adapt the inclusion algorithm to local freshness semantics.

I Definition 6.3. We denote by v the preorder (in fact: order) on Ā∗ generated by wav v w av.

I Lemma 6.4. Let L1, L2 be bar languages accepted by RNNA. Then D(L1) ⊆ D(L2) iff for each
[w]α ∈ L1 there exists w′ w w such that [w′]α ∈ L2.

ICorollary 6.5. InclusionD(Lα(A1)) ⊆ D(Lα(A2)) of bar NFAs (or regular bar expressions) un-
der local freshness semantics is in para-PSPACE, with parameter deg(A2) log(deg(A1) + deg(A2) +
1).

Proof. By Lemma 6.4, we can use a modification of the above algorithm, where Ξ′ additionally
contains states of Ā2 reachable from states in Ξ via a-transitions in case α is a free name a. J

7 Conclusions and Future Work

We have studied the global and local freshness semantics of regular nondeterministic nominal au-
tomata, which feature explicit name-binding transitions. We have shown that RNNAs are equivalent
to session automata [4] under global freshness and to non-spontaneous and name-dropping non-
deterministic orbit-finite automata [3] under local freshness. Under both semantics, RNNAs are
comparatively well-behaved computationally, and in particular admit inclusion checking in parameter-
ized polynomial space. While this reproves known results on session automata under global freshness,
decidability of inclusion under local freshness appears to be new, and in fact other nondeterministic
automata models for local freshness tend to have undecidable inclusion problems (e.g. finite memory
automata (FMAs) with more than two registers [12], nondeterministic orbit-finite automata [3], and
variable automata [10]). In terms of expressivity, RNNAs lie strictly between finite unification-based
automata without read-only symbols [13] and FMAs.

We leave the implementation of our calculus, possibly transferring efficient methods for equiva-
lence checking of NFAs using bisimulation up to congruence [5] to the nominal setting, as future work.
Another challenge is to add support for deallocation operators in the spirit of dynamic sequences [9]
to the framework.

Acknowledgements We wish to thank Charles Paperman for useful discussions. We also thank
the anonymous reviewers of an earlier version of this paper for their insightful comments that helped
us improve the paper, and in particular led us to discover the crucial notion of name dropping.

References

1 M. Bielecki, J. Hidders, J. Paredaens, J. Tyszkiewicz, and J. V. den Bussche. Navigating with a
browser. In Automata, Languages and Programming, ICALP 2002, vol. 2380 of LNCS, pp. 764–
775. Springer, 2002.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 13

2 M. Bojańczyk. Automata for data words and data trees. In Rewriting Techniques and Applications,
RTA 2010, vol. 6 of LIPIcs, pp. 1–4. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

3 M. Bojanczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. Log. Methods Comput.
Sci., 10, 2014.

4 B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A robust class of data languages and an
application to learning. Log. Meth. Comput. Sci., 10, 2014.

5 F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to congruence. In
Principles of Programming Languages, POPL 2013, pp. 457–468. ACM, 2013.

6 V. Ciancia and E. Tuosto. A novel class of automata for languages on infinite alphabets. Technical
report, University of Leicester, 2009. CS-09-003.

7 M. J. Gabbay. Foundations of nominal techniques: logic and semantics of variables in abstract
syntax. Bull. Symbolic Logic, 17(2):161–229, 2011.

8 M. J. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with names. In Foun-
dations of Software Science and Computational Structures, FOSSACS 2011, vol. 6604 of LNCS, pp.
365–380. Springer, 2011.

9 M. J. Gabbay, D. R. Ghica, and D. Petrisan. Leaving the nest: Nominal techniques for variables
with interleaving scopes. In Computer Science Logic, CSL 2015, vol. 41 of LIPIcs, pp. 374–389.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

10 O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets. In
Language and Automata Theory and Applications, LATA 2010, vol. 6031 of LNCS, pp. 561–572.
Springer, 2010.

11 M. Hennessy. A fully abstract denotational semantics for the pi-calculus. Theor. Comput. Sci.,
278:53–89, 2002.

12 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134:329–363, 1994.
13 M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets. Fund. Inform.,

69:301–318, 2006.
14 M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic reassignment. Int. J.

Found. Comput. Sci., 21:741–760, 2010.
15 D. Kozen, K. Mamouras, D. Petrisan, and A. Silva. Nominal Kleene coalgebra. In Automata,

Languages, and Programming, ICALP 2015, vol. 9135 of LNCS, pp. 286–298. Springer, 2015.
16 D. Kozen, K. Mamouras, and A. Silva. Completeness and incompleteness in nominal kleene alge-

bra. In Relational and Algebraic Methods in Computer Science, RAMiCS 2015, vol. 9348 of LNCS,
pp. 51–66. Springer, 2015.

17 K. Kürtz, R. Küsters, and T. Wilke. Selecting theories and nonce generation for recursive protocols.
In Formal methods in security engineering, FMSE 2007, pp. 61–70. ACM, 2007.

18 A. Kurz, T. Suzuki, and E. Tuosto. On nominal regular languages with binders. In Foundations of
Software Science and Computational Structures, FOSSACS 2012, vol. 7213 of LNCS, pp. 255–269.
Springer, 2012.

19 L. Libkin, T. Tan, and D. Vrgoc. Regular expressions for data words. J. Comput. Syst. Sci., 81:1278–
1297, 2015.

20 S. Milius, L. Schröder, and T. Wißmann. Regular behaviours with names: On rational fixpoints
of endofunctors on nominal sets. submitted; available at http://www8.cs.fau.de/ext/
thorsten/nomliftings.pdf.

21 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Log., 5:403–435, 2004.

22 A. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press,
2013.

23 L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Computer
Science Logic, CSL 2006, vol. 4207 of LNCS, pp. 41–57. Springer, 2006.

http://www8.cs.fau.de/ext/thorsten/nomliftings.pdf
http://www8.cs.fau.de/ext/thorsten/nomliftings.pdf

14 Nominal Automata with Name Binding

24 C. Stockhusen and T. Tantau. Completeness results for parameterized space classes. In Parameter-
ized and Exact Computation, IPEC 2013, vol. 8246 of LNCS, pp. 335–347. Springer, 2013.

25 A. Tal. Decidability of inclusion for unification based automata. Master’s thesis, Technion, 1999.
26 D. Turner and G. Winskel. Nominal domain theory for concurrency. In Computer Science Logic,

23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal,
September 7-11, 2009. Proceedings, pp. 546–560, 2009.

27 T. Wysocki. Alternating register automata on finite words. Master’s thesis, University of Warsaw,
2013. (In Polish).

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 15

A Omitted Proofs

A.1 Abstraction in Nominal Sets

We occasionally use, without express mention, the following alternative description of equality in the
abstraction [A]X , which formalizes the usual intuitions about α-equivalence:

I Lemma A.1. Let a, b ∈ A and x, y ∈ X . Then 〈a〉x = 〈b〉y in [A]X iff either

(i) (a, x) = (b, y), or
(ii) b 6= a, b# x, and (ab) · x = y.

Proof. ‘If’: the case where (i) holds is trivial, so assume (ii). Let c be fresh; we have to show
(ca) · x = (cb) · y. But (cb) · y = (cb) · (ab) · x = (acb) · x = (ca) · x, where we use in the last step
that b, c are both fresh for x so that (ca)−1(acb) = (ca)(acb) = (bc) fixes x.

‘Only if’: We assume (a, x) 6= (b, y) and prove (ii). We first show a 6= b: Assume the contrary.
Let c be fresh; by the definition of abstraction, we then have (ca) · x = (cb) · y, so y = (cb)(ca) · x =
(ca)(ca) · x = x, contradiction. We have supp(x) ⊆ {a} ∪ supp(〈a〉x) = {a} ∪ supp(〈b〉y), whence
b # x since a 6= b and b # 〈b〉y. Finally, with c as above y = (cb)−1(ca) · x = (cb)(ca) · x =
(acb) · x = (ab) · x, again because (ab)−1(abc) = (ab)(abc) = (bc) and b, c are fresh for x. J

As an easy consequence we obtain:

I Corollary A.2. Let X be a nominal set, a ∈ A and x ∈ X . Then supp(〈a〉x) = supp(x)− {a}.

Proof of Lemma 2.2 Firstly, any finite set S ⊆ X is ufs, because
⋃
y∈S supp(y) is a finite union

of finite sets. Secondly, for any ufs S ⊆ X , we have supp(S) =
⋃
y∈S supp(y), which is a finite

union (because X is orbit-finite) of again finite sets. J

A.2 Proofs and Lemmas for Section 3

NOFAs as coalgebras We show that the standard description of NOFAs as repeated at the
beginning of Section 3 is equivalent to the one as F -coalgebras for FX = 2×Pfs(A×X). For the
direction from the standard description to F -coalgbras, recall that the transition relation is assumed to
be equivariant; therefore, the map taking a state q to {(a, q′) | q a−→ q′} is equivariant, hence preserves
supports and therefore ends up in FQ where Q is the set of states. Conversely, let ξ : Q→ FQ be
an F -coalgebra with components f : Q → 2, g : Q → Pfs(A ×Q). Define the transition relation
on Q by q a−→ q′ iff (a, q′) ∈ g(Q), and make q final iff f(q) = >. Then finality is equivariant by
equivariance of f . To see that the transition relation is equivariant let q a−→ q′ and π ∈ G. Then
(πa, πq′) ∈ π(g(q)) = g(π(q)) by equivariance of g, i.e. πq πa−−→ πq′. J

I Definition A.3. Given a state q in A we write L0(q) and Lα(q) for the literal language and the
bar language, respectively, accepted by the automaton obtained by making q the initial state of A.

I Lemma A.4. In an RNNA, the map q 7→ Lα(q) is equivariant.

Proof. Note first that the set of bar strings Ā∗ is the initial algebra for the functor SX = 1 + A×
X + A×X on Nom. And the set M̄ of bar strings modulo α-equivalence is the intial algebra for
the functor SαX = 1 + A×X + [A]X on Nom. The functor Sα is a quotient of the functor S via
the natural transformation q : S � Sα given by the canonical quotient maps A×X � [A]X . The

16 Nominal Automata with Name Binding

canonical quotient map [−]α : Ā∗ � M̄ that maps every bar string to its α-equivalence class is
obtained inductively, i.e. [−]α is the unique equivariant map such that the following square commutes:

SĀ∗ ι //

S[−]α
��

Ā∗

[−]α
��

SM̄
qM̄
// SαM̄ ια

// M̄

where ι : SĀ∗ → Ā∗ and ια : SαM̄ → M̄ are the structures of the initial algebras, respectively.
Since the map [−]α is equivariant we thus have π[w]α = [πw]α for every w ∈ Ā∗.

Now we prove the statement of the lemma. Since both free and bound transitions are equivariant,
the literal language L0(−) is equivariant. It follows that the bar language Lα(−) is equivariant: If
m ∈ Lα(q) then there is w ∈ L0(q) such that [w]α = m. For π ∈ G, it follows that π · w ∈ L0(πq),
and hence [π · w]α ∈ Lα(πq). But [π · w]α = π[w]α, so πm ∈ Lα(πq). J

Proof of Lemma 3.4
1. Consider the ufs set Z = {(a, q′) | q a−→ q′}. Then we have supp(q′) ∪ {a} = supp(a, q′) ⊆

supp(Z) ⊆ supp(q) where the second inclusion holds because Z is ufs, and the third because Z
depends equivariantly on q.

2. Consider the ufs set Z = {[a]q′ | q a−→ q′}. Then we have supp(q′) ⊆ supp([a]q′) ∪ {a} ⊆
supp(Z)∪{a} ⊆ supp(q)∪{a} where the second inclusion holds because Z is ufs, and the third
because Z depends equivariantly on q. J

I Remark A.5. Given an RNNA A with the state set Q the paths in A form the initial algebra
for the functor Q × S(−), where S is the functor in the proof of Lemma A.4. Paths in A modulo
α-equivalence then form the initial algebra for Q × Sα(−) and the canonical quotient map [−]α
mapping a path to its α-equivalence class is obtained by initiality similarly as the canonical quotient
map in Lemma A.4.

Proof of Lemma 3.7

I Lemma A.6. LetA be a name-dropping RNNA, and let q|N restrict a state q inA toN ⊆ supp(q).
Then {w ∈ L0(q) | FN(w) ⊆ N} ⊆ L0(q|N).

Proof. Induction on the length of w ∈ L0(q) with FN(w) ⊆ N , with the base case immediate from
the finality condition in Definition 3.6. So let w = αv with α ∈ Ā, accepted via a path q α−→ q′

v−→ p,
and let q′|Nv restrict q′ to Nv := FN(v). By the induction hypothesis, v ∈ L0(q′|Nv). Moreover,
q

α−→ q′|Nv . We are done once we show that q|N
α−→ q′|Nv . If α is free, then we have to show

Nv ∪ {α} ⊆ N , and if α = a is bound, we have to show Nv ⊆ N ∪ {a}. In both cases, the requisite
inclusion is immediate from FN(αv) ⊆ N . J

Proof (Lemma 3.7). We use induction on the word length. It suffices to show that L0(A) is closed
under single α-conversion steps. So let v aw ∈ Ā∗ ∈ L0(A), via a path s = q0

v−→ q1
a−→ q2

w−→ q3
(with q3 final), let b 6= a with b /∈ FN(w), and let w′ be obtained from w by replacing free
occurrences of a with b. We have to show that v bw′ ∈ L0(A); it suffices to show that bw′ ∈ L0(q1).
Put N = supp(q2) − {b}, and let q2|N restrict q2 to N . By Lemma A.6, w ∈ L0(q2|N), and
hence [w]α ∈ Lα(q2|N). By Lemma A.4, it follows that [w′]α ∈ Lα((ab)(q2|N)), so by the
induction hypothesis, w′ ∈ L0((ab)(q2|N)). We clearly have q1

a−→ q2|N , and by α-invariance,
q1

b−→ (ab)(q2|N) because b# (q2|N).
Thus, bw′ ∈ L0(q1) as required. J

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 17

Proof of Lemma 3.8

I Definition A.7. Given the transition data of an RNNA A (not necessarily assuming any finiteness
and invariance conditions) and a state q in A, we denote by fsuc(q) the set

fsuc(q) = {(a, q′) | q a−→ q′}

of free transitions of q, and by bsuc(q) the set

bsuc(q) = {〈a〉q′ | q a−→ q′}

of bound transitions of q modulo α-equivalence.

Note that under α-invariance of transitions we have 〈a〉q′ ∈ bsuc(q) if and only if q a−→ q′.
Before we proceed to the proof of the lemma we note the following general fact about nominal

sets: for the value of π · x, it matters only what π does on the atoms in supp(x):

I Lemma A.8. For x ∈ (X, ·) and any π, σ ∈ G with π(v) = σ(v) for all v ∈ supp(x), we have
π · x = σ · x.

Proof. Under the given assumptions, π−1σ ∈ Fix(supp(x)) ⊆ fix(x). J

Proof (Lemma 3.8). Let A be an RNNA with set Q of states.
(1) We construct an equivalent name-dropping RNNA A′ as follows. As states, we take pairs

q|N := Fix(N)q

where q ∈ Q, N ⊆ supp(q), and Fix(N)q denotes the orbit of q under Fix(N). We define an
action of G on states by π · (q|N) = (πq)|πN . To see well-definedness, let π′ ∈ Fix(N) (i.e.
(π′q)|N = q|N); we have to show (ππ′q)|πN = (πq)|πN . Since (ππ′π−1)πq = ππ′q, this follows
from ππ′π−1 ∈ Fix(πN). The map (q,N) 7→ q|N is equivariant, which proves the bound on the
number of orbits in A′. A state q|N is final if q is final in A; this clearly yields an equivariant subset
of states of A′. The initial state of A′ is s|supp(s) where s is the initial state of A. We have

supp(q|N) = N ; (2)

in particular, the states of A′ form a nominal set. To see ‘⊆’ in (2), it suffices to show that N
supports q|N . So let π ∈ Fix(N). Then π · (q|N) = (πq)|πN = q|N , as required. For ‘⊇’, let
a ∈ N ; we have to show that N − {a} does not support q|N . Assume the contrary. Pick b # q.
Then (ab) ∈ Fix(N −{a}), so (ab) · (q|N) = Fix((ab) ·N)(ab) · q = Fix(N)q = q|N . In particular,
q ∈ Fix(ab) ·N)(ab) · q, i.e. there is ρ ∈ Fix((ab) ·N) such that ρ(ab) · q = q. By equivariance of
supp, it follows that ρ(ab) · supp(q) = supp(q). Now b ∈ (ab) ·N , so ρ(b) = b. Since a ∈ supp(q),
it follows that b ∈ ρ(ab) · supp(q); but b /∈ supp(q), contradiction.

As transitions of A′, we take
q|N

a−→ q′|N ′ whenever q a−→ q′, N ′ ⊆ N , and a ∈ N , and
q|N

a−→ q′|N ′ whenever q b−→ q′′, N ′′ ⊆ supp(q′′) ∩ (N ∪ {b}), and 〈a〉(q′|N ′) = 〈b〉(q′′|N ′′).
(We do not require the converse implications. E.g. q|N

a−→ q′|N ′ need not imply that q a−→ q′, only that
πq

a−→ q′ for some π ∈ Fix(N); see also (3) below.) Transitions are clearly equivariant. Moreover,
bound transitions are, by construction, α-invariant.

I Fact A.9. By construction, every bound transition in A′ is α-equivalent1 to one of the form
q|N

a−→ q′|N ′ where q a−→ q′ and N ′ ⊆ supp(q′) ∩ (N ∪ {a}).

1 Recall that a transition q
a−→ q′ is α-equivalent to a transition r

b−→ r′ if q = r and 〈a〉q′ = 〈b〉r′.

18 Nominal Automata with Name Binding

(2) To see ufs branching, let q|N be a state in A′. For free transitions, we have to show that the set

fsuc(q|N) = {(a, q′|N ′) | N ′ ⊆ N, a ∈ N, πq
a−→ q′ for some π ∈ Fix(N)}

of free successors of q|N is ufs. But for π ∈ Fix(N), N ′ ⊆ N , and a ∈ N , we have πq a−→ q′ iff q a−→
π−1q′, and then moreover π−1 ∈ Fix(N ′) so Fix(N ′)π−1q′ = Fix(N ′)q′, i.e. q′|N ′ = (π−1q′)|N ′ .
We thus have

fsuc(q|N) = {(a, (π−
1
q′)|N ′ | N ′ ⊆ N, a ∈ N, q

a−→ π−1q′}

= {(a, q′|N ′) | N ′ ⊆ N, a ∈ N, q
a−→ q′}, (3)

which is ufs.
We proceed similarly for the bound transitions: We need to show that the set bsuc(q|N) of bound

successors of q|N is ufs. By Fact A.9, a bound transition q|N
a−→ q′|N ′ arises from π ∈ Fix(N) and

N ′ ⊆ supp(q′) ∩ (N ∪ {a}) such that πq a−→ q′. Then q
(π−1a)−−−−−→ π−1q′. Moreover, we claim that

〈a〉(q′|N ′) = 〈π−1a〉(π−1(q′|N ′)). (4)

To see (4), we distinguish two cases: If π−1(a) = a then the two sides are equal because π−1 fixes
the support of q′|N ′ . If π−1(a) 6= a then π−1a /∈ N because π−1 fixes N , so π−1a /∈ N ∪ {a}
and therefore π−1a /∈ N ′ = supp(q′|N ′). This means that we can α-equivalently rename a into
π−1a in (a, q′|N ′); since π−1 fixes N , the result of this renaming equals (π−1a, π−1q′|N ′). Since
π−1(q′|N ′) = (π−1q)|π−1N ′ and π−1N ′ ⊆ supp(π−1q′)∩(N ∪{π−1(a)}) (recall π ∈ Fix(N)), (4)
proves

bsuc(q|N) = {〈π−1a〉((π−1q′)|π−1N ′) |

π ∈ Fix(N), π−1N ′ ⊆ supp(π−1q′) ∩ (N ∪ {π−1a}), q π−1a−−−−→ π−1q′}

= {〈a〉(q′|N ′) | N ′ ⊆ supp(q′) ∩ (N ∪ {a}), q a−→ q′}. (5)

By (5), bsuc(q|N) is ufs; indeed, we have supp(〈a〉(q′N ′)) = N ′ − {a} so the support of every
element of bsuc(q|N) is a subset of N . (Note that (5) is not the same as Fact A.9, as in (5) we use a
fixed representative q of Fix(N)q.)

(3) We show next thatA′ is name-dropping. So let q|N be a state inA′, and letN ′ ⊆ supp(q|N) =
N . We show that q|N ′ restricts q|N to N ′. We first establish that q|N ′ has at least the same incoming
transitions as q|N . For the free transitions, let π ∈ Fix(N), q′ a−→ πq and a ∈ N ′′ ⊇ N , so that
q′|N ′′

a−→ (πq)|N = q|N . Then also π ∈ Fix(N ′) and N ′ ⊆ N ′′, so q′|N ′′
a−→ πq|N ′ = q|N ′ as

required. For the bound transitions, let π ∈ Fix(N), let 〈a〉(q|N) = 〈b〉((ab) · (q|N)), let q′ b−→
π(ab)·q where π ∈ Fix((ab)N), and let (ab)·N ⊆ N ′′∪{b}, so that q′|N ′′

a−→ q|N . We have to show
that q′|N ′′

a−→ q|N ′ . From q′
b−→ π(ab) · q we have q|N ′′

b−→ ((π(ab)q)|(ab)N ′) = (((ab)q)|(ab)N ′),
because (ab)N ′ ⊆ (ab)N ⊆ N ′′ ∪ {b} and π ∈ Fix((ab)N) ⊆ Fix((ab)N ′). If b = a, we are done.
So assume b 6= a. Since A′ is α-invariant, it remains only to show that

〈b〉((ab)q|(ab)N ′) = 〈a〉(q|N ′),

i.e. that b /∈ supp(q|N ′); but since b 6= a and 〈a〉(q|N) = 〈b〉((ab) · (q|N)), we even have b /∈
supp(q|N) ⊇ N ′ ⊇ supp(q|N ′).

Next, we show that q|N ′ has the requisite outgoing transitions. For the free transitions, let
q|N

a−→ q′|M where supp(q′|M) ∪ {a} = M ∪ {a} ⊆ N ′. We have to show q|N ′
a−→ q′|M . By (3),

we have q a−→ πq′ for some π ∈ FixM . By construction of A′, q|N ′
a−→ (πq′)|M = q′|M , as required.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 19

For the bound transitions, we proceed as follows. By (5), a given outgoing bound transition of
q|N

a−→ q′|M yields a state r|S ofA′ and b ∈ A such that 〈a〉q′|M = 〈b〉r|S , S ⊆ supp(r)∩(N∪{a})
and q b−→ r.

Now if M ⊆ N ′ ∪ {a} this yields a transition q|N ′
a−→ q′|M by construction of A′; indeed, we

already have q b−→ r, S ⊆ supp(r) and 〈a〉q′|M = 〈b〉r|S , so it remains to show that S ⊆ N ′ ∪ {b}.
By Lemma A.1, 〈a〉q′|M = 〈b〉r|S iff either a = b and q′|M = r|S (and the latter yields M = S,
thus we are done), or a 6= b, a# r|S and (ba)(r|S) = q′|M . It follows that a 6∈ S and M = (ba)S.
Since (ba)S ⊆ N ′ ∪ {a} we have equivalently S ⊆ (ba)N ′ ∪ {b}. This implies S ⊆ N ′ ∪ {b} using
that a 6∈ S.

(4) It remains to show that Lα(A′) = Lα(A). To show ‘⊆’, we show that [w]α ∈ Lα(q) for every
state q|N in A′ and every w ∈ L0(q|N), by induction on w: for the empty word, the claim follows
from the definition of final states in A′. For w = αv, let q|N

α−→ q′|N ′
v−→ t be an accepting path

in A′. Then we have [v]αv ∈ Lα(q′) by induction hypothesis and FN(v) ⊆ N ′ by Corollary 3.5.
By (3) and (5), we have q α−→ πq′ for some π ∈ FixN ′. It follows that π · v = v and therefore
[v]α = π[v]α ∈ Lα(πq′) by the equivariance of Lα (see Lemma A.4). Hence [αv]α ∈ Lα(q).

To see Lα(A′) ⊇ Lα(A), it suffices to note that A is included as a subautomaton in A′ via the
map that takes q to q|supp(q), i.e. q α−→ q′ in A implies q|supp(q)

α−→ q′|supp(q′) in A′. J

A.3 Proofs and Lemmas for Section 4

I Lemma A.10. Let q be a state in a bar NFA; then Lα(q) is ufs.

Proof. The finitely many transitions of A only mention letters from a finite subset of Ā, and⋃
w∈Lα(q) supp(w) is contained in that finite subset. J

Proof of Theorem 4.5

As indicated in the text, we split the construction into two parts, and first construct a plain RNNA Ã.
The states of Ã are pairs

(q, πHq) where Hq = Fix(supp(Lα(q)))

consisting of a state q in A and a left coset πHq , where the action of G is as on Ā:

π1 · (q, π2Hq) = (q, π1π2Hq).

We continue to write Nq = supp(Lα(q)) (note Hq = FNq in the notation used in the construction of
Ā). The initial state of Ã is (s,Hs) where s is the initial state of A; a state (q, πHq) is final in Ã iff q
is final in A. Free transitions in Ã are of the form

(q, πHq)
π(a)−−−→ (q′, πHq′) where q a−→ q′ and a ∈ Nq,

(where the condition a ∈ Nq is automatic unless Lα(q′) = ∅) and bound transitions are of the form

(q, πHq)
a−→ (q′, π′Hq′) where q

b−→ q′ and 〈a〉π′Hq′ = 〈π(b)〉πHq′ .

I Remark A.11. (1) Note that by Lemma 2.1, Nq = supp(Lα(q)) =
⋃
w∈Lα(q) supp(w), i.e. Nq

is the set of names that appear free in some word w ∈ Lα(q).
(2) Observe that πHq = π′Hq iff π′(v) = π(v) for all v ∈ Nq: πHq = π′Hq iff π−1π′ ∈ Hq iff

π−1π′(v) = v for all v ∈ Nq iff π′(v) = π(v) for all v ∈ Nq .

20 Nominal Automata with Name Binding

(3) For a coset πHq , we have

supp(q, πHq) = supp(πHq) = πNq

so the set Q̃ of states of Ã is a nominal set. This is by Item (2): for π′ ∈ G, we have π′πHq = πHq

iff π′π(a) = π(a) for all a ∈ Nq iff π′ ∈ Fix(πNq).
(4) Note that 〈a〉(πHq) = 〈b〉(π′Hq) implies 〈a〉(q, πHq) = 〈b〉(q, π′Hq) since the action of G on

states of Ã is trivial in the first component.

I Remark A.12. Left cosets for Hq are in one-to-one correspondence with injections Nq → A.
Indeed, in the light of Remark A.11(2) it suffices to prove that every injection i : Nq → A can be
extended to a finite permutation. Define π by

π(a) =
{
i(a) a ∈ Nq
i−n(a) else, for n ≥ 0 minimal s.t. i−n(a) 6∈ i[Nq]

For the proof that π is a indeed a finite permutation see [20, Corollary 2.4].

Transitions from a given state (q, πHq) can be characterized as follows.

I Lemma A.13. Let (q, πHq) be a state in Ã. Then

fsuc(q, πHq) = {(π(a), (q′, πHq′)) | q
a−→ q′, a ∈ Nq} (6)

and

bsuc(q, πHq) = {〈π(a)〉(q′, πHq′) | q
a−→ q′}. (7)

Proof. For the free transitions, we have by definition

fsuc(q, πHq) = {(π′(a), (q′, π′Hq′)) | π′Hq = πHq, q
a−→ q′, a ∈ Nq}.

Now if π′Hq = πHq and q a−→ q′, then π and π′ agree onNq and hence onNq′ ∪{a} (asNq′ ∪{a} ⊆
Nq), so (π′(a), (q′, π′Hq′)) = (π(a), (q′, πHq′)). This shows (6).

For the bound transitions, we have by definition and using Remark A.11(4)

bsuc(q, πHq) = {〈π′(a)〉(q′, π′Hq′) | π′Hq = πHq, q
a−→ q′}.

So let π′Hq = πHq and q a−→ q′. The claim (7) follows from

〈π′(a)〉(q′, π′Hq′) = 〈π(a)〉(q′, πHq′), (8)

which we now prove. By Remark A.11(2) we know that π and π′ agree on Nq . In order to prove (8),
we distinguish two cases: if π(a) = π′(a) then π and π′ agree onNq′ ⊆ Nq∪{a}, i.e. π′Hq′ = πHq′ ,
so the two sides of (8) are literally equal. Otherwise, a /∈ Nq, and π′, π differ on Nq′ only w.r.t.
their value on a. It follows that (π(a)π′(a))π and π′ agree on Nq′ = supp(Hq′). Therefore
(π(a)π′(a))πHq′ = π′Hq′ by Lemma A.8. So, by Lemma A.1, to show (8) it suffices to show
that π′(a) /∈ supp(q′, πHq′). But supp(q′, πHq′) = πNq′ ⊆ πNq ∪ π(a) = π′Nq ∪ π(a), and
π′(a) /∈ π′Nq ∪ π(a) because a /∈ Nq and π′(a) 6= π(a). J

The key ingredient in the proof that Ã accepts the same bar language as A will be a normalization
result on paths that uses an obvious notion of α-equivalence on paths in an RNNA (see Remark A.5);
explicitly:

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 21

I Definition A.14. α-equivalence of paths in an RNNA is defined inductively by

q0
a−→ q1

α2−→ q2
α3−→ · · · αn−−→ qn is α-equivalent to q0

a−→ q′1
α′2−→ q′2

α′3−→ · · · α
′
n−−→ q′n

if q1
α2−→ q2

α3−→ · · · αn−−→ qn is α-equivalent to q′1
α′2−→ q′2

α3−→ · · · α
′
n−−→ q′n, and

q0
a−→ q1

α2−→ q2
α3−→ · · · αn−−→ qn is α-equivalent to q0

b−→ q′1
α′2−→ q′2

α′3−→ · · · α
′
n−−→ q′n

if 〈a〉[q1
α2−→ q2

α3−→ · · · αn−−→ qn]α = 〈b〉[q′1
α′2−→ q′2

α′3−→ · · · α
′
4−→ q′n]α, where we use [−]α to denote

α-equivalence classes of paths.

I Lemma A.15. The set of paths of an RNNA is closed under α-equivalence.

Proof. Observe that by equivariance, G acts pointwise on paths. It suffices to show closure under
single α-conversion steps. So let q0

a−→ q1
α2−→ . . .

αn−−→ qn be path in an RNNA A, denote the path
from q1 onwards by P , and let 〈a〉P = 〈b〉P ′, so P ′ = (ab) · P . Then by α-invariance of→, we
have q0

b−→ (ab)q1, and by equivariance, (ab) · P is a path from (ab)q1. J

I Lemma A.16. Let P = q0
a−→ q1

α2−→ . . .
αn−−→ qn be a path in an RNNAA, and let 〈a〉q1 = 〈b〉q′1.

Then there exists a path in A of the form q0
b−→ q′1

α′2−→ . . .
α′n−−→ q′n that is α-equivalent to P .

Proof. SinceA is an RNNA, the support of the α-equivalence class of q1
α2−→ . . .

αn−−→ qn is supp(q1)
(Remark A.17), so we obtain an α-equivalent path q0

b−→ q′1
α′2−→ . . .

α′n−−→ q′n by renaming a into b in
q1

α2−→ . . .
αn−−→ qn. J

I Remark A.17. Note that the support of the α-equivalence class of a path in an RNNA is the
support of its starting state. Indeed, let [P]α be such an equivalence class and let q be the starting
state of P . The inclusion supp(q) ⊆ supp([P]α) holds because we have a well-defined equivariant
projection from paths to their initial states. The converse inclusion is shown by induction, using
Lemma 3.4.

In the proof that Ã accepts Lα(A), the following normalization result for paths is crucial.

I Definition A.18. A path in Ã is π-literal for π ∈ G if all transitions in it are of the form
(q, πHq)

πα−−→ (q′, πHq′) where α ∈ Ā and q α−→ q′.

Intuitively, a π-literal path is one that uses the same pattern of name reusage for free and bound names
as the underlying path in A, up to a joint renaming π of the free and bound names.

I Lemma A.19. Let P be a path in Ã beginning at (q0, π0Hq0). Then P is α-equivalent to a
π0-literal path.

Proof. We prove the statement by induction over the path length. The base case is trivial. For the
inductive step, let P = (q0, π0Hq0) α1−→ (q1, π1Hq1) α2−→ · · · αn−−→ (qn, πnHqn) be a path of length
n > 0. If α1 is a free name then π1Hq1 = π0Hq1 by (6); by induction, we can assume that the length-
(n− 1) path from (q1, π0Hq1) onward is π0-literal, and hence the whole path is π0-literal. If α1 = a

then by (7) we have 〈a〉(q1, π1Hq1) = 〈π0(b)〉(q1, π0Hq1) for some transition q0
b−→ q1 in A. By

Lemma A.16, this induces an α-equivalence of P with a path (q0, π0Hq0) π0(b)−−−−→ (q1, π0Hq1) −→ . . . ;
by the induction hypothesis, we can transform the length-(n− 1) path from (q1, π0Hq1) onward into
a π0-literal one, so that the whole path becomes π0-literal as desired. J

22 Nominal Automata with Name Binding

I Lemma A.20. Ã is an RNNA, with as many orbits as A has states, and accepts the bar language
Lα(A).

Proof. The free and bound transitions of Ã are equivariant, and the bound transitions are α-invariant
by construction of the transition relation on Ã (note that all states in the orbit of (q, πHq) have the
form (q, π′Hq)). Every orbit of Ã contains a state of the form (q, idHq). This proves the claim
on the number of orbits, which implies that Ã is orbit-finite. Finite branching is immediate from
Lemma A.13. Thus, Ã is an RNNA.

It remains to show that Lα(Ã) = Lα(A). The inclusion ‘⊇’ is clear because A is a subautomaton
in Ã via the inclusion map f taking a state q to (q, idHq); i.e. q α−→ q′ in A implies (q, idHq)

α−→
(q′, idHq′) in Ã. For the reverse inclusion, note that by Lemma A.19, every accepting path of Ã is
α-equivalent to an id-literal accepting path starting at the initial state (s, idHs) of Ã; such a path
comes from an accepting path in A for the same bar string via the map f . J

We are now set to prove Theorem 4.5 by combining the above construction with that of Lemma 3.8;
i.e. we show that (Ã)′ is isomorphic, and in fact equal, to Ā: A state in (Ã)′ has the form

(q, πHq)|N = (FixN) · (q, πHq) = (q, (FixN)πHq)

for N ⊆ supp(q, πHq) = πNq (hence π−1N ⊆ Nq). We claim that

(FixN)πHq = π Fix(π−1N)(= πFπ−1N). (9)

To see ‘⊆’, let ρ ∈ FixN and σ ∈ Hq. Then π−1ρπ ∈ Fix(π−1N) and, since π−1N ⊆ Nq,
σ ∈ Fix(π−1N), so π−1ρπσ ∈ Fix(π−1N) and therefore ρπσ = ππ−1ρπσ ∈ π Fix(π−1N).

For ‘⊇’, let ρ ∈ Fix(π−1N). Then πρπ−1 ∈ Fix(N), so to show πρ ∈ Fix(N)πHq it suffices to
show (πρπ−1)−1πρ ∈ πHq . But (πρπ−1)−1πρ = π ∈ πHq .

This proves equality of the state sets. It remains to show that the transitions in (Ã)′ and Ā are

the same. The free transitions in (Ã)′ are of the form (q, πHq)|N
π(a)−−−→ (q′, πHq′)|N ′ where q a−→ q′,

N ′ ⊆ πNq′ , and N ′ ∪ {a} ⊆ N ⊆ πNq; by (9), they thus have, up to α-equivalence, the form

(q, πFπ−1N) π(a)−−−→ (q′, πFπ−1N ′) where π−1N ′ ⊆ Nq′ π
−1N ′ ∪ {a} ⊆ π−1N ⊆ Nq, and hence

are the same as in Ā.
The bound transitions in (Ã)′ are, up to α-equivalence, those of the form (q, πHq)|N

π(a)−−−→
(q′, πHq′)|N ′ where q a−→ q′, N ′ ⊆ {a} ∪ N , N ′ ⊆ πNq′ ; and N ⊆ πNq; by (9), they thus have

the form (q, πFπ−1N) π(a)−−−→ (q′, πFπ−1N ′) where π−1N ′ ⊆ {a} ∪ π−1N , π−1N ′ ⊆ Nq′ , and
π−1N ⊆ Nq , and hence again are the same as in Ā. J

Proof of Theorem 4.7
We have to show that every accepting path in A is α-equivalent to an accepting path in A0. Note

that Q0 is closed under free transitions in A, so by Lemma A.16, it suffices to show that for every
bound transition q b−→ q′ in A with q ∈ Q0 we find an α-equivalent transition q a−→ q′′ in A0. We
distinguish the following cases.

If already b ∈ A0 then supp(q′) ⊆ supp(q) ∪ {b} ⊆ A0, so q′ ∈ Q0 and we are done.
If b /∈ A0 and b /∈ supp(q′) then supp(q′) ⊆ supp(q) ⊆ A0. In particular, q′ is already in Q0 and

∗ is fresh for q′, so we can rename b into ∗ and obtain an α-equivalent transition q
|∗−→ q′ in A0.

If b /∈ A0 and b ∈ supp(q′) then |supp(q′) ∩ A0| < k, so that we can pick a name a ∈ A0 that
is fresh for q′. We put q′′ = (ab)q′; then 〈b〉q′ = 〈a〉q′′, and q′′ ∈ Q0 because supp(q′′) =
{a} ∪ (supp(q′)− {b}) ⊆ {a} ∪ supp(q) ⊆ A0; thus, q a−→ q′′ is a transition in A0.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 23

A.4 Proofs and Lemmas for Section 5

I Lemma A.21. If π ∈ G and q|N restricts a state q in a NOFA to N ⊆ supp(q), then π(q|N)
restricts πq to πN .

Proof. We have πN ⊆ πsupp(q) = supp(πq), so the claim is well-formed.
For the support of π(q|N), we have supp(π(q|N)) = πsupp(q|N) = πN as required.
By the equivariance of final states we have that π(q|N) is final if q is final.

For incoming transitions, let p a−→ πq. Then π−1p
π−1a−−−→ q by equivariance, hence π−1p

π−1a−−−→
q|N so that p a−→ π(q|N).

For outgoing transitions, let πq a−→ q′ where supp(q′) ⊆ πN ∪ {a}. Then q π−1a−−−→ π−1q′ by

equivariance, and supp(π−1q′) ⊆ N ∪ π−1a, so q|N
π−1a−−−→ π−1q′ and hence, by equivariance,

π(q|N) a−→ q′. J

Proof of Proposition 5.3. In the first claim, ‘only if’ is immediate by Lemma 3.4. To see ‘if’, let
A be a non-spontaneous and α-invariant NOFA. We construct an RNNA B with the same states as A,
as follows.

q
a−→ q′ in B iff q a−→ q′ in A and a ∈ supp(q).

q
a−→ q′ in B iff q b−→ q′′ in A for some b, q′′ such that b# q and 〈b〉q′′ = 〈a〉q′.

The transition relation thus defined is clearly equivariant and α-invariant. That for every q the sets
{(a, q′) | q a−→ q′} and {〈a〉q′ | q a−→ q′} are ufs (whence finite) easily follows from non-spontaneity.

It remains to verify that D(B) = A, i.e. that

q
a−→ q′ in A iff (q a−→ q′ or q a−→ q′ in B).

To see the ‘only if’ direction, let q a−→ q′ in A. If a ∈ supp(q) then q a−→ q′ in B. Otherwise, a# q and
hence q a−→ q′. For the ‘if’ direction, we have two cases; the case where q a−→ q′ in B is immediate
by construction of B. So let q a−→ q′ in B, that is, we have q b−→ q′′ in A for some b, q′′ such that
〈b〉q′′ = 〈a〉q′ and b# q. Then by α-invariance of A, q a−→ q′.

We proceed to prove the second claim, beginning with ‘only if’. So let C be a name-dropping
RNNA, let q be a state, let N ⊆ supp(q), and let q|N restrict q to N in C. We show that q|N restricts
q to N in D(C). The condition supp(q|N) ⊆ N is clear, as the nominal set of states is not changed
by D. Since q|N has at least the same incoming transitions as q in C, the same holds in D(C). For
the outgoing transitions, first let q a−→ q′ in D(C) where a ∈ supp(q) and supp(q′)∪ {a} ⊆ N . Then
either q a−→ q′ or q a−→ q′ in C. In the first case, q|N

a−→ q′ in C and hence also in D(C). In the
second case, we have supp(q′) ⊆ N ⊆ {a} ∪ N and therefore q|N

a−→ q′ in C, so q|N
a−→ q′ in

D(C). Second, let q a−→ q′ in D(C) where a # q and supp(q′) ⊆ N ∪ {a}. By Lemma 3.4.1 we
know that q a−→ q′ in C, so q|N

a−→ q′ in C and hence q|N
a−→ q′ in D(C).

For the ‘if’ direction of the second claim, let A be a non-spontaneous, name-dropping, and
α-invariant NOFA. We construct B such that D(B) = A as for the first claim, and show additionally
that B is name-dropping. Let q be a state, let N ⊆ supp(q), and let q|N restrict q to N in A. We
claim that q|N also restricts q to N in B. We first show that q|N has at least the same incoming
transitions as q in B. For the free transitions, let p a−→ q in B. Then by construction of B, p a−→ q in
A and a ∈ supp(p), so since A is name-dropping, p a−→ q|N in A and hence p a−→ q|N in B. For the
bound transitions, let p a−→ q in B, i.e. we have p b−→ q′ in A with b#p and 〈a〉q = 〈b〉q′, in particular
q′ = (ab)q. If a = b then p a−→ q in A, and since A is name-dropping p a−→ q|N in A whence in B.
Otherwise, b # q. By Lemma A.21, (ab)(q|N) restricts q′ to (ab)N in A, so p b−→ (ab)(q|N) in A.

24 Nominal Automata with Name Binding

Since supp(q|N) ⊆ supp(q), we have b# q|N , so 〈b〉((ab)(q|N)) = 〈a〉(q|N). By construction of B
we have q a−→ q|N in B, as required.

For the outgoing transitions, first let q a−→ q′ in B where supp(q′) ∪ {a} ⊆ N . Then q a−→ q′

in A = D(B), so q|N
a−→ q′ in A; since a ∈ N = supp(q|N), it follows by construction of B that

q|N
a−→ q′ in B. Second, let q a−→ q′ in B where supp(q′) ⊆ N ∪ {a}. Pick b # (q, a) (so b /∈ N);

then 〈b〉((ab)q′) = 〈a〉q′ and therefore q b−→ (ab)q′ in B by α-invariance. Thus, q b−→ (ab)q′ in
A = D(B), and supp((ab)q′) = (ab)supp(q′) ⊆ (ab)(N∪{a}) = N−{a}∪{b} ⊆ N∪{b}, where
the last but one equation holds since b 6∈ N . Therefore, q|N

b−→ (ab)q′ in A since A is name-dropping.
By construction of B, it follows that q|N

a−→ q′ in B. J

Proof of Proposition 5.4. Let A be a non-spontaneous and name-dropping NOFA. We construct
a NOFA Ā by closing A under α-equivalence of transitions; that is, Ā has the same states as A (in
particular is orbit-finite), and its transitions are given by

q
a−→ q′ in Ā iff q a−→ q′ in A or

there exist b, q′′ such that q b−→ q′′ in A, b# q, and 〈a〉q′ = 〈b〉q′′.

We say that a transition q a−→ q′ in Ā is new if it is not in A.

I Fact A.22. If q a−→ q′ is new then a ∈ supp(q) and there exist b, q′′ such that q b−→ q′′ in A, b# q

(so a 6= b), and 〈a〉q′ = 〈b〉q′′.

We check that Ā has the requisite properties. First, the transition relation is clearly equivariant.
Moreover, Ā is α-invariant by construction.

Ā is non-spontaneous: It suffices to check new transitions q a−→ q′. By Fact A.22, we have
a ∈ supp(q) and b, q′′ such that q b−→ q′′ in A, b# q, and 〈a〉q′ = 〈b〉q′′. Since A is non-spontaneous,
supp(q′′) ⊆ supp(q) ∪ {b}. Let c ∈ supp(q′) and c 6= a; we have to show c ∈ supp(q). Now
q′ = (ab) ·q′′, so supp(q′) = (ab) · supp(q′′) ⊆ (ab) · (supp(q)∪{b}). Since 〈a〉q′ = 〈b〉q′′, we have
b# q′, so c /∈ {a, b}; thus, c ∈ (ab) · (supp(q)∪ {b}) implies c ∈ supp(q)∪ {a}, hence c ∈ supp(q).

Ā is name-dropping: Let N ⊆ supp(q) for a state q, and let q|N restrict q to N in A; we show
that q|N also restricts q to N in Ā. The support of q|N stays unchanged in Ā, so we only have to
check that q|N retains the requisite transitions. Throughout, it suffices to check new transitions.

For incoming transitions, let p a−→ q in Ā be new, i.e. by Fact A.22 we have a ∈ supp(p), p b−→ q′

in A, b# p (hence a 6= b), and 〈b〉q′ = 〈a〉q. Then (ab) · q = q′. Therefore, (ab) · (q|N) restricts q′ to
(ab) ·N in A by Lemma A.21. It follows that p b−→ (ab) · (q|N) in A. Since a 6= b and 〈b〉q′ = 〈a〉q,
we have a # q′ and therefore a # ((ab) · (q|N)), so 〈b〉((ab) · (q|N)) = 〈a〉(q|N) and therefore
p
a−→ q|N by construction of Ā.

For outgoing transitions, let q a−→ q′ be new in Ā; i.e. by Fact A.22 we have a ∈ supp(q), q b−→ q′′

in A, b # q (hence a 6= b) and 〈b〉q′′ = 〈a〉q′. Since a ∈ supp(q), we have to show that q|N
a−→ q′

in Ā, assuming supp(q′) ∪ {a} ⊆ N . From b # q we have b # q|N , so by construction of Ā, it
suffices to show q|N

b−→ q′′ in A, which will follow once we show supp(q′′) ⊆ N ∪ {b}. So let
b 6= c ∈ supp(q′′); we have to show b ∈ N . Now a 6= b and 〈b〉q′′ = 〈a〉q′ imply a# q′′, so c 6= a

and hence c /∈ {a, b}. Therefore c ∈ (ab) · supp(q′′) = supp((ab) · q′′) = supp(q′) ⊆ N , as required.
Ā is equivalent to A: L(A) ⊆ L(Ā) is immediate as A ⊆ Ā by construction. For the reverse

inclusion, we show that2

2 For greater clarity we write L(A, q) for L(q) where q is a state in A.

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 25

(∗) whenever w ∈ L(Ā, q) then there exists N ⊆ supp(q) such that if q|N restricts q to N
in A then w ∈ L(A, q|N)

(in fact, N will be such that |supp(q)−N | ≤ 1). Since supp(s) = ∅ for the initial state s, this implies
that L(Ā) ⊆ L(A).

We prove (∗) by induction on w, with trivial induction base. So let w = av and q a−→ q′ in Ā
where v ∈ L(Ā, q′). By induction, there is N ⊆ supp(q′) such that v ∈ L(A, q′|N) whenever q′|N
restricts q′ to N in A. If q a−→ q′ in A then q a−→ q′|N in A, so that av ∈ L(A, q). The remaining case
is that q a−→ q′ is new. By Fact A.22, we have a ∈ supp(q) and b, q′′ such that q b−→ q′′ in A, b# q (so
a 6= b), and 〈a〉q′ = 〈b〉q′′. We claim that whenever q|Na restricts q to Na := supp(q) − {a} in A
then av ∈ L(A, q|Na). It suffices to show

q|Na
a−→ q′|N in A. (10)

Since a 6= b and 〈a〉q′ = 〈b〉q′′, we have a#q′′ so from q
b−→ q′′ inA we obtain supp(q′′) ⊆ {b}∪Na

by non-spontaneity of A. By the definition of restriction, it follows that q|Na
b−→ q′′ in A (recall that

b# q). Since a /∈ supp(q|Na) = Na, we obtain by equivariance of transitions that q|Na
a−→ q′, which

implies (10) by the definition of restriction: we have q′ = (ab) · q′′ which implies

supp(q′) = (ab) · supp(q′′) ⊆ {a} ∪ (ab) ·Na = {a} ∪Na,

where the last step holds since a, b 6∈ Na. J

Additional proof details for Corollary 5.6. It is straightforward to verify that non-spontaneous
name-dropping NOFAs are closed under the standard product construction; specifically, given a state
(q1, q2) in a product automaton and N ⊆ supp(q1, q2) = supp(q1) ∪ supp(q2), one checks readily
that if qi|Ni restricts qi to Ni := N ∩ supp(qi) for i = 1, 2, then (q1|N1 , q2|N2) restricts (q1, q2) to
N . J

Translation of FSUBAs into RNNAs

Let A be an FSUBA with set Q of state, set r of registers, initial state q0, set F of final states,
transition relation µ ⊆ Q×r×Pω(r)×Q, and initial register assignment u; as indicated in Section 5,
we restrict the read-only alphabet Θ to be empty. We denote the A-language accepted by A by L(A).
We construct an equivalent RNNA R(A) as follows. The states of R(A) are the configurations of A,
which form a nominal set C under the group action π · (q, v) = (q, π · v). The transitions of R(A)
are given by

fsuc(q, v) = {(v(k), (p, eraseS(v))) | (q, k, S, p) ∈ µ} (11)

∪ {(a, (p, eraseS(v[k 7→ a]))) | (q, k, S, p) ∈ µ, a ∈ supp(v), v(k) = ⊥} (12)

bsuc(q, v) = {〈a〉(p, eraseS(v[k 7→ a])) | (q, k, S, p) ∈ µ, a# v, v(k) = ⊥} (13)

where eraseS clears the contents of the registers in S.
This RNNA R(A) behaves, under local freshness semantics, like the FSUBA A:

I Lemma A.23. The transitions between configurations of A are precisely given by (q, v) ub(α)−−−→
(p, w), where (q, v) α−→ (p, w), α ∈ Ā, is a transition in R(A).

Proof. Let (q, v) α−→ (p, w) be a transition in the RNNA R(A). We distinguish cases:
For (11), we have an FSUBA transition (q, k, S, p) ∈ µ with α = v(k) ∈ A, and w = eraseS(v).

Hence we have a transition (q, v) ub(α)−−−→ (p, w) between FSUBA configurations.

26 Nominal Automata with Name Binding

For (12), we have an FSUBA transition (q, k, S, p) ∈ µ and v(k) = ⊥, α = v(i) ∈ A for some
i ∈ r, and w = eraseS(v[k 7→ v(i)]). Hence, from the FSUBA configuration (q, v) the input v(i)
is read into register k and then the registers in S are cleared, i.e. (q, v) α−→ (p, w) is a transition of
FSUBA configurations.
For (13), i.e. for α = a, we have an FSUBA transition (q, k, S, p′) ∈ µ and v(k) = ⊥ and some
b#v with 〈a〉(p, w) = 〈b〉(p′, eraseS(v[k 7→ b])). It follows that (ab)(p, w) = (p′, eraseS(v[k 7→
b])), and equivalently, p = p′ and (ab)w = eraseS(v[k 7→ b]). The latter implies that w =
eraseS(v[k 7→ a]). Thus, we obtain a transition of FSUBA configurations (q, v) a−→ (p, w) as
desired.

Conversely, consider a transition (q, v) a−→ (p, w) of FSUBA configurations admitted by (q, k, S, p) ∈
µ.

If v(k) 6= ⊥, then v(k) = a. Hence (q, v) a−→ (p, w) is a transition in R(A) by (11).
If v(k) = ⊥ and a ∈ supp(v), then (q, v) a−→ (p, w) is a transition in R(A) by (12).
If v(k) = ⊥ and a#v, then w = eraseS(v[k 7→ a]) and 〈a〉(p, w) ∈ bsuc(q, v). By α-invariance,
this implies (q, v) a−→ (p, w) in R(A). J

Using Lemma A.23, one shows by induction on w that L(A) = {ub(w) | w ∈ L0(R(A))}. The
RNNA R(A) in general fails to be name-dropping, but for any [aw]α ∈ Lα(q, v), w ∈ Ā∗, we have

(q, v) a−→ (p, v′), w ∈ Lα(p, v′) or (q, v) a−→ (p, v′), w ∈ Lα(p, v′) : (14)

Since [aw]α ∈ Lα(q, v), we have some transition (q, v) b−→ (p′, v′′) inR(A) such that 〈a〉w = 〈b〉w′
for some w′ ∈ Lα(p′, v′′); if we cannot α-equivalently rename the b-transition into an a-transition
to obtain the left alternative in (14), then b 6= a ∈ supp(v′′) and hence a ∈ supp(v), so by
construction of R(A) we obtain the right alternative in (14). By induction on w, it follows that
{ub(w) | w ∈ L0(q0, u)} = D(Lα(q0, u)), so that L(A) = D(Lα(R(A)), as claimed. J

Details for Remark 5.7 We show that the data language

L = {wava | w, v ∈ A∗, a ∈ A}

is not accepted by any DOFA. Assume for a contradiction that A is a DOFA that accepts L. Let n be
the maximal size of a support of a state in A. Let w = a1 . . . an+1 for distinct ai, and let q be the
state reached by A after consuming w. Then there is i ∈ {1, . . . , n+ 1} such that ai /∈ supp(q). Pick
a fresh name b. Then δ(ai, q) is final and δ(b, q) is not; but since δ(ai, q) = (aib) · δ(b, q), this is in
contradiction to equivariance of the set of final states. J

A.5 Proofs and Lemmas for Section 6

Additional details for the proof of Theorem 6.1. We have omitted the space analysis of the
initialization step. To initialize Ξ we need to compute N2 = supp(Lα(s2)). This can be done in
nondeterministic logspace: for every free transition q a−→ q′ in A2, in order to decide whether or not
a ∈ Ns2 , remove from the transition graph of A2 all transitions with label a and then check whether
there exists a path from s2 to a final state passing through the given transition. J

Details for Remark 6.2 The spines of an NKA expression r arise by α-renaming and subsequent
deletion of some binders from expressions that consist of subexpressions of r, prefixed by at most as
many binders as occur already in r; therefore, the degree of the RNNA formed by the spines, and
hence, by Theorem 4.7 (and the fact that the translation from bar NFA to regular bar expressions is

L. Schröder, D. Kozen, S. Milius, and T. Wißmann 27

polynomial and preserves the degree), that of the arising regular bar expression, is linear in the degree
of r (specifically, at most twice as large). J

We shortly write D(w) = D(Lα(w)) = {ub(w′) | w′ ≡α w} for w ∈ Ā∗.

I Lemma A.24. If w v w′ then D(w) ⊆ D(w′).

Proof. Induction over w, with trivial base case. The only non-trivial case in the induction step is
that w = av and w′ = av′ where v v v′. All bar strings that are α-equivalent to w have the form
au where v ≡α u; we have to show ub(au) ∈ D(av′). We have ub(u) ∈ D(v), so ub(u) ∈ D(v′)
by induction; that is, there exists v̄′ ≡α v′ such that ub(v̄′) = ub(u). Then ub(av̄′) = ub(au) and
av̄′ ≡α av′, so au ∈ D(av′). J

Lemma 6.4 is immediate from the following:

I Lemma A.25. Let L be a regular bar language, and let w ∈ Ā∗. Then D(w) ⊆ D(L) iff there
exists w′ w w such that [w′]α ∈ L.

Proof. ‘If’: If [w′]α ∈ L then D(w′) ⊆ D(L), so D(w) ⊆ D(L) by Lemma A.24.
‘Only if’: We generalize the claim to state that whenever

D(w) ⊆
⋃
i∈I

D(Lα(qi))

for states qi in a name-dropping RNNA A and a finite index set I , then there exist i and w′ w w such
that [w′]α ∈ Lα(qi).

We prove the generalized claim by induction over w. The base case is trivial.
Induction step for words aw: Let D(aw) ⊆

⋃n
i=1 D(Lα(qi)). We prove below that

D(w) ⊆
⋃

i∈I,qi
α−→q′,α∈{a, a}

D(Lα(q′)). (15)

Indeed, let u ∈ D(w), i.e. there exists v ≡α w with ub(v) = u. Then ub(av) = au and av ≡α aw
imply au ∈ D(aw), so by assumption there exists i ∈ {1, . . . , n} such that au ∈ D(Lα(qi)),
i.e. au = ub(αū) for α ∈ {a, a} and [αū]α ∈ Lα(qi). By Lemma 3.7, αū ∈ L0(qi). Therefore there
exists a transition q α−→ q′ and ū ∈ L0(q′). We conclude that u = ub(ū) ∈ D(Lα(q′)) as desired.

Now, by induction hypothesis, it follows from (15) that we have i ∈ I , α ∈ {a, a}, qi
α−→ q′, and

w′ w w such that [w′]α ∈ Lα(q′). Then αw′ w aw and [αw′]α ∈ Lα(qi), as required.
Induction step for words aw: Let D(aw) ⊆

⋃n
i=1 D(Lα(qi)). Notice that

D(aw) =
⋃

b=a∨b#[w]α

bD(πab · w)

(where · denotes the permutation group action and πab = (a b) the transposition of a and b; also note
that b# [w]α iff b 6∈ FN(w)). Now pick b ∈ A such that b# [w]α and none of the qi has a b-transition
(such a b exists because the set of free transitions of each qi is finite, as A is an RNNA). We prove
below that

bD(πab · w) ⊆
⋃

i∈I,qi
b−→q′

bD(Lα(q′)),

and hence we have

D(πab · w) ⊆
⋃

i∈I,qi
b−→q′

D(Lα(q′)), (16)

28 Nominal Automata with Name Binding

again a finite union. In order to see that the above inclusion holds, let bu ∈ bD(πab · w), i.e., we
have v ≡α πab · w with ub(v) = u. Then bv ≡α b(πab · w) ≡α aw and ub(bv) = bu, which
implies that bu ∈ D(aw). By our assumption D(aw) ⊆

⋃n
i=1 D(Lα(qi)) we obtain i ∈ {1, . . . , n}

such that bu ∈ D(Lα(qi)), i.e. bu = ub(βū) for β ∈ {b, b} and [βū]α ∈ Lα(qi). By Lemma 3.7,
we have βū ∈ L0(qi), and since qi has no b-transitions, we therefore know that β = b. Hence

we have a transition qi
b−→ q′ and ū ∈ L0(q′). It follows that u = ub(ū) ∈ D(Lα(q′)), whence

bu ∈ dD(Lα(q′)) as desired.
Now, by induction hypothesis, we obtain from (16) i ∈ I , qi

b−→ q′, and w′ w πab · w such that
[w′]α ∈ Lα(q′). It follows that

bw′ w b(πab · w) and [bw′]α ∈ Lα(qi).

Now we have a# [πab · w]α (because b# [w]α)), and therefore a# [w′]α because πab · w v w′; it
follows that a(πab · w′) ≡α bw′. As v is clearly equivariant, we have πab · w′ w w, so

a(πab · w′) w aw and [a(πab · w′)]α = [bw′]α ∈ Lα(qi),

which proves the inductive claim. J

	Introduction
	Preliminaries
	Nominal Automata and Global Freshness
	Nondeterministic Finite Bar Automata
	Local Freshness
	Deciding Inclusion under Global and Local Freshness
	Conclusions and Future Work
	Omitted Proofs
	Abstraction in Nominal Sets
	Proofs and Lemmas for Section 3
	Proofs and Lemmas for Section 4
	Proofs and Lemmas for Section 5
	Proofs and Lemmas for Section 6

