
Communicating machines as a dynamic binding
mechanism of services*

Ignacio Vissani1, Carlos Gustavo Lopez Pombo1,2, and Emilio Tuosto3

1 Department of computing, School of Science, Universidad de Buenos Aires
2 Consejo Nacional de Investigaciones Cientı́ficas y Tecnolópicas

3 Department of Computer Science, University of Leicester

Abstract

Distributed software is becoming more and more dynamic to support applications able to respond and adapt to
the changes of their execution environment. For instance, service-oriented computing (SOC) envisages applications
as services running over globally available computational resources where discovery and binding between them
is transparently performed by a middleware. Asynchronous Relational Networks (ARNs) is a well-known formal
orchestration model, based on hypergraphs, for the description of service-oriented software artefacts. Choreography
and orchestration are the two main design principles for the development of distributed software. In this work, we
propose Communicating Relational Networks (CRNs), which is a variant of ARNs, but relies on choreographies for
the characterisation of the communicational aspects of a software artefact, and for making their automated analysis
more efficient.

1 Introduction and motivation
Distributed software is becoming more and more dynamic to support applications able to respond and
adapt to the changes of their execution environment. For instance, service-oriented computing (SOC)
envisages applications as services running over globally available computational resources; at run-time,
services search for other services to bind to and use. Software architects and programmers have no
control as to the nature of the components that an application can bind to due to the fact that the discovery
and binding are transparently performed by a middleware.

Choreography and orchestration are the two main design principles for the development of dis-
tributed software (see e.g., [6]). Coordination is attained in the latter case by an orchestrator, specifying
(and possibly executing) the distributed work-flow. Choreography features the notion of global view,
that is a holistic specification describing distributed interactions amenable of being “projected” onto
the constituent pieces of software. In an orchestrated model, the distributed computational components
coordinate with each other by interacting with a special component, the orchestrator, which at run time
decides how the work-flow has to evolve. For example the orchestrator of a service offering the booking
of a flight and a hotel may trigger a service for hotel and one for flight booking in parallel, wait for the
answers of both sites, and then continue the execution. In a choreographed model, the distributed com-
ponents autonomously execute and interact with each other on the basis of a local control flow expected
to comply with their role as specified in the “global viewpoint”. For example, the choreography of
hotel-flight booking example above could specify that the flight service interacts with the hotel service
which in turns communicates the results to the buyer.

We use Asynchronous relational networks (ARNs) [8] as the basis of our approach. In ARNs, sys-
tems are formally modelled as hypergraphs obtained by connecting hyperarcs which represent unit of

*This work has been supported by the European Union Seventh Framework Programme under grant agreement no. 295261
(MEALS)

1

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

computations and communication. More precisely, hyperarcs are interpreted as either processes (ser-
vices or unit of computation) or as communication channels (unit of communication). The nodes can
only be adjacent to: 1. 1. one process hyperarc and one communication hyperarc, meaning that the com-
putation formalised by the process hyperarc is bound through the communication channel formalised
by the communication hyperarc, 2. one process hyperarc, meaning that it is a provides-points through
which the computation formalised by the process hyperarc can be bound to and activity that requires
that particular service, or 3. one communication hyperarc, meaning that it is a requires point to which
a given service can be bound using one of its provides-points. The rationale behind this separation
is that a provides-point yields the interface through which a service exports its functionality while a
requires-point is the interface through which an activity expects certain service to provide a functional-
ity. Composition of services can then be understood as fusing a provides-point with a requires-point in
a way that the service exported by the former satisfy the expectations of the latter, usually formalised as
contracts in some formal language.

Hyperarcs are labelled with (Müller) automata; in the case of process hyperarcs, automata formalise
the interactions carried out by that particular service while, in the case of communication hyperarcs,
they represent the orchestrator coordinating the behaviour of the participants of the communication.
In fact, the automaton Λ associated to a communication hyperarc coordinates the processes bound to its
ports by, at each time, interacting with one of the processes and deciding, depending on the state Λ is
in, what is the next interaction (if any) to execute. The global behaviour of the system is then obtained
by composing the automata associated to process and communication hyperarcs. In the forthcoming
sections we will introduce a running example to show how definitions work and concretely discuss the
contributions of the present work.

As anticipated, the composition of ARNs yields a semantic definition of a binding mechanism of
services in terms of “fusion” of provides-points and requires-points. Once coalshed, the nodes become
“internal”, that is they are no longer part of the interface and cannot be used for further bindings. In
existing works, like [8], the binding is subject to an entailment relation between linear temporal logic [7]
theories attached to the provides- and requires-points that can be checked by resorting to any decision
procedure for LTL (for example, [4])

Although the orchestration model featured by ARNs is rather expressive and versatile, we envisage
two drawbacks:

1. the binding mechanism based on LTL-entailment establishes an asymmetric relation between
requires-point and provides-point as it formalises a notion of trace inclusion; also,

2. including explicit orchestrators (the automaton labelling the communication hyperarcs), in the
composition, together with the computational units (the automaton labelling the process hyperarcs)
increases the size of the resulting automaton making the analysis more expensive.

In the present work we propose Communicating Relational Networks (CRNs), a variant of ARNs
relying on choreographies to overcome those issues, where provides-points are labelled with Communi-
cating Finite State Machines [2] declaring the behaviour (from the communication perspective) exported
by the service, and communication hyperarcs are labelled with Global Graphs [3] declaring the global
behaviour of the communication channel. In this way, our proposal blends the orchestration framework
of ARNs with a choreography model based on global graphs and communicating machines. Unlike most
of the approaches in the literature (where choreography and orchestration are considered antithetical),
we follow a comprehensive approach showing how choreography-based mechanisms could be useful in
an orchestration model.

The present work is organised as follows; in Section 2 we provide the formal definitions of most of
the concepts used along this paper. Such definitions are illustrated with a running example introduced in
Section 3. In Section 4 we introduce the main contribution of this paper, being the definition of CRNs,
we show how they are used to rewrite the running example and we discuss several aspects regarding the

2

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

design-time checking to assert internal coherence of services, the run-time checking ruling the binding
mechanism and the cost of software analysis. Finally, in Section 5 we draw some conclusions and
discuss some further research directions.

2 Preliminaries
In this section we present the preliminary definitions used throughout the rest of the present work. We
first summarise communicating machines and global graphs borrowing definitions from [5] and from [3].
Finally we introduce some basic definitions in order to present ARNs; the definition here are adapted
from [8].

2.1 Communicating machines and global graphs
Communicating machines were introduced in [2] to model and study communication protocols in terms
of finite transition systems capable of exchanging messages through some channels. We fix a finite set
Msg of messages, a finite set P of participants

Definition 1 ([2]). A communicating finite state machine on Msg (CFSMs, for short) is a finite transi-
tion system (Q,C, q0,Msg, δ) where

• Q is a finite set of states;

• C = {pq ∈ P2 ∣ p /= q} is a set of channels;

• q0 ∈ Q is an initial state;

• δ ⊆ Q × (C × {!, ?} ×Msg) ×Q is a finite set of transitions.

A communicating system is a map S assigning a CFSM S(p) to each p ∈ P. We write q ∈ S(p) when q
is a state of the machine S(p) and likewise and t ∈ S(p) when t is a transition of S(p).

The execution of a system is defined in terms of transitions between configurations as follows:

Definition 2. The configuration of communicating system S is a pair s = (→q , →w) where
→
q = (qp)p∈P

where qp ∈ S(p) for each p ∈ P and
→
w = (wpq)pq∈C with wpq ∈ Msg⋆. A configuration s′ = (

→
q′,
→
w′) is

reachable from another configuration s = (→q , →w) by the firing of the transition t (written s
t→ s′) if there

exists m ∈Msg such that either:

1. t = (qp,pq!m, q′p) ∈ δp and

(a) q′p′ = qp′ for all p′ /= p; and
(b) w′

pq = wpq ⋅m and w′
p′q′ = wp′q′ for all p′q′ /= pq; or

2. t = (qq,pq?m, q′q) ∈ δq and

(a) q′p′ = qp′ for all p′ /= q; and
(b) m ⋅w′

pq = wpq and w′
p′q′ = wp′q′ for all p′q′ /= pq

A global graph is a finite graph whose nodes are labelled over the set L = {◯,⊚,|,q} ∪ {s → r ∶
m ∣ s, r ∈ P ∧m ∈Msg} according to the following definition.

Definition 3. A global graph (over P and Msg) is a labelled graph ⟨V,A,Λ⟩ with a set of vertexes V ,
a set of edges A ⊆ V × V , and labelling function Λ ∶ V → L such that Λ−1(◯) is a singleton and, for
each v ∈ V

3

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

1. if Λ(v) is of the form s→ r ∶ m then v has a unique incoming and unique outgoing edges,
2. if Λ(v) ∈ {|,q} then v has at least one incoming edge and one outgoing edge and,
3. Λ(v) =⊚ then v has zero outgoing edges.

Label s→ r ∶ m represents an interaction where machine s sends a message m to machine r. A vertex
with label◯ reperesents the source of the global graph,⊚ represents the termination of a branch or of a
thread, q indicates forking or joining threads, and | marks vertexes corresponding to branch or merge
points, or to entry points of loops.

In the following we use a projections algorithms that given a global graph retrieves communicating
machines for each of its participants. Undestranding such algorithm is not necessary for the sake of this
paper and the interested reader is referred to [5] for its definition.

2.2 Asynchronous relational networks
A Müller automaton is a finite state automaton where final states are replaced by a family of states to
define an acceptance condition on infinite words.

Definition 4 (Müller automaton). A Müller automaton over a finite set A of actions is a structure of the
form ⟨Q,A,∆, I,F⟩ , where

1. Q is a finite set (of states)

2. ∆ ⊆ Q ×A ×Q is a transition relation (we write p
ιÐ→ q when (p, ι, q) ∈ ∆),

3. I ⊆ Q is the set of initial states, and
4. F ⊆ 2Q is the set of final-state sets.

We say that an automaton accepts an inifinite trace ω = q0
ι0Ð→ q1

ι1Ð→ . . . if and only if q0 ∈ I and
there exists i ≥ 0 and S ∈ F such that for all s ∈ S, the set ⋃i≤j∧qj=s{j} is infinite.

Asynchronous relational networks are hypergraphs connecting ports that can be thought of as com-
munication end-points through which messages can be sent to or received from other ports.

Definition 5 (Port). A port is a structure π = ⟨π+, π−⟩ where π+, π− are disjoint finite sets of messages.
We say that two ports are disjoint when they are formed by componentwise disjoint sets of messages.
The actions over π are Aπ = {m! ∣m ∈ π−} ∪ {m¡ ∣m ∈ π+}.

The computational agents of ARNs are processes formalised as a set of ports togetherr with a Müller
automaton describing the communication pattern of the agents.

Definition 6 (Process). A process ⟨γ,Λ⟩ consists of a set γ of pairwise disjoint ports and a Müller
automaton Λ over the set of actions Aγ = ⋃π∈γ Aπ .

Processes are connected through connections whose basic role is to establish relations among the
messages that processes exchange on the ports of processes and communication hyperedges. Intuitively,
one can thing of the messages used by processes and communication hyperedges as ’local’ messages
whose ’global’ meaning is established by connections.

Definition 7 (Connection). Given a set of pairwise disjoint ports γ, an attachment injection on γ is a
pair ⟨M,µ⟩ where and a finite setM of messages and µ = {µπ}π∈γ is a family of finite partial injections
µπ ∶M ⇀ π− ∪ π+. We say that ⟨M,µ,Λ⟩ is a connection on γ iff ⟨M,µ⟩ is an attachment injection on
γ and a Müller automaton Λ over {m! ∣m ∈M} ∪ {m¡ ∣m ∈M} such that:

µ−1
π (π−) ⊆ ⋃

π̂∈γ∖{π}
µ−1
π̂ (π̂

+) and µ−1
π (π+) ⊆ ⋃

π̂∈γ∖{π}
µ−1
π̂ (π̂

−).

for each π ∈ γ.

4

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Definition 8 (Asynchronous Relational Network [8]). Let M be a finite set of messages. An asyn-
chronous relational net α on M is a structure ⟨X,P,C,{πx}x∈X ,{µc}c∈C ,{γ}x∈X ,{Λe}e∈P∪C⟩ where

• ⟨X,P ∪C⟩ is a hypergraph, withX is a (finite) set of vertexes, P is a set of hyperedges (non-empty
subsets of X) computation hyperedges, and C is a set of communication hyperedges such that X ,
P , and C are pairwise disjoint, no adjacent hyperedges belong to the same partition,

• three labelling functions that assign (a) a port πx with messages in M to each point x ∈ X ,
(b) a process ⟨γp,Λp⟩ to each hyperedge p ∈ P such that γp ⊆ {πx}x∈X , and (c) a connection
⟨Mc, µc,Λc⟩ to each hyperedge c ∈ C.

An ARN with no provides-point is called activity and formalises the notion of a software artefact that
can execute, while an ARN that has at least one provides-point is called a service and can only execute
provided it is bound through one of them to a requires-point of an activity.

3 The running example
The following running example will help us to present intuitions behind the definitions, and later, to
introduce and motivate our contributions. Consider an application providing the service of hotel reser-
vation and payment processing. A client activity TravelClient asks for hotel options made available by a
provider HotelsService returning a list of offers. If the client accepts any of the offers, then HotelsService
calls for a payment processing service PaymentProcessService which will ask the client for payment
details, and notify HotelsService whether the payment was accepted or rejected. Finally, HotelsService
notifies the outcome of the payment process to the client.

Figures 1, 2, and 3 show the ARNs (including the automata), for the TravelClient, HotelsService,
and PaymentProcessService respectively. The ARN in Fig. 1(a) represents an activity composed with a
communication channel. More precisely, TravelClient (in the solid box on the left) represents a process
hyperedge whose Müller automaton is ΛTC (depicted in Fig. 1(b)). The solid “y-shaped” contour em-
bracing the three dashed boxes represents a communication hyperedge used to specify the two requires-
points (i.e., HS and PPS) of the component necessary to fulfill its goals. Note that such ARN does not
provide itself any service to other components and that the dashed box lists the outgoing and incoming
messages expected (respectively denoted by names prefixed by ’+’ and ’-’ signs).

It is worth remarking that communication hyperarcs in ARNs yield the coordination mechanism
among a number of services. In fact, a communication hyperarc enables the interaction among the ser-
vices that bind to its requires-points such as TravelClient, HotelsService, and PaymentProcessService in
our example. The coordination is specified through a Müller automaton associated with the communi-
cation hyperarc that acts as the orchestrator of the servises. In our running example, the communication
hyperarc of Fig. 1 is labeled with the automaton ΛCC of Fig. 1(c) where, for readability and conciseness,
the dotted and dashed edges stand for the paths

bookHotels!ÐÐÐÐÐÐ→ ⋅
bookHotels¡
ÐÐÐÐÐÐÐ→ ⋅ hotels!ÐÐÐÐ→ ⋅

hotels¡
ÐÐÐÐ→

and
accept!ÐÐÐÐ→ ⋅

accept¡
ÐÐÐÐ→ ⋅ askForPayment!ÐÐÐÐÐÐÐÐÐÐ→ ⋅

askForPayment¡
ÐÐÐÐÐÐÐÐÐÐ→ ⋅ paymentData!ÐÐÐÐÐÐÐÐ→ ⋅

paymentData¡
ÐÐÐÐÐÐÐÐ→

respectively. As we will see, such automaton corresponds to a global choreography when replacing the
binding mechanism of ARNs with choreography-based mechanisms. The transitions of the automata
are labelled with input/output actions; according to the usual ARNs notation, a label m! stands for the
ouput of message m while label m¡ stands for the input of message m.

5

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Travel
Client

ΛTC

− bookHotels
+ hotels
− accept
− decline
+ pleasePay
− paymentData
+ reservations
+ paymentRejected

TC

CC
ΛCC

+ bookHotels
− hotels
+ accept
+ decline
− askForPayment
+ accepted
+ rejected
− reservations
− paymentRejected

HS

+ askForPayment
− pleasePay
+ paymentData
− accepted
− rejected

PPS

(a) The TravelClient activity

bookHotels!

hotels¡¬h
ot
el
s¡

d
ec
li
n
e!

accept!

pleasePay¡
¬p
le
a
se
P
a
y

¡

p
a
y
m
en
tD
a
ta!

reservations¡

paymentRejected¡

¬(reserv
a
tion

s¡∨
p
a
y
m
en
tR
ejected¡)

(b) Müller automaton ΛTC

¬bookHotels¡

decline!

decline¡

¬d
ec
lin
e!

rejected!

rejected¡

paymentRejected!

¬paymentRejected!

paymentRejected¡

accepted!

accepted¡

reservations!

¬reservations!

reservations¡

¬(accepted! ∨ rejected!)

(c) Müller automaton ΛCC .

Figure 1: The TravelClient activity together with the Müller automata.

Hotels
Service

ΛHS

+ bookHotels
− hotels
+ accept
+ decline
− askForPayment
+ accepted
+ rejected
− reservations
− paymentRejected

HS

(a) The HotelsService participant

bookHotels¡

¬bookHotels¡

hotels! accept¡

decline¡ ¬(accept¡ ∨ decline¡)

askForPayment!

rejected¡

paymentRejected!

accepted¡

reservations!

¬(accepted¡ ∨ rejected¡)

(b) Müller automaton ΛHS

Figure 2: The HotelsService participant together with the machine Hs

Figures 2 and 3 represent two services with their automata (resp. ΛHS and ΛPPS) and their
provides-point (resp. HS and PPS) not bound to any communication channel yet.

The composition of ARNs yields a semantic definition of a binding mechanism of services in terms
of “fusion” of provides-points and requires-points. More precisely, the binding is subject to an entail-

Payment
Process
Service

ΛPPS

+ askForPayment
− pleasePay
+ paymentData
− accepted
− rejected

PPS

(a) The PaymentProcessService participant

askForPayment¡

¬askForPayment¡

pleasePay! paymentData¡

¬paymentData¡

rejected!

(b) Müller automaton ΛPPS , that only reject paymens

Figure 3: The PaymentProcessService participant.

6

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

ment relation between linear temporal logic [7] theories attached to the provides- and requires-points as
illustrated in the following.

4 Communicating Relational Networks
As we mentioned before, even when the orchestration model featured by ARNs is rather expressive and
versatile, we envisage two drawbacks which now can be presented in more detail.

4.1 On the binding mechanism
If we consider the binding mechanism based on LTL entailment presented in previous works, the relation
between requires-point and provides-point is established in an asymmetric way whose semantics is read
as trace inclusion. This asymmetry leads to undesired situations. For instance, if we return to our
running example, a contract stating that the outcome of an execution is either accept or reject of a
payment could be specified by assigning the LTL formula

◇((−accept ∨ −reject) ∧ ¬(−accept ∧ −reject))

to the requires-point PPS of Fig. 1(a). Likewise, one could specify a contract for the provides-point
PPS of the ARN in Fig. 3(b) stating that payments are always rejected by including the formula1

◇(−reject ∧ ¬ − accept)

It is easy to show that

◇(−reject ∧ ¬ − accept) ⊢LTL ◇((−accept ∨ −reject) ∧ ¬(−accept ∧ −reject))

by resorting to any decision procedure for LTL (see for instance, [4]). The intuition is that every state
satisfying −reject ∧¬−accept also satisfies (−accept ∨−reject)∧¬(−accept ∧−reject) so if the former
eventually happens, then also the latter.

The reader should note that this scenario leads us to accept a service provider that, even when it can
appropriately ensure a subset of the expected outcomes, cannot guaranty that all possible outcomes will
eventually be produced.

Communicating Relational Networks are defined exactly as ARNs but with definition of Connection
based global graphs where, given a set of ports, the messages are related to the messages in the ports,
and the participants are identified by the ports themselves.

Definition 9 (Connection). We say that ⟨M,µ,Γ⟩ is a connection on γ iff ⟨M,µ⟩ is an attachment
injection on γ and Γ is a global graph where the set of participants is {pπ}π∈γ exchanging messages in
M such that:

µ−1
π (π−) ⊆ ⋃

π̂∈γ∖{π}
µ−1
π̂ (π̂

+) and µ−1
π (π+) ⊆ ⋃

π̂∈γ∖{π}
µ−1
π̂ (π̂

−).

for each π ∈ γ.

Definition 10 (Communicating relational network). A communicating relational net α is a structure
⟨X,P,C, γ,M,µ,Λ⟩ consisting of:

1In this examples we use two propositions, accept and reject , forcing us to include in the specification their complementary
behaviour, but making the formulae easier to read.

7

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

TcHs!bookHotels

HsTc?hotels

TcHs!accept

TcHs!decline

PpsTc?pleasePay

TcPps!paymentData

HsTc?paymentRejected HsTc?reservations

(a) Communicating machine for the port TC

TcHs?bookHotels

HsTc!hotels

TcHs?accept

TcHs?decline

HsPps!askForPayment

PpsHs?rejected

HsTc!paymentRejected

PpsHs?accepted

HsTc!reservations

(b) Communicating machine for the port HS

HsPps?askForPayment

PpsTc!pleasePay

TcPps?paymentData

PpsHs!rejected PpsHs!accepted

(c) Communicating machine for the port PPS

Figure 4: Communicating machines labelling the ports TC, HS and PPS.

• a hypergraph ⟨X,E⟩, where X is a (finite) set of points and E = P ∪ C is a set of hyperedges
(non-empty subsets of X) partitioned into computation hyperedges p ∈ P and communication
hyperedges c ∈ C such that no adjacent hyperedges belong to the same partition, and

• three labelling functions that assign (a) a port Mx to each point x ∈ X , (b) a process ⟨γp,Λp⟩ to
each hyperedge p ∈ P , and (c) a connection ⟨Mc, µc,Λc⟩ to each hyperedge c ∈ C.

Figures 4 and 5 show the communicating machines and global graphs that can be used to redefine
of the same services of the running example presented in Sec. 2, but as CRNs.

The machine in Fig. 4(a) specifies that upon reception of a bookHotel message from the client,
HotelsService sends back a list of hotels; if the client accepts then computation continues, otherwise
the HotelsService returns to its initial state, etc.. Also, Figs. 4(b) and (c) depict the communicating
machines associated to the provides-points of services HotelsService and PaymentProcessService, re-
spectively. From the point of view of the requires-points, the expected behaviour of the participants
of a communication is declared by means of a choreography associated to communication hyperarcs.
We illustrate such graphs by discussing the choreography in Fig. 5 (corresponding to the automaton in
Fig. 1(c)). The graph dictates that first client and HotelsService interact to make the request and receive
a list of available hotels, then the client decides whether to accept or decline the offer, etc. Global graphs
are a rather convenient formalism to express distributed choices (as well as parallel computations) of
work-flows. As we mentioned before, an interesting feature of global graph is that they can easily show
branch/merge points of distributed choices; for instance, in the global graph of Fig. 5 branching points
merge in the loop-back node underneath the initial node.

8

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Tc→ Hs ∶ bookHotels

Hs→ Tc ∶ hotels

Tc→ Hs ∶ accept Tc→ Hs ∶ decline

Hs→ Pps ∶ askForPayment

Pps→ Tc ∶ pleasePay

Tc→ Pps ∶ paymentData

Pps→ Hs ∶ accepted Pps→ Hs ∶ rejected

Hs→ Tc ∶ reservations Hs→ Tc ∶ paymentRejected

Figure 5: Global graph of the running example

Based on Definition 10, we can define two new binding mechanisms by exploiting the “top-down”
(projection) and “bottom-up” (synthesis) nature offered by choreographies.

Top-Down According to the first mechanism, provides-points are bound to require points when the
projections of the global graph attached to the communication hyperarc are bisimilar to the corre-
sponding communicating machine (exposed on the provides-points of services being evaluated for
binding).

Bottom-Up The second mechanism is more flexible and it is based on a recent algorithm to synthe-
sise choreographies out of communicating machines [5]. More precisely, one checks that the
choreographies synthesised from the communicating machines, associated to the provides-points
of services being evaluated for binding are isomorphic to the one labelling the communication
hyperarc.

For example, the projections of the global graph of Fig. 5 with respect to the components HotelsService
and PaymentProcessService yields the communicating machines in Figures 4(b) and 4(c) respectively;
so, when adopting the first criterion, the binding is possible and it is guaranteed to be well-behaved (e.g.,
there will be no deadlocks or unspecified receptions [2]). Likewise, when adopting the second criterion,
the binding is possible because the synthesis of the machines in Fig. 4 yields the global graph of Fig. 5.

In this way, our approach combines choreography and orchestration by exploiting their complemen-
tary characteristics at two different levels. On the one hand, services use global graphs to declare the
behaviour expected from the composition of all the parties and use communicating machines to declare
their exported behaviour. On the other hand, the algorithms available on choreographies are used for
checking the run-time conditions on the dynamic binding.

9

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

The resulting choreography-based semantics of binding guarantees properties of the composition
of services that are stronger than those provided by the traditional binding mechanism of ARNs, and
yielding a more symmetric notion of interoperability between activities and services.

4.2 Comparison of the analysis and the binding mechanism
Among the many advantages of developing software using formal tools, is the possibility of providing
analysis as a means to cope with (critical) requirements. This approach generally involves the formal
description of the software artefact through some kind of contract describing its behaviour. As we
mentioned before, in SOC, services are described by means of their contracts associated to their provide-
and require-points, playing the role that in structured programming play post- and pre-conditions of
functions, respectively. From this point of view, analysing a software artefact requires:

• the verification of the computational aspects of a service with respect to its contracts, yielding a
coherence condition, whose checking takes place at design-time, and

• the verification of the satisfaction of a property by an activity with respect to a given service
repository, yielding a quality assessment of the software artefact, whose checking takes place also
at design-time.

On the other hand, service-oriented software artefacts require the run-time checking associated to
the binding mechanism, in order to decide whether a given service taken from the repository provides
the service required by an executing activity.

Table 1 shows a comparison of the procedures that have to be implemented for checking the coher-
ence condition of a service, the quality assessment of a service-oriented software artefact with respect
to a particular repository, and for obtaining a binding mechanism for both of the approaches, the one
based on ARNs, and the one based on CRNs.

5 Concluding Remarks
We propose the use of communicating relational networks as a formal model for service-oriented soft-
ware design. CRNs are a variant of ARNs that harnesses the orchestration perspective underlying ARNs
with a choreography viewpoint for characterising the behaviour of participants (services) over a com-
munication channel. The condition for binding a provides-points of services to the require points of
a communication channel of an activity relies on checking the compliance of the local perspective of
the process, declared as communicating machines, with the global view implicit in the choreography
associated to the communication channel. The binding mechanisms of ARNs (i.e., the inclusion of the
set of traces of the provides-point of the service bound in the set of traces allowed by the requires-point
of the activity) yields an asymmetric acceptation condition. Our approach provides a more symmetric
mechanism based on rely-guarantee types of contracts.

Our framework requires the definition of a criterion to establish the coherence among the Müller
automaton Λ of a process hyperedge and the communicating machines associated to its provides-points.
This criterion, checked only at design time, is the bisimilarity of the communicating machine projected
from Λ and the ones associated to the provides-points. The reader familiar with Mu¨ller automata should
note that defining such projection is not trivial when the automata are defined over a powerset of ac-
tions. The definition of the projection from Müller automata to communicating machine is conceptually
straightforward (although technically not trivial) if the automata are defined over sets of actions (instead
of powersets of them). Altough this is enough for the purposes of this paper, a better solution would be
to extend communicating machines so to preserve the semantics of Müller automata even when they are

10

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Formalisation Coherence Condition Quality assessment Binding Mechanism
ARNs

{∆Λp ⊧LTL Γπ}π∈γp

where p ∈ P , ⟨γp,Λp⟩ is
a process, ∆Λp the set of
traces of the Müller au-
tomaton Λp and Γπ is the
LTL contract associated
to port π.

∏
m∈P∪C

Λm Γπ ⊢LTL Γρ

where π is a provides point of a
service, ρ is a requires point of
an activity, and Γπ and Γρ their
LTL contract respectively.

CRNs

{Λ∣pπ ≈ Aπ}π∈γp

where Λ∣pπ is the projec-
tion of Müller automaton
Λ over the alphabet of
port π, Aπ is the com-
munication machine la-
belling port π and ≈ de-
notes bisimilarity.

∏
m∈P

Λm

Top-Down:

G∣ρ ≈ Aπ

where π is a provides point of a
service, ρ is a requires point of
an activity, Gc∣pρ is the projec-
tion of the global graph Gc over
the language of the port ρ, Aπ
is the communication machine
labelling port π and ≈ denotes
bisimilarity.
Bottom-Up:

S({Aπ}π∈Π) ≡ Gc

where Π is the set of provides-
points of the services to be
bound, Gc is the global graph
associated to c ∈ C, S(●) is
the algorithm for synthesising
choreographies from communi-
cation machines [5] and ≡ de-
notes isomorphism.

Table 1: Comparison of the procedures for the approaches based in ARNs and CRNs

defined on powersets of actions. This is however more challenging (as the reader familiar with Muller
automata would recognise) and it is left as a future line of research.

We strived here for simplicity suggesting trivial acceptance conditions. For instance, in the “bottom-
up” binding mechanism we required that the exposed global graph coincides (up to isomorphism) to the
synthesised one. In general, one could extend our work with milder conditions using more sophisticated
relations between choreographies. For instance, one could require that the interactions of the synthesised
graph can be simulated by the ones of the declared global graph.

We also envisage benefits that the orchestration model of ARNs could bring into the choreography
model we use (similarly to what suggested in [1]). In particular, we argue that the ’incremental binding’
naturally featured in the ARN model could be integrated with the choreography model of global graphs

11

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

and communicating machines. This would however require the modifications of algorithms based on
choreography to allow incremental synthesis of choreographies.

References
[1] D. Basile, P. Degano, G. L. Ferrari, and E. Tuosto. From orchestration to choreography through contract

automata. In Proceedings 7th Interaction and Concurrency Experience, ICE 2014, Berlin, Germany, 6th June
2014., pages 67–85, 2014.

[2] D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323–342, Apr. 1983.
[3] P. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In ESOP, pages 194–213,

2012.
[4] Y. Kesten, Z. Manna, and H. M. A. Pnueli. A decision algorithm for full propositional temporal logic. In CAV,

pages 97–109, 1993.
[5] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical choreographies. In Principles

of Programming Languages (PoPL), 2015. To appear.
[6] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.
[7] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Comput. Sci., 13(1):45–60, 1981.
[8] I. Ţuţu and J. L. Fiadeiro. A logic-programming semantics of services. In CALCO, pages 299–313, 2013.

12

	Introduction and motivation
	Preliminaries
	Communicating machines and global graphs
	Asynchronous relational networks

	The running example
	Communicating Relational Networks
	On the binding mechanism
	Comparison of the analysis and the binding mechanism

	Concluding Remarks

