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—— Abstract

Positive data languages are languages over an infinite alphabet closed under possibly non-injective
renamings of data values. Informally, they model properties of data words expressible by assertions
about equality, but not inequality, of data values occurring in the word. We investigate the class of
positive data languages recognizable by nondeterministic orbit-finite nominal automata, an abstract
form of register automata introduced by Bojanczyk, Klin, and Lasota. As our main contribution we
provide a number of equivalent characterizations of that class in terms of positive register automata,
monadic second-order logic with positive equality tests, and finitely presentable nondeterministic
automata in the categories of nominal renaming sets and of presheaves over finite sets.
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1 Introduction

Automata over infinite alphabets provide a simple computational model for reasoning about
structures involving data such as nonces [23], URLSs [4], or values in XML documents [28].
Consider, for instance, the (infinite) set A of admissible user IDs for a server. The sequence
of all user logins within a given time period then forms a finite word a; - - - a,, € A" over the
infinite alphabet A, and behaviour patterns may be modelled as data languages over A, e.g.

Lo={ai---a, € A" |a; #a, foralli<n} (“last user has not logged in before”),

Li={a1--a, € A" |a; =a; for some i # j} (“some user has logged in twice”).

Both Lo and Ly involve assertions about equality, or inequality, of data values (here, user
IDs). However, asserting inequality is sometimes considered problematic and thus undesired.
For example, since users may have multiple IDs, a logfile a; . ..a, € Ly does not actually
guarantee that the last user has not logged in before. In contrast, if a; ...a, € L, then it is
guaranteed that some user has indeed logged in twice. The structural difference between the
two languages is that L; is closed under arbitrary renamings p: A — A (i.e. ay---a, € Ly
implies p(ay)---p(an) € L1), taking into account possible identification of data values,
while Lg is only closed under injective (equivalently bijective) renamings. We refer to
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Figure 1 Equivalent characterizations of positive NOFA-recognizable languages

languages with the former, stronger closure property as positive data languages. Intuitively,
such languages model properties of data words expressible by positive statements about
equality of data values. It is one of the goals of our paper to turn this into a theorem.

For that purpose, we build on the abstract account of data languages and their automata
based on the theory of nominal sets [15,30], initiated by the work of Bojanczyk, Klin,
and Lasota [7]. Specifically, we investigate nondeterministic orbit-finite nominal automata
(NOFA), the nominal version of classical nondeterministic finite automata. We approach the
class of positive NOFA-recognizable data languages from several different perspectives, ranging
from concrete to more abstract and conceptual, and establish the equivalent characterizations
summarized in Figure 1. In more detail, our main contributions are as follows.

Register automata. NOFAs are known to be expressively equivalent to register automata
[19,21], i.e. finite automata that can memorize data values using a fixed number of registers
and test the input for (in)equality with previously stored values. Restricting transitions to
positive equality tests leads to positive register automata, which correspond to finite-state
unification-based automata (FSUBA) [20,35] and are shown to capture precisely positive
NOFA-recognizable languages (Theorem 3.2 and Remark 3.3). On the way, we isolate a
remarkable property of this language class: while NOFAs generally require the ability to
guess data values during the computation to reach their full expressive strength, guessing
and non-guessing NOFA are equivalent for positive data languages (Theorem 2.17).

Monadic second-order logic. As illustrated above, positive data languages model (only)
positive assertions about the equality of data values. To substantiate this intuition, we employ
monadic second-order logic (MSO™) over data words [5,11,28], an extension of classical
MSO with equality tests for data values, and consider its restriction MSO™ to positive
equality tests. While this logic is more expressive than NOFA, we show that within the class
of NOFA-recognizable languages it models exactly the positive languages (Theorem 4.4).

Categorical perspective. The classical notion of nondeterministic finite automata can
be categorified by replacing the finite set of states with a finitely presentable object of
a category €. For example, NOFAs are precisely nondeterministic ¢-automata for € =
nominal sets. Apart from the latter category, several other toposes have been proposed
as abstract foundations for reasoning about names (data values), most prominently the
category of nominal renaming sets [14], the category Set! of presheaves over finite sets
and injective maps [34], and the category Set” of presheaves over finite sets and all maps
(equivalently, finitary set functors) [12]. It is thus natural to study nondeterministic automata
in the latter three categories, viz. nondeterministic orbit-finite renaming automata (NOFRA),
nondeterministic super-finitary Set'-automata and nondeterministic super-finitary Set" -
automata. Our final contribution is a classification of their expressive power: we show that
Set!-automata are equivalent to NOFAs, while both NOFRAs and Set®-automata capture
positive NOFA-recognizable languages (Theorems 2.9 and 7.7). Hence, both nominal and
presheaf-based automata are able to recognize positive and all NOFA-recognizable languages,
respectively.
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2 Nominal Automata and Positive Data Languages

For the remainder of the article, we fix a countably infinite set A of data values, a.k.a. names
or atoms. The goal is to study positive data languages, that is, languages of finite words
over A closed under arbitrary renamings. This is achieved via the framework of nominal
(renaming) sets [14,15,30].

2.1 Nominal Sets and Nominal Renaming Sets

A renaming is a finite map p: A — A, that is, p(a) = a for all but finitely many a € A.
We let Fin(A) denote the monoid of renamings, with multiplication given by composition,
and Perm(A) its subgroup given by finite permutations, i.e. bijective renamings. For M €
{Perm(A),Fin(A)} an M-set is a set X equipped with a monoid action M x X — X,
denoted (p,xz) — p-x. A subset S C A is a support of € X if for every p,c € M such
that p|s = o|s one has p-x = o - . Informally, consider X as a set of syntactic objects
(e.g. words, trees, A\-terms) whose description may involve free names from S. A nominal
M -set is an M-set where every element = has a finite support. This implies that x has a
least finite support suppz C A. A name a € A is fresh for x, denoted a # z, if a ¢ supp .

Nominal Perm(A)-sets are called nominal sets, and nominal Fin(A)-sets are called nominal
renaming sets. A nominal renaming set X can be regarded as a nominal set by restricting
its Fin(A)-action to a Perm(A)-action. The least supports of an element z € X w.r.t. both
actions coincide [13, Thm. 4.8], so the notation supp z is unambiguous.

A subset X of a nominal M-set Y is M-equivariant if p-z € X for all x € X and
p € M. More generally, a map f: X — Y between nominal M-sets is M -equivariant if
flp-x)=p- f(x) for all x € X and p € M. This implies supp f(x) C suppx for all z € X.

We write X x Y for the cartesian product of nominal M-sets with componentwise action,
and [[;.; X; for the coproduct (disjoint union) with action inherited from the summands.

Given a nominal set X, the orbit of an element z € X is the set {w -z : 7 € Perm(A)}.

The orbits form a partition of X. A nominal set is orbit-finite if it has only finitely many
orbits. A nominal renaming set is orbit-finite if it is orbit-finite as a nominal set.

» Example 2.1. The set A with the Fin(A)-action p - a = p(a) is a nominal renaming set,

as is the set A* of finite words over A with p-w = p*(w) = p(a1) -+ - p(ay) for w =ay - - - ay,.

The least support of ay - - -a, € A" is the set {ay,...,a,}. The set A* has infinitely many
orbits; its equivariant subsets A" (words of a fixed length n) are orbit-finite. For instance, A2
has the two orbits {aa : a € A} and {ab: a # b € A}. An example of a nominal set that is
not a renaming set is A#" = {a;...a, : a; # a; for i # j } with pointwise Perm(A)-action.

A nominal set X is strong if, for every € X and 7 € Perm(A), one has -« = z if and
only if 7 fixes every element of supp(z). (The ‘if’ statement holds in every nominal set.) For
instance, the nominal sets A#", A" and A* are strong. Up to isomorphism, (orbit-finite)
strong nominal sets are precisely (finite) coproducts ], ; A#" where n; € IN. For every
orbit-finite nominal set X, there exists a surjective Perm(A)-equivariant map e: ¥ — X for
some orbit-finite strong nominal set Y (see e.g. [26, Cor. B.27]). In fact, if o is the number

of orbits of X, one may take Y = J x A#" where J = {1,...,0} and n = max,cx |supp z|.

We refer the reader to [16, Sec. 4.1] and [7, Thm. 10.9] for more details on representing
orbit-finite nominal sets.
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2.2 Nominal Automata and Nominal Renaming Automata
The object of interest in this paper is data languages L C A* closed under renamings:

» Definition 2.2. 1. A data language L C A* is positive if it is Fin(A)-equivariant.
2. The positive closure of L C A* is given by L = {p*(w):w € L, p € Fin(A) }.

A natural automata model for data languages is given by nondeterministic orbit-finite
automata [7] over nominal sets and their restriction to nominal renaming sets:

» Definition 2.3. Let M € { Perm(A), Fin(A) }.

1. A nondeterministic orbit-finite M -automaton A = (Q, 4, I, F) consists of an orbit-finite
nominal M-set @ of states, an M-equivariant transition relation § C @ x A x @, and
M-equivariant subsets I,F C ( of initial and final states. Nominal orbit-finite M-
automata are called nondeterministic orbit-finite automata (NOFA) for M = Perm(A)
and nondeterministic orbit-finite renaming automata (NOFRA) for M = Fin(A).

2. Given a nominal orbit-finite M-automaton A, we write ¢ — ¢’ if ¢ € 6(q,a). A run of
A on input w = ay ---a, € A" is a sequence (qg,a1,q1,a2, .. .,0n,qn) such that gog € I
and g, SAEEN grs+1 for 0 < r < n. The run is accepting if ¢, € F. The automaton A
accepts the word w if A admits an accepting run on input w. The accepted language
L(A) C A" is the set of all accepted words. A data language is NOF(R)A-recognizable if
some NOF(R)A accepts it.

For example, the languages Ly and L; from the Introduction are NOFA-recognizable.

» Remark 2.4. 1. The restriction to the input alphabet A is for simplicity: all our results
extend to alphabets 3 = ¥y x A for a finite set Y, i.e. finite coproducts of copies of A.

2. Another use of nominal renaming sets in automata theory appears in the work by Moerman
and Rot [27] on deterministic nominal automata with outputs. The restrictions of their
model make it unsuitable for language recognition [27, Rem. 4.1] but allow for a succinct
representation of computed maps via separating automata.

To relate the expressive power of NOFA and NOFRA, we start with a simple observation:
» Proposition 2.5. Fvery NOFRA accepts a positive language.

The converse (Theorem 2.9) needs an automata-theoretic construction of the closure of a
language. To this end, we first turn the states of a NOFA into a sort of normal form.

» Remark 2.6 (cf. [7]). Every NOFA A = (Q, 0, I, F) is equivalent to one whose nominal set
of states is of the form J x A#™ for some finite set J and m € IN. Indeed, choose a nominal
set Q' = J x A#™ and an equivariant surjection e: Q" — @ (see Section 2.1), and consider
the NOFA A’ = (Q',d',I’, F') whose structure is given by the preimages

§ = (e xidg xe)"1[d], I' =e ], F' =e 'F).

It is not difficult to verify that L(A’) = L(A); see also Proposition 6.9. Note that in a
NOFA with states J x A#™ the equivariant sets of initial and final states are of the form
I=J; x A#™ and F = Jp x A#™ for some J;, Jp C J.

» Construction 2.7 (Positive Closure of a NOFA). Let A = (Q,4,I,F) be a NOFA with
states Q = J x A#™ (cf. Remark 2.6). The NOFRA A = (Q, 4,1, F) is given by the states
Q = J x A™, initial states I = J; x A™, final states F' = Jr x A™, and transitions

§ = {(.p'p) == (5, p*P") : (,p) == (§',p) in A and p € Fin(A) }.
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» Proposition 2.8. The NOFRA A accepts the positive closure of the language of A.

The proof of L(A) C L(A) is slightly subtle since the transitions of a run in A may be induced

by different p’s; some bookkeeping and sensible choice of fresh names ensures compatibility.

Now we come to our first characterization of positive NOFA-recognizable languages:

» Theorem 2.9. A language is positive and NOFA-recognizable iff it is NOFRA-recognizable.

Indeed, the “if” direction holds due to Proposition 2.5 and because every NOFRA is a NOFA.

The “only if” direction follows from Proposition 2.8, using that L = L for positive L.

» Remark 2.10. A NOF(R)A is deterministic, and hence called a DOF(R)A, if it admits
a single initial state and its transition relation is a function §: Q x A — . In contrast
to classical finite automata, DOFAs are less expressive that NOFAs [7]. We leave it as an
open problem whether Theorem 2.9 restricts to DOF(R)As. In this regard, observe that
Construction 2.7 produces a nondeterministic automaton A even if the given automaton A is
deterministic. Computing the positive closure of a DOFA-recognizable language necessarily
requires the introduction of nondeterminism, as illustrated by the following example due
to Bartek Klin (personal communication). Consider the language L consisting of all words
whose last letter appears immediately before the last occurrence of a repeated letter; that is,
words of the form vabbwa where (i) v,w € A* and a,b € A, (ii) any two consecutive letters
in w are distinct, (iii) the first letter of w is distinct from b and (iv) the last letter of w is
distinct from a. This language is recognizable by a DOFA, in fact by an orbit-finite nominal
monoid [5]. Its positive closure L consists of all words whose last letter appears immediately
before some occurrence of a repeated letter, which is not DOFA-recognizable.

2.3 Abstract Transitions and Runs

Sections 3 and 4 will relate positive NOFA-recognizable languages to register automata and
monadic second-order logic. This relies on a presentation of transitions of A in terms of
abstract transitions, given by equations involving register entries and input values.

» Definition 2.11. Let A = (Q,0,1,F) and A = (Q, 6,1, F) be as in Construction 2.7.

1. An equation is an expression of the form k = o, ¢ = k or k = k, where k,k € {1,...,m}.

2. An abstract transition is a triple (j, F,j') where j, 7’ € J and F is a set of equations.

3. Every triple ((J,p),a, (j',p')) € Q@ x A x @ induces an abstract transition (j, F, j') defined
as follows for k,k € {1,...,m} (we write (—); for the i-th letter of a word):

k=ecFE < py.=a, e=kecE < a=rp, szEE:)pk:p;}.

We let abs(d) denote the set of abstract transitions induced by transitions in d, and we
write j —— j' for (j, E, ') € abs(5).

4. A triple ((4,9),b,(§',¢")) € Q x A x Q is consistent with the abstract transition (j, E, j')
if for every k,k € {1,...,m} the following conditions hold:

k=ecE — qp =0, e=keE = b=q,, k:EGEéqk:q;—g.
» Proposition 2.12. For every triple ((4,q),b,(5',¢")) € Q x A x Q, we have
(4,9) LN (4',q) in A iff  ((4,9),b, (5, ")) is consistent with some (j,E,j') € abs(§).

» Definition 2.13. An abstract run in A is a sequence (jo, E1, j1, E2,j2, - -, Fn, jn) such
that jo € Jr and j,—1 L, jr for r=1,... n. It is accepting if j, € Jp.
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» Notation 2.14. Given an abstract run (jo, F1,j1, E2, 2, - -, En, jn), we inductively define
the predicates Eq,(f) (ie{l,...,n}, ke{l,...,m}) on the set {1,...,n}:

1. if e =k in E; then Eq,(j)(i);

2. ifr<nand k=kin E,y; and qu) (r) then Eq%) (r+1).

Informally, qu)(r) asserts that 1 <4 < r < n and that in every run in A of length r whose
transitions are consistent with E1, ..., E,., the i-th input letter equals the content of register
k after r steps. The accepted language may be characterized using these predicates:

» Proposition 2.15. The NOFRA A accepts the word by by € A* iff there exists an
accepting abstract run of length n (with induced predicates qu)) such that fori,r € {1,...,n},

r<nandk=ein E.. 1 and Eq,(ci)(r) for some k= b; =b,y1. (2.1)

As a first application of this result, we identify an important difference between NOFA and
NOFRA concerning the power of guessing data values during the computation:

» Definition 2.16. A NOFA/NOFRA is non-guessing if each initial state has empty support
and for each transition ¢ — ¢’ one has suppq’ C suppq U {a}.

The NOFA-recognizable language Ly from the Introduction is not recognizable by any non-
guessing NOFA [19, Ex. 1]. Note that Ly is not positive; in fact, it is necessarily so, since for
positive languages guessing does not add to the expressive power of automata:

» Theorem 2.17. Every positive NOFA-recognizable language is accepted by some non-
guessing NOFRA, hence by some non-guessing NOFA.

To make a NOFRA non-guessing, one keeps track (via the state) of those registers containing
data values forced by abstract transitions. The other registers then may be modified
arbitrarily, which allows the elimination of guessing transitions.

3 Positive Register Automata

We now relate positive NOFA-recognizable languages to register automata, a.k.a. finite-
memory automata, originally introduced by Kaminski and Francez [19]; we follow the
equivalent presentation by Bojaniczyk et al. [7]. A register automaton is a quintuple A =
(C,m, 4,1, F) where C is a finite set of control states, m € IN is the number of registers
(numbered from 1 to m), I, F' C C are sets of initial and final states, and § € C' x Bool(®) x C
is the set of transitions. Here, Bool(®) denotes the set of boolean formulas over the atoms
® = ({1,...,m} x {before} U {e} U {1,...,m} x {after})2. Elements of ® are called
equations; we write x = y for (z,y) € ®. Moreover, we denote (¢, p,c’) € § by ¢ Ly d A
configuration of A is a pair (c,r) of a state ¢ € C' and a word r € (A U {L})™ corresponding
to a partial assignment of data values to the registers. The initial configurations are (¢, L™)
for ¢ € I. Given an input a € A and configurations (c,7), (¢, ') we write (c,7) —— (¢, r') if
this move is consistent with some transition ¢ —= ¢ , that is, the formula ¢ is true under the
assignment making an atom x = y € ® true iff the corresponding data values are defined and
equal. For instance, (k, before) = e is true iff r, # L and 4, = a, and (k, before) = (k, after)
is true iff ry, T;; # 1 and r, = r;;. A word w = ay ...a, € A" is accepted by A if it admits
an accepting run, viz. a sequence of moves (co,79) —— (c1,71) —2 - - —= (¢p, 7r) Where
(co, 7o) is initial and ¢, € F. The accepted language L(A) C A* is the set of accepted words.
As shown by Bojariczyk et al. [7], register automata accept the same languages as NOFAs.
To capture positive languages, we restrict to register automata with positive transitions:
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» Definition 3.1. A register automaton is positive if for each transition ¢ —— ¢ the formula ¢
is positive: ¢ = true or ¢ uses the boolean operations V and A only.

» Theorem 3.2. A data language is positive and NOFA-recognizable iff it is accepted by
some positive register automaton.

Here, the approach is to regard a configuration of a positive register automaton as a state
of a NOFRA. Conversely, an abstract transition j 2N j' of a NOFA can be transformed
into a transition j —— j' of a register automaton for the conjunction ¢ of all equations in E,
identifying k = e, @ = k, k = k with (k, before) = o, ® = (k, after), (k, before) = (k, after). A
tweak of the initial states accounts for the requirement that registers are initially empty.

» Remark 3.3. Just like register automata are equivalent to finite-memory automata,
positive register automata correspond to a restricted version of finite-memory automata
called finite-state unification-based automata (FSUBA) [20,35]. The original definition of
the latter involves a fixed initial register assignment, which enables acceptance of non-
positive languages. However, FSUBA with empty initial registers are equivalent to positive
register automata; see Appendix for details. This implies in particular that positive register
automata admit a decidable inclusion problem, in contrast to the case of unrestricted register
automata [28]. Indeed, FSUBA translate into a more general model called RNNA [32, Sec. 6],
for which inclusion is decidable. Tal [35] has given a direct decidability proof for FSUBA.

4 Monadic Second-Order Logic with Positive Equality Tests

As motivated in the Introduction, positive data languages are considered as expressing
properties of data words involving positive statements about equality of data values. In the
following we make this idea precise. For this purpose, we employ monadic second-order logic
with equality tests, abbreviated MSO™ [5,11,28]. Its formulae are given by the grammar

0, = z<yler~y|X@)|[-pleVi oA |Tr.o|3X. p|Vr.o| VX p,

where x,y range over first-order variables and X over monadic second-order variables. A
formula is interpreted over a fixed data word w = ay...a, € A*. First-order variables
represent positions, i.e. elements of the set {1,...,n}, and second-order variables represent
subsets of {1,...,n}. The atomic formula z < y means “position = comes before position y”,
and z ~ y means “the same data value occurs at positions  and y”. The interpretation of the
remaining constructs is standard. A sentence is a formula without free variables. We write
L(p) C A" for the set of data words satisfying the sentence ¢. For example, the languages
Lo and Ly from the Introduction are defined by ¢ = Vy.last(y) = (Ve.z <y = —(z ~ y)),
where last(y) = -Jz.y < zand ¢ ==V and by o1 =Fz. Jy.x <y Az ~y.

Recall that by standard rules of negation, every formula is equivalent to one in negation
normal form (NNF), where for each subformula —¢ the formula ¢ is atomic.

» Definition 4.1. An MSO”~ formula lies in MSO™" (monadic second-order logic with
positive equality tests) if it admits an NNF containing no subformula of the form —(z ~ y).
A data language is MSO™ T -definable if it is of the form L(y) for an MSO™ ™ sentence ¢.

The above sentence ¢; lies in MSO™ T but ¢ does not. The following is immediate:

» Proposition 4.2. Every MSO™ " -definable language is positive.

XX:7
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» Remark 4.3. The logic MSO™ is more expressive than NOFAs [28], and the same holds for
MSO™: the language defined by the MSO™* sentence ¢ = V. Jy. (zx <yVy <z) Az ~y
(“no data value occurs only once”) is not NOFA-recognizable. However, within the class of
NOFA-recognizable languages, positive and MSO™"-definable languages coincide:

» Theorem 4.4. A NOFA-recognizable language is positive iff it is MSO™ -definable.

Indeed, one can express the abstract acceptance condition of Proposition 2.15 in MSO™ .

5 Toposes for Names

In the remainder, we investigate positive data languages and their automata from a more
conceptual perspective. Some familiarity with basic category theory (functors, natural trans-
formations, (co-)limits, adjunctions) is required; see Mac Lane [24] for a gentle introduction.

Nominal sets and nominal renamings sets (Section 2.1) were initially introduced as a
convenient abstract framework for reasoning about names, and related issues such as freshness,
binding, and substitution. An alternative, and more general, approach uses the presheaf
categories Set' [34] and Set” [12]. The intuition behind each of these categories € is very
similar: one thinks of X € % as a collection of finitely supported objects, equipped with a
renaming operation that extends renamings p: A — A to the level of elements of X. The
difference between the four categories lies in whether elements admit a least support, or just
some finite support, and in whether renamings p are injective or arbitrary maps; see Figure 2.
The last column classifies the respective finitely presentable objects, which underly automata.
We now recall the latter concept and describe the categories in more detail.

Finitely presentable objects. A diagram D: I — % in a category € is directed if its
scheme I is a directed poset: every finite subset of I has an upper bound. A directed colimit
is a colimit of a directed diagram. An object X of € is finitely presentable if its hom-functor
€ (X,—): € — Set to the category of sets and functions preserves directed colimits. In many
categories, finitely presentable objects correspond to the objects with a finite description.
For example, the finitely presentable objects of Set are precisely finite sets, and if € is a
variety of algebras (e.g. monoids, groups, rings), an algebra is a finitely presentable object of
% iff it is presentable by finitely many generators and relations [3, Thm. 3.12].

Nominal (renaming) sets. We let Nom denote the category of nominal sets and Perm(A)-
equivariant maps, and RnNom the category of nominal renaming sets and Fin(A)-equivariant
maps. Both categories are toposes, that is, they are finitely complete (with limits formed
as in Set), cartesian closed, and admit a subobject classifier. Note that Nom is a boolean
topos (its subobject classifier is 2 = {0, 1} with the trivial group action), which is not true for
RnNom [14, Sec. 5]. The next proposition provides a categorical description of orbit-finite
nominal (renaming) sets; for nominal sets this result is well-known, see [29, Prop. 2.3.7]
or [30, Thm. 5.16], and the statement for nominal renaming sets may be deduced from it.

» Proposition 5.1. A nominal (renaming) set is orbit-finite iff it is a finitely presentable
object of Nom or RnNom, respectively.

The forgetful functor U: RnNom — Nom given by restricting the Fin(A)- to a Perm(A)-
action has a left adjoint F: Nom — RnNom [27, Thm. 2.6]. We refer to op. cit. for its
explicit description, but remark that F(A#") = A" for every n € IN [27, Thm. 3.7].
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Category Objects Least supp. Renamings Finitely pres. objects
Nom nominal sets yes injective orbit-finite sets
RnNom nominal renaming sets  yes arbitrary orbit-finite sets
Set! presheaves over I no injective super-finitary presheaves
Set” presheaves over no arbitrary super-finitary presheaves

Figure 2 Toposes that model sets of finitely supported objects

Presheaves. A (covariant) presheaf over a small category € is a functor P: € — Set.

We write Set? for the category of presheaves and natural transformations. We specifically
consider presheaves over F and I, the categories whose objects are finite subsets S C¢ A and
whose morphisms p: S — T are functions or injective functions, respectively. The categories
Nom and RnNom form full reflective subcategories of Set! and Set™ via embeddings

I,: Nom — Set! and J,: RnNom — Set".
Here, I, is given for X € Nom, S Cf A, p: S —> T inlTand f: X - Y in Nom by
(LX)S={zeX:suppz C S}, (LX)p(x)=p-z,  (Lf)s(x)=f(z)

where p € Perm(A) is any permutation extending the injective map p. The embedding J, is
defined analogously. In both cases, the essential image of the embedding consists precisely of

the presheaves preserving pullbacks of injective maps, see [30, Thm. 6.8] and [14, Thm. 38].

Informally, a presheaf P € Set%7 where € € {I,F}, specifies a set P.S of S-supported objects
for every S Cs A, and the pullback preservation property asserts precisely that every object
admits a least support. A presheaf P € Set? is super-finitary if there exists S Cf A such
that (i) PS’ is a finite set for all S” C S, and (ii) for every T' C¢ A and x € PT, there exists
S’ C S and p € €(5',T) such that x € Pp[PS’]. (This implies that PT is finite.) Such an S
is called a generating set for P. The next proposition shows that super-finitary presheaves
are the analogue of orbit-finite sets; see [2, Cor. 3.34] for the case € = F:

» Proposition 5.2. For ¢ € {I,F} and P € Set?, the following are equivalent: (i) P is super-
finitary; (i) P is finitely presentable; (iii) there exists an epimorphism (a componentwise
surjective natural transformation) [[;c; € (S;, —) — P with I finite and S; C¢ A.. Moreover,
super-finitary presheaves are closed under sub-presheaves and finite products.

To relate the two presheaf categories Set! and Set”, recall that every functor E: € — 2
between small categories induces an adjunction (5.1), where the right adjoint E* is given
by E*(P) = P o E, and the left adjoint sends a presheaf P € Set? to its left Kan extension
LangP. For the inclusion functor E: I — F, we obtain the commutative diagram (5.2) of
adjunctions. Here, I* and J* are the reflectors, i.e. the left adjoints of I, and J,.

B
Set” Set”

Set? EE*) Set? (5.1) LTI—\LI* L;TnE J*l—q‘h (5.2)

Lang — s
Nom 1 " RnNom
%

U

» Proposition 5.3. All functors in (5.2) preserve finitely presentable objects.

Hence, the adjunctions (5.2) restrict to the full subcategories of finitely presentable objects.

XX:9
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6 Nondeterministic Automata in a Category

Our aim is to investigate nondeterministic automata and their languages in the toposes of
Figure 2, and to compare their expressive power. To this end, we first introduce the required
automata-theoretic concepts uniformly at the level of abstract categories.

» Assumptions 6.1. Fix a category ¢ with finite limits and (strong epi, mono)-factorizations.
We assume that strong epimorphisms are stable under finite products (that is, e x €’ is a
strong epimorphism whenever e and ¢’ are) and pullbacks (that is, in every pullback square
eo f = f o€, the morphism € is a strong epimorphism whenever e is).

The (strong epi, mono)-factorization f = (A —=— I =" B) of a morphism f: A — B
in € is its image factorization, and the subobject represented by m is the image of f.

» Example 6.2. Every topos satisfies Assumptions 6.1, including Set, Nom, RnNom, Set'
and Set”. Note that in a topos all epimorphisms are strong. In the five categories above,
epi- and monomorphisms are the (componentwise) surjective and injective morphisms, resp.
Pullbacks and finite products are formed (componentwise) at the level of underlying sets.

» Definition 6.3. A language over X € € is a family of subobjects of %™ for each n € IN:
L= (mP: LM —3xm) .
We write L < L' iff L(") < L' for all n, using the partial order < on subobjects of ¥".

» Remark 6.4. If ¥ is countably extensive (e.g. a topos with countable coproducts), languages

correspond bijectively to subobjects of ¥* =[], .y £". Indeed, every language L yields the

subobject [T, mglL): L, L™ — ¥* and conversely every subobject of ¥* is of this form. In
particular, this holds in the categories of Example 6.2.

» Definition 6.5. A nondeterministic €-automaton is a quintuple A = (@, %, 6,1, F) con-
sisting of an object Q) € € of states, an input alphabet 3 € €, and subobjects

ms: 6 — QXX XQ, myp: I — Q, mp: F— Q,

representing transitions, initial states, and final states, respectively. A morphism h: A’ — A
of nondeterministic ¥-automata is given by a pair of morphisms hs: @' — Q and h,: ¥/ — X
of € that restrict as shown below (note that hy, h; and hs are uniquely determined):

T ——— e >0 I "l‘LW} I F’ f”}if% F

mgsr m myr m m g m 6.1
51 o Ia IIh II FIh IF()
Q’XZ’XQ/&QXEXQ Q —2=Q Q —=Q

We write NAut (%) for the category of nondeterministic automata in % and their morphisms,
and NAut, (%) for its full subcategory given by nondeterministic fp-automata, viz. automata
where Q, X, §, I, F are finitely presentable objects of %.

» Definition 6.6. For every nondeterministic ¢-automaton A = (Q, 3,4, I, F), its accepted
language is the language L(A) over X given as follows:
1. m(LO()A): LO(A) — 1 = X0 is the image of the unique morphism I N F 5 1, where 1 is

the terminal object of ¥ and I N F is the intersection (pullback) of m; and mp.
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(n)

2. For n > 0, the subobject myia

) LM (A) — %" is defined via the commutative diagram

LM (A) R L AccRunE:) .4 o

_
m(m ) my
(A m

E"&IX(ZXQ)"_lxszgin—’A)(QXZXQ)"

Here, letting A: @ — @ x @ denote the diagonal, d,, 4 is the monomorphism

myx(id xA)" "I xid xmp

IX(EXxQ)"'xExF QX (IXxQXxQ)" ' xExQ = (QxZxQ)",
the morphisms d,, .4 and mf;”) form the pullback of d,, 4 and m}, the morphism p,, 4 is

the projection, and e, 4 and m! L form the image factorization of p,, 4 o m((; ).

» Example 6.7. 1. A nondetermlmstlc fp-automaton in Set is a classical nondeterministic
finite automaton. The pullback AccRunXL) is the set of accepting runs of length n,
hence L(A) is the usual accepted language: the set of words with an accepting run.

2. A nondeterministic fp-automaton in Nom or RnNom with alphabet ¥ = A is a NOFA
or NOFRA, respectively. The two notions of accepted language in Definition 2.3 and
Definition 6.6 match, that is, L(A) is the set of words with an accepting run.

3. In the next section, we will also look into nondeterministic Setl- and Set®-automata.

» Remark 6.8. Readers familiar with coalgebras [31] may note that if € is a topos, the
final states and transitions of a nondeterministic ¥-automaton correspond to a coalgebra
v: Q — Qx (PQ)* where  is the subobject classifier and P: ¢ — ¥ is the covariant power
object functor [18, Sec. A.2.3]. We expect our above definition of accepted language to match
the one given by coalgebraic trace semantics [17,33], with the required arguments relying on
the internal logic of the topos €. Details are left for future work; we have found that the
present relational approach to automata leads to shorter and more direct proofs.

» Proposition 6.9. Let h: A’ — A be an NAut(€)-morphism where ¥’ =% and h, = idys.
1. The accepted language of A’ is contained in that of A, that is, L(A") < L(A).
2. If hs is strongly epic in € and the squares (6.1) are pullbacks, then L(A") = L(A).

Hence, the construction A — A’ of Remark 2.6 indeed yields an equivalent NOFA.

» Proposition 6.10. Let € and 2 be categories satisfying the Assumptions 6.1.
1. Every functor G: € — Z lifts to a functor G: NAut(¥) — NAut(2) defined by

G(Q,%,81,F)=(GQ,G%,G0,GI,GF) and Gf =Gf.

Here, G6, GI, GF are the images of the morphisms shown below, with can denoting the
canonical morphism induced by the product projections:

G ST GOXEXQ) -2 GOXGEXGQ,  GI - GQ,  GF 97, GQ.

2. Every adjunction L 4 R: € — 2 lifts to an adjunction L 4 R: NAut(¢) — NAut(2).

In particular, the adjunctions (5.2) lift to adjunctions between the respective categories
of nondeterministic automata, which in turn restrict to fp-automata by Proposition 5.3:

—%

B
NAut,(Set’) NAut,(Set")

e = el o2

NAutg(Nom) | 1+ ° NAutg(RnNom)
U
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The positive closure A — A of Construction 2.7, which is key to our results in Sections 2
through 4, is an instance of the proposition since A = F A for the left adjoint F: Nom —
RnNom.

7 Nondeterministic Presheaf Automata

We proceed to relate the expressive power of the four automata models in (6.2). Specifically,
for € € {I,F} we consider nondeterministic Set®-automata A = (Q,%,9,I,F) with a super-
finitary (= finitely presentable) presheaf @ of states and input alphabet ¥ = Vi € Set?,
for the inclusion functor Vi (S) = S. (This implies that §, I and F are super-finitary
by Proposition 5.2.) Note that Vi corresponds to the input alphabet A used for NOF(R)As:

1 = L.(A) and W = J.(A) = Lang(17).

A language in Set? is a sub-presheaf L C VZ, or equivalently a family of sub-presheaves
L™ C V2 for n € N (Definition 6.3 and Remark 6.4). Here, VA(S) = S*, the set of words
over the finite alphabet S Cr A, and VZ(S) = S™, the subset of words of length n.

» Remark 7.1. For the sake of distinction, we refer to languages in Set? as presheaf
languages, and to subsets of A* as word languages. Both concepts are closely related: Every
presheaf language L C Vi* in Set' induces a Perm(A)-equivariant word language W(L) C A*
given by W(L) = Ugc,a L(S5), and, conversely, every Perm(A)-equivariant word language
K C A" induces a presheaf language P(K) C V;* given by [P(K)]S = K N S* for S Cf A.
Analogously for presheaf languages in Set™ and Fin(A)-equivariant word languages. In both
cases, these translations almost yield a bijective correspondence: one has K = W(P(K)), but
generally only L C P(W(L)). For instance, for L C Vi given by L(0) = 0 and L(S) = {e}
for S # () one has [P(W(L))]0 = {e}, so L € P(W(L)). The equality L = P(W(L)) holds iff
L is downwards closed, that is, L(S") = L(S) N (S’)* for all S’ C S C¢ A.

The presheaf version of positive word languages and positive closures is as follows:

» Definition 7.2. Let L C V" be a presheaf language in Set!.

1. The language L is positive if L = K E for some (unique) language K C Vi in Set".

2. A positive closure of L is a language L in Set™ such that L C LE and L is minimal with
that property, that is, L C K for every language K C VF in Set” such that L C KE.

A positive closure is clearly unique; its existence is ensured by the next proposition, which
is proved using the universal property of left Kan extensions.

» Proposition 7.3. The positive closure of L C V" is given by the image of the morphism

p: LanE(L) Lan_E(L)) LanE(‘/]vI*) >~ H LanE(‘/]'Ik) M} H LanE(‘/i)k — HV]Fk _ VF*
k k k

where v: L — V[* is the inclusion, the isomorphism witnesses preservation of coproducts by
the left adjoint Lang, and cany is the canonical map induced by the product projections.

» Remark 7.4. A presheaf P € Set' is strong if P = I.(X) for a strong nominal set X.
Since I, preserves coproducts, (super-finitary) strong presheaves are exactly (finite) cop-
roducts || jed I(S;,—) of representable presheaves. By Proposition 5.2 and Proposition 6.9,
every super-finitary Set'-automaton is equivalent to one whose presheaf of states is strong.
Given such an automaton A with states Q =[] jed I(S;,—), applying the lifted left adjoint
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Lang yields a super-finitary Set"-automaton A with states Lang(Q) = e, F(Sj, —), using
that Lang preserves coproducts and representables (see e.g. [24, Ex. X.3.2]). This is the
analogue of Construction 2.7 for presheaf automata. Similar to Proposition 2.8, we have

» Proposition 7.5. For every super-finitary nondeterministic Set'-automaton A with a
strong presheaf of states, the Set™ -automaton A = Lang(A) accepts the language L(A).

While by definition nondeterministic presheaf automata accept presheaf languages, using
Remark 7.1 we can also naturally associate a word language semantics to them:

» Definition 7.6. 1. The word language accepted by a nondeterministic Set-automaton A
is W(L(A)) C A*, the word language induced by the presheaf language of A.

2. A word language L C A* is Set%—recognizable if there exists a super-finitary nondetermi-
nistic Set? -automaton accepting it.

This enables a classification of the expressive power of nondeterministic Set?-automata:

» Theorem 7.7. 1. A word language is NOFA-recognizable iff it is Set'-recognizable.
2. A word language is positive and NOFA-recognizable iff it is Set" -recognizable.

For item 1 one shows that the functors I, and I" of (6.2) preserve the accepted word
languages of automata. For item 2 one uses Proposition 7.5 and the observation that every
nondeterministic Set®-automaton accepts a positive word language.

This shows that the theory of data languages can be based on presheaves rather than
nominal sets [7]. In particular, the conceptual difference between the two approaches (viz. ex-
istence of least supports) is largely inessential from the perspective of automata theory.

8 Conclusions and Future Work

We have characterized positive data languages recognizable by NOFAs in terms of register
automata, logic, and category theory; see Figure 1 for a summary of our contributions.
Our results underline the phenomenon that weak classes of data languages tend to have a
rich theory and admit many equivalent perspectives, paralleling classical regular languages
over finite alphabets. For example, a similar observation has been made for data languages
recognizable by orbit-finite nominal monoids [5,9, 11].

The logic MSO™ " defines positive data languages, but is more expressive than NOFAs.
Identifying a suitable syntactic fragment of MSO™ ™ that captures precisely the positive
NOFA-recognizable languages remains an open problem. The same holds for the decidability
of the satisfiability problem for MSO™ ™, which is known to be undecidable for MSO™ [22].
On a related note, it might be interesting to characterize the expressive power of full MSO™.
Specifically, does it capture precisely the MSO™-definable positive languages?

Finally, besides register automata, a number of further automata models for data languages
have been proposed, most notably pebble automata [28] and data automata [6,8]. In general,
these models differ in their expressive power. However, it is conceivable that some or all of
them may become equivalent when restricted to positive data languages.
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A  Appendix

This Appendix provides proof details and additional explanations omitted for lack of space.

Proof of Proposition 2.5
Let A= (Q,0,I,F) be a NOFRA. Given a word w € L(A) with accepting run

a

(.jOaQO) a—1> (.jla(h) a—2> e —— (jnaqn)
and a renaming p: A — A, we have the accepting run
(os p"a0) === (j1, P*@1) === -+ === (jny p*dn)

by Fin(A)-equivariance of §, I, F'. Hence p*(w) € L(A), so L(A) is Fin(A)-equivariant.

Proof of Proposition 2.8

Our task is to prove L(A) = L(A).
(D) We have L(A) C L(A) because the NOFA A is a sub-NOFA of A. Moreover, the language

L(A) is positive by Proposition 2.5, so L(A) C L(A).
(C) We prove that for every run

(os 40) = (1, ) =2 -+ = (jun, 4n) (A1)
in A, there exists a renaming p: A — A and a run

(Jo,po) == (j1,p1) == -+ - =" (jin, ) (A.2)

in A such that p*p; = ¢; for i =0,...,n and pa; = b; for i = 1,...,n. Note that if (A.1) is

accepting then so is (A.2); therefore L(A) C L(A). We construct (A.2) by induction on n.

Induction base (n = 0). Choose py € A#™ arbitrary and a renaming p: A — A mapping
each letter of py to the corresponding letter of ¢y € A™. Then p*qy = po, as required.

Induction step (n — n + 1). Suppose that

. b . b by . bn, .
(o, q0) —= (J1,q1) —= -+ = (G @n) —— (Jnt1,Int1)

is a run in A. By induction, we know that there exists a renaming p: A — A and a run

(jOaPO) a—1> (jlvpl) (1_2> e L> (jnvpn)

in A such that p*p; = ¢; for ¢ = 0,...,n and pa; = b; for i = 1,...,n. Furthermore,
bn . . A . . o .
since (Jn, @n) ——— (jni1,@ns1) in A, there exists a renaming o: A — A and a transition

(s D)~ (jns1,Png1) in A such that o*ply = gn, 0*Ppi1 = gns1 and oans1 = bpii.
We show below that we can choose this transition in such a way that (1) p, = pn, (2) all
names in {a,41} Usupp(prt1) that are fresh for p,, are fresh for pg,...,p, and aq,...,an,
and (3) p = 0. Then, by (1) and (3), we obtain the run

(jo,Po) == (j1,01) =25 -+ =" (s Pn) —— (Jut1s Prs1)

in A with the required properties. It remains to show how to enforce (1), (2), (3).
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Ad (1). Since p,,p!, € A#™, there exists a permutation 7 € Perm(A) such that 7 - p}, = p,.
Then, by equivariance, we have the transition

;) MOyl
Pn =T P, — > T Pntl
in A, and

(O—O,ﬂil)*(pn) = {n, (o—oﬂ-il)*(’”'pn—kl) = Qqn+1, (0—071—71) CT Gp41 :bn+l~

Thus (1) holds after replacing pl,, @ni1,Pns1,0 With po, T« Gpi1, T Ppy1, 00T L.

Ad (2). Suppose that (1) holds. Let ¢y, ..., ¢, be the names in {a,+1} Usupp(pn+1) that are
fresh for p,,. Choose names dy,...,d fresh for pg,...,pn, a1,...,6n,¢1,...,cx. Then, by
equivariance, the permutation m = (¢1 dy) - - - (cg dg) yields the transition

. . T Qp .
(Jn7pn) = (]n77r 'pn) 4H> (]n+177T : pn+1)

By definition of 7, the names in {7 a,+1} U supp(m-ppi1) = {7 ans1} U7 -supp(pnt1) that

are fresh for p,, = 7-p,, are precisely d1, . .., dy, and thus are fresh for pg,...,p, and a1, ..., an,.

Thus (1) and (2) hold after replacing pp, ani1, Pni1, With pp, T+ api1, T« pry1,0 07 L

Ad (3). Finally, suppose that (1) and (2) hold. Choose a renaming 7: A — A that agrees with

pon{ai,...,a,}Usupp(po) U - Usupp(py) and with o on {an11} U supp(pn) U supp(pn+1).
Such 7 exists by (2) and because p*(p,,) = ¢, = 0*(p,) implies that p and o agree on supp(p,).
Thus, after replacing p and ¢ with 7, all three conditions (1), (2), (3) hold.

Proof of Proposition 2.12

(=) Suppose that (j,q) LN (4',¢') in A. By definition of §, this means that there exists a
transition (4,p) —— (§’,p’) in A and a renaming p: A — A such that p*p = q, p*p’ = ¢/,
pa = b. Then the induced abstract transition (j, E,j’) lies in abs(d), i.e. j £, j', and
the triple ((4,9),b, (j',¢")) is consistent with it. Indeed, if kK = e in E then p; = a, hence
qx = ppr = pa = b. Similarly for equations e = k and k =k in E.

(<) Suppose that the triple ((4,¢),b, (j',q’)) is consistent with some j £, j'. Choose a

transition (j, p) — (j,p) in A inducing the abstract transition j £, j’, and a renaming
p: A — A mapping pj to gx, pj, to ¢j, and a to b. (Note that a well-defined choice of p is
possible: If p, = a then k = e in E and hence g, = b by consistency. Similarly, a = pj, implies
b= g and p, = p;; implies ¢ = q;;) Since p*p = q, p*p’ = ¢’ and pa = b, we conclude that

(@) = (',q') in 4.
Proof of Proposition 2.15

We start with a remark and a technical lemma:

» Remark A.1. The abstract transition (4, £, j') induced by ((4,p),a, (4,p")) € Q x A x Q
contains (i) at most one equation k = e, (ii) at most one equation e = k, (iii) for each k
at most one equation k = k, (iv) for each k at most one equation k¥ = k. Indeed, since
p,p € A#™ every data value occurs at most once in p or p’, respectively. Moreover if E
contains any two of the equations k = e, ¢ = k, k = k, then it contains the third one.

» Lemma A.2. For every abstract transition j £, j' in abs(d) and g € A™, there exists a

transition (4, q) LN (4',q') in A consistent with it.
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Proof. Choose a transition (j,p) — (5/,p') in A inducing the abstract transition j SN 7,
and let p: A — A be a renaming sending py, to ¢ for each k € {1,...,m}; hence p*p = gq.

Then, putting b = pa and ¢’ = p*p’, we obtain the transition (7, q) LI (4',¢') in A consistent
with j —2 7. <
Now we prove Proposition 2.15.

(=) Suppose that the word by - -- b, € A" is accepted by A via the accepting run

. b . b by .
(Jo,q0) — (J1, 1) —= -+ —= (Jn>qn)-

By Proposition 2.12, each transition (j,—1,¢r-—1) LI (jr» qn) is consistent with some abstract
transition j,_1 E—> Jr in abs(d). Thus each transition of the above run is consistent with
the transitions of the abstract run

. Ey . Eq E, -
70 71 - Jn-

Then by definition of the predicates Eq,(:), the condition (2.1) holds.
(<) Suppose that there exists an accepting abstract run

. By . E En _ .
Jo n In

such that (2.1) holds. We show that for each r = 0,...,n there exists a run

(jos @) —2 (1, @1) =2+ -+ == (jrr ar) (A.3)

whose transitions are consistent with the first r abstract transitions of the abstract run; in
particular, putting r = n this proves that A accepts by - - - by,.
The run is constructed by induction on r. For r = 0, any choice of ¢y € A™ will do.

For r = 1 choose the transition (jo, b7") SLIEN (j1,b7"), which is trivially consistent with
Jo SECIEN j1. Thus suppose that 0 < r < n and that a consistent run (A.3) of length r has
been constructed. By Lemma A.2 there exists a transition (j,,¢:) LN (Jr41,qre1) in A

E, .
consistent with j,. e, Jr+1. We show how to turn the run

. b . b b, . b .
(o, q0) — (1, 1) —= -+ — (Grr &) — (Jrt1,dr+1)

into a run for the word by ... b,-b, 1 satisfying the required consistency property. This requires
a case distinction depending on the equations occurring in F,yq:

Case 1: k = e in F,; for some k.
Subcase 1.1: Eq,(j)(r) for some 1.
Note that necessarily i < r by definition of quj). Then b = ¢y, = b; = byy1: The first

equality holds because the transition (3, q:) LN (Jr+1,qr+1) is consistent with k = e, the
second one because Eq,(;)(r), and the third one by (2.1). We thus obtain the following
consistent run for by ...b.by41:

. b . b b, . b .
(Jo, q0) —= (1, q1) —= -+ =" (s @r) —— (Jrt1,Qr+1)-

Subcase 1.2: quj)(r) does not hold for any i.
Consider the unique s € {0,...,r} and the unique kg, kg1, ...,k = k such that k;—1 = k;
in E; fort € {s+1,...,7} and no equation k = k is contained in E, (putting Ey = §)). Then
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for t € {s,...,r} one has qx, = b;

for t € {s+1,...,r} one does not have qu) (t) for any 4 (for otherwise Eq,(f) (r) by
definition of the predicates); l

for t € {s,...,r} the equation e = k; is not contained in E; (for otherwise quft)(t)).
fort € {s+1,...,r} the equation k;_; = e is not contained in E; (for otherwise e = k;
in F; since ky—1 = ki in Ey).

For t € {s,...,r} let q; emerge from ¢; by replacing the letter b at position k; by the
letter b,41. Then the triples ((j:—1,4;_1), bs, (Jt,q;)) for t € {s+1,...,r} are consistent with
(Jt—1, E#, j¢), as is the triple ((js—1,qs—1),bs, (Js, ¢%)) if s > 0. It follows by Proposition 2.12

b . . i N
that (ji,q)) —— (je+1,d)41) and (Js—1,ds—1) Loy (Js»q%) (if s > 0) are transitions in A.
Thus we obtain the consistent run

. b . b bs_ . bs . by b, .
(Jo,q0) —= (j1,q1) —— -+ —— (Jou1.qs—1) —= (Jo, @b) —— -+ = (jr, q}.).

If e = k in E,,; for some k, then let ¢. 41 emerge from g.;1 by replacing the k-th letter

of ¢, 41 with b,11; otherwise put ¢;.,; = gr41. Then the triple ((j,, q.), bri1, (Jr41.4541)) I8

b . .o
consistent with (j, Er+1, jri1), 50 (4rs @) —— (jrt1,¢ip1) in A and thus

by

. b . ) bs . bs by . .
(o, q0) == (1, 1) -+ (o1, @s-1) —= (Jor q2) ——— -+ == (G @r) —— (jr41, @y 1)
is a consistent run for by ...b,b,41.
Case 2: Nok=ein F,. ;.

Subcase 2.1: @ = k in E,; for some k.

Let ¢}, emerge from ¢,1; by replacing the k-th letter (viz. b) with b,,;. It then follows
that the triple ((jr,qr), br41, (Jr41,dh41)) is consistent with (jr, Ery1, jr41). (To see this,
note that E,; does not contain an equation k = k., for otherwise k = o in E,;1.) Hence

br . T . . .
((Jry@r) — (jr+1,q.41)) in A and we obtain the following consistent run for by - - - byby41:

. b . b be br ‘
(o, q0) = (j1,q1) == -+ == (jr, @) = (Jr+1,Qrq1)-
Subcase 2.2: No @ = k in E, 1.
Since also no k = e in E,..q, the triple ((j., q),brv1, (Jr+1,¢r+1)) is consistent with

(Jry Erg1, Jry1). It follows that ((jr,gr) LTI (4r+1,¢r41)) in A, which yields the following
consistent run for by - - - b.by1:

. b . b b, . [ .
(Jo,20) —= (j1,@1) —= -+ = (s @) — (Jr+1:Grt1)-

This concludes the proof.

Proof of Theorem 2.17

By Proposition 2.8 every positive NOFA-recognizable language is accepted by some NOFRA
A as given by Construction 2.7. Therefore, it suffices to turn A into an equivalent non-
guessing NOFRA. To this end, we first modify A in such a way that it keeps track of the
set S C {1,...,m} of those registers whose content is determined by previous abstract
transitions of A, and modifies the content of registers outside that set arbitrarily.

» Construction A.3. Let A= (Q, 4, I, F) be a NOFRA as in Construction 2.7. Then the
NOFRA A = (@, 5,1, ﬁ) is given by
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states Q = J x P({1,...,m}) x A™, where P denotes the powerset;

initial states I = J; x {0} x A™ and final states F = Jp x P({1,...,m}) x A™;
transitions defined as follows: for a set E of equations and S C {1,...,m} let Eg denote
the restriction of F to those equations whose left-hand side refers to a register in S:

Es={k=ecE:keS}U{k=keE:keS}
For S,58" C{1,...,m} we write S ~»g S if
S'={ke{l,....m}:e=kecE}U{ke{l,...,m}:k=k¢c E for some k € S}.

Given ((4, S,q),b,(j',5',4¢")) € Q x A x Q we have the transition (4, S, q) LI (4, 9, ¢")
in A iff there exists some abstract transition (4, E, j') € abs(d) such that (i) the triple
((4,q),b,(§',¢")) is consistent with (j, Fg,j’), and (ii) S ~g S’

» Remark A.4. Since property (i) only requires consistency with (j, Es, j'), transitions can
be modified arbitrarily outside of S and S’: for every transition (j, .S, q) LN (4', 8, ¢') of
A one also has the transitions (j, S, q) LN (4', 8", q) for all §,§ € A™ such that g5 =7,
for k € S and ), = ¢}, for k € S".

» Lemma A.5. The NOFRA A and A are equivalent.

Proof. L(A) C L(A): Suppose that by ...b, € L(A) with accepting run
. by . b bn .
(Jo,q0) = (1, @) — -+ == (> tn)

= by . . . .
in A. Then for all » < n the transition (j., ¢,) T (Jr+1, @r+1) 18 consistent with some

abstract transition j, ———s Jr+1 (Proposition 2.12). Hence it is also consistent with
(Jry (Bri1)s, jrt1) for every S C {1,--- ,m}. It follows that we have the accepting run

. b . b by, .
(jOaSO7q0) —1> (jlyslaql) —2> e (]naSnvqn)

in A where Sop =0 and S, ~g, Sry1 for all r <n, whence by ...b, € L(ﬁ)

L(A) C L(A): Suppose that by ...b, € L(A) with accepting run

. b . b by .
(.703507q0) —1> (]17517(11) —2> B (]naSn,qn)

in A. By definition of the transitions of ;L for all r < n there exists an abstract transition

G — Jr+1 of Asuch that ((4r, @), brt1, (Jrt1, @rt1)) is consistent with (jir, (Ery1)s,, jre1),

and moreover S, ~»p_ S,11 (where Sy = (). To prove by ...b, € L(A) we employ Proposi-
tion 2.15: we verify that the abstract run

. By . E E, _ .
Jo n In

with its associated predicates Eq(-k) satisfies property (2.1). Thus let » < n, k = e in

E,.; and qu)(r) for some k. By definition of Eq,(f) (r) and ~», we have b; = (¢,)r and
k€ S,. Since k =e € (E,1)s, and the triple ((jr, ¢r), br41, (Jr41,br4+1)) is consistent with

(Jry (Er41)s,, jrt1), it follows that b; = (g.)x = br+1, as required. <
Theorem 2.17 now follows from the above lemma and the following one:

» Lemma A.6. The NOFRA A is equivalent to a non-guessing NOFRA.



F. Frank, S. Milius, and H. Urbat

Proof. We turn A into an equivalent non-guessing NOFRA gng by first removing all guessing

transitions, and then dealing with initial states with non-empty support. In more detail:

1. Let gngt be the sub-NOFRA of A obtained by restricting to non-guessing transitions,
i.e. transitions (4,95, q) LN (4',5,q") where suppq’ C suppq U {b}. We claim that

L(Angt) = L(A). The left-to-right inclusion is clear. For the right-to-left inclusion,

suppose that by - - b, € L(A) with accepting run

. b . b bn .
(]OasoaQO) —1> (]1751;%) —2> g (jn’Snaqn)

in A. By Remark A.4 we obtain another accepting run
. — b1 . — bz bn . —
(]Ov SOa CIo) — (Jla 517 Q1) S — (]na Sn7 qn)

where G, = b7 and for r = 1,...,n we put (G,)r = (¢,)x if & € S, and (g, )x = by—1 if
k ¢ S,. Since all these transitions are non-guessing, this an accepting run in A,g, so

by---by €~L(Angt). N
2. Now let A, emerge from Ang by adding a new Elitial state qop with supp go = 00 (which is
also final if J; N Jp # (), making all states of A,g non-initial, and adding a transition

qo LN (j',5",4") for each transition (j,0,b™) LN (j',5",¢") of ﬁngt where j € J;. The

NOFRA A, is non-guessing and satisfies L(Ang) = L(Angt) by Remark A.4. <

Proof of Theorem 3.2

The “if” direction follows from the fact that every register automaton admits an equivalent
NOFA [7] and from

» Proposition A.7. Every positive register automaton accepts a positive language.
Proof. Let A be a positive register automaton and w = ay ...a, € L(A) with accepting run

(607T0) a—1> (Clarl) a—2> e a—n> (C'mrn)-

- Qi1 . . . oy
For i =0,...,n—1 we have that (¢;,r;) —— (¢j+1, 7i+1) is consistent with some transition

Pit+1 P41 . .
c; —— ¢jyq- Then (¢, p*r;) ——— (cit1,p*rig1) for every renaming p: A — A since

s . . ®i .
this is also consistent with ¢; ——s Ciy1- Hence A accepts p*w = pay ... pa, via the run
pai paz pan
(co, p"ro) —— (c1,p"r1) —— -+ == (Cn, p"1s).

This proves p*w € L(A), showing that L(A) is a positive language. <

For the “only if” direction, suppose that L C A is a positive NOFA-recognizable language.

Then L is accepted by a NOFA of the form A = (Q, §, I, F), cf. Construction 2.7, in particular
Q = J x A#™ for some .J and m. We regard an equation as per Definition 2.11.1 as an
equation in ® by identifying

k=e ¢ (kbefore) =e, o=k < o= (kafter), k=~k « (k, before) = (k,after),

and turn A into a positive register automaton flreg = (Jregs M, Oreg; {J0.reg }» Freg) as follows:

The set of control states is Jieg = J U {jo reg} Where jo reg & J;
Jo,reg is the only initial state;
every state in Jp is final; additionally jo reg is final if J; N Jp # 0;
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for every abstract transition j £, j' of A, the automaton Areg contains the transition

E
J /\—> j', where A E is the conjunction of all equations in E (note that A @ = true);

for every abstract transition jj NECAN j of A where jo € J;, the automaton A,q, contains
the transition jo reg e, j where o = (e = k) if e=Fk in E, and g = true otherwise.

We claim that L = L(Aeg). For the inclusion (C), let w = by ...b, € L = L(A). Then
in A we have an accepting run

. b . b by .
(Jo,q0) — (J1,q1) —= -+ —= (Jin, qn)-

whose transitions are consistent with some accepting abstract run

. Eq . E> E, .
Jo J1 e .

It follows that the register automaton ereg admits the transitions

PE| . /\ Es . /\ En

jO,reg J1 o ]n

and that

. b . b by, .
(J(),reng-m) —1> (J1,Q1) —2> e —— (]Tuqn)

is an accepting run consistent with them. Therefore w € L(A,eg).

For the inclusion (D), let w = by - - - by, € L(A,eq) With accepting run
, b, b oy (g
(]O,reg7lm) — (]1,1"1) Iy (]Harn)v

in Ayeq, where r; € (A U{L})™. Note that ji,...,j, € J. By definition of the transitions of

Apeg, there exists an abstract transition jo AN j1 of A such that (joreg, L™) LI (j1,71)

is consistent with the transition jo reg E 4 of Apeg, and for i = 1,...,n there exists an
abstract transition j;_1 RSN ji of A such that (j;_1,7_1) LN (ji,r;) is consistent with the
E; —
transition j;_1 /\—> Ji of Areg. Now choose qq,...,q, € A™ as follows:
For i =1,...,n choose g; such that ¢; ; = r whenever r;, # L.

Choose g such that gox = ¢,  if k= k in Eq, and qox =b1if k=ein Fy.

Then for each i = 1,...,n we have the transition (j;—1,qi—1) LN (4i,q:) in A, as it consistent

with the abstract transition j; 1 B ji- Therefore

R b . b by, .
(Jo,q0) — (J1,q1) ——= -+ —= (Jin, qn)-

is an accepting run in A, showing that w € L(A) = L.

Details for Remark 3.3

We provide more details on the stated equivalence between positive register automata and
a a version finite-state unification-based automata (FSUBA) [20,35]. We first recall the
definition of the latter.



F. Frank, S. Milius, and H. Urbat

» Notation A.8. For any natural number r, we denote by r the set of all natural numbers
between 1 and r, inclusively. 0 denotes the empty set. We denote by Perm(r) the group of
all permutations on the finite set r and note that there is an obvious group action of Perm(r)
on A#" that is defined as follows: For any m € Perm(r) and w € A#" we define the word
Txw € AF" by (1 xw)y = Wk for k € r. Note that this action is compatible with the
Perm(A)-action: 7 * (p-w) = p- (7 xw) for p € Perm(A).

» Definition A.9. A finite-state unification-based automaton (FSUBA) is a quintuple A =
(@, m, u, qo, F) where Q is a finite set of control states, m € IN is the number of registers
(numbered from 1 to m), qo is the initial state, F' C @ the set of final states, and p C
Q x m x P(m) x @ is the transition relation. Here P denotes the powerset. A configuration
of A is a pair (¢, w) of a state ¢ € Q and a word w € (A U {L})™ corresponding to a
partial assignment of data values to the registers. The initial configuration is (go, L™), final
configurations are all (¢¢, w) with gy € F. We let Q¢ and F° denote the sets of configurations
and final configurations, respectively. Given an input a € A and configurations (g, w), (¢’, w’)
we write (¢, w) — (¢, w') if this move is consistent with some transition (¢, k, T, ¢'), which
means that the following conditions are satisfied: (i) wy € {L1,a}; (ii) k ¢ T = w}, = a;
(iii) Vj € T. w; = L; and (iv) Vj ¢ T U {k}. w} = w;. We denote the induced move relation
on Q¢ x A x Q¢ by u¢. A word ay ---a, € A" is accepted by A if there exists an accepting
run for it, viz. a sequence of configurations (g, L™) BLL N (g1, w1) 2y Ay, (gn, wp),
where ¢, € F. We write L(A) C A* for the language of accepted words.

» Remark A.10. In comparison to the original definition of Tal [20,35]) we do not allow an
initial assignment of the registers, since otherwise the accepted languages are not equivariant
but only finitely supported. Doing this also suppresses the ‘read-only’ alphabet, a subset of
the data values occurring in the initial assignment.

» Remark A.11. Every FSUBA A = (Q, m, u, qo, F') can be translated into an expressively
equivalent NOFA N = (Q°¢, u¢, {(g0, L™)}, F€), i.e. the configurations of the FSUBA are
simply regarded as states of a NOFA. The corresponding NOFA has the set of configurations
Q¢ as states, the singleton set {(qo, L™)} as initial states, and F¢ as final states. An
accepting run of A is then precisely an accepting run of N.

The structural difference between NOFA and FSUBAs is the inherent ‘non-guessing’ of
FSUBASs and the fact that FSUBAs cannot move data values from one register to another;
e.g., if register 2 contains the data value a, then it cannot be moved to register 3 in the next
step, which is possible with a NOFA. The first issue will be fixed by use of Theorem 2.17,
while for the second we will turn a NOFA A given by Remark 2.6 into a rigid NOFA, where
the data value contained in a register is never moved to another register:

» Definition A.12. A NOFA A = (Q, 0, I, F) with states Q = J x A#*™ is rigid if for every
transition (j, p) — (5, p') and for every b € suppp Nsuppp’, there exists k € m such that
Pe=b=q.

» Remark A.13. Hence rigid NOFA are those whose abstract transitions are of the form
e =Fk k=9 or k=k The construction below turns any NOFA into a rigid one. The idea
is to keep track, via the control state, which data values have changed their register.

» Construction A.14. Let A = (Q, §, I, F) be a NOFA with states Q = J x A#™. We
construct the rigid NOFA A,z = (Qrg, Org, Irg, Frg) given by

states Qg = J x Perm(m) x A#™;

initial states I,; = J; x {id;n} X A#™ and final states F,g = Jp x Perm(m) x A#™;
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transitions defined as follows: Given ((j, 7, p), a, (j', 7', p’)) € Qrg X A X Qg we have the
transition (4, m, p) — (§/, @', p') in Ay iff (i) (j, 7 xp) — (j', 7’ *p') is a transition
in A and (ii) for every b € supp(p) Nsupp(p’) there exists k € m, such that p, = b = pj..

Note that by property (ii) of transitions, the NOFA A, is rigid.
» Lemma A.15. The NOFA A and A are equivalent.
Proof. L(A) C L(A): Every accepting run

(jo, ™0, po) == (1, ™1, 1) == -+ == (jin, ™0, P)
of A, yields the following accepting run of A:

(o, M0 % Po) == (1, 1 % P1) === ==+ = (s T * D).

L(A) C L(Ay): Given a; ...a, € L(A) with an accepting run

(jOa QO) .ai% *ab (]na Qn)
in A, we inductively construct an accepting run
(jOa 0, q6) a—1> o L> (.]TH Tn, q:z)

in Ay such that m, x ¢/ = ¢, for r = 0,...,n. We put (jo, m0, ¢)) = (jo, idm , qo), which
clearly fulfills 7o * ¢}, = go. Now suppose that that 0 < r < n and that the first 7 transitions
with the required properties have been constructed. Then we construct the next transition
(Jr, 7, qL.) BN (jr+1, Trad, q;+1) as follows. Let Z := {k € m : q;.,k € supp(gr41)}-
Choose ¢/, € A#™ such that suppgq/.,, = suppg,+1 and 415 = 4.5 for k € Z. Choose
moreover a permutation m,._1 € Perm(m) such that 7 x qLH = ¢r+1- Note that since also

Supp ¢, = supp g, every data value in suppgq;, Nsuppg,; is equal to g, , for some k € Z.
Arg1

Therefore (j,, 7y, q.) —— (j,._H, 41, q'TH) is a transition of A, as required. <
» Remark A.16. If we apply the construction A — gng of Lemma A.5 and Lemma A.6 to a
rigid NOFA, we see that for every transition (j, S, p) — (j/, ', q) the set S’ is of the form
S\T or (S\T)U{k} where T C S and k € m. This follows directly from Remark A.13.

We will now show how to translate gng into an equivalent FSUBA. The idea is to maintain in
the control state, in addition to the set S of “relevant” registers, a subset R C S containing
all registers that will eventually be compared with a future input value. Registers outside of
R then may be deleted.

> Construction A.17. Let A= (Q, 8, I, F) be a rigid NOFA and Ay = (@, dg, {a0}, Frg)
be the corresponding non-guessing NOFRA of Lemma A.6 with states J x P(m) x A™U{qo}
Then the FSUBA Agupa = (C, m + 1, u, qo, Fruba) with m + 1 registers is given as follows:
control states C = {q} U{(j,R,S) :j € Jand RC S Cm};
all states (j, R, S) where j € Jp are final, and additionally qq is final if J; N Jg # 0;
for each abstract transition j SN j' in abs(d) and all pairs of sets R, S C m such that
R C S and k =e € Eg implies k € R, we have the following transitions:
1. if k=ein Eg (hence Eg) or @ = k in E for some (unique) k € m, then p contains the
transitions

((4,R,S),k, R, (j,R,S") and ((4,R,S), k, R\ {k}, (', R" \ {k},5")),
where R ~p R', S ~g S, and T =m + 1\ T for any subset T C m + 1.
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2. otherwise, u contains the transition
(G, R, S),m+1,R,(j/, R, S")).

Additionally, for every transition ((jo,®,0),%,T, (4, R,S)) where jo € Jr, k € m + 1 and
R,S,T C m+ 1, we have the transition (qo, %k, T, (j, R, S)).

» Lemma A.18. The automata gng and Assuba are equivalent.

Proof. L(Ang) € L(Afsuba): Let a1 ---a, € L(Ang) = L(A) with accepting run
(jo,So,’Uo) a—1> (jl,Slv’Ul) a—2> e a_"> (jnasn;vn)

in A. Each transition (jr—1,Sr—1,0r—1) = (jy, Sp,vy), 7 =1,...,n, is induced by some
abstract transition j,._1 B, Jr in abs(d), that is, the triple ((jr—1,vr—1), ar, (Jr,vr)) is
consistent with (j.—1,(E,)s,_,,7r) and S,_1 ~» S,.. We now construct an accepting run

(QwaO) a—1> ((jluRlvsl)awl) a—2> e L> ((]annaSn)7wn)

in Afsuba whose data is defined as follows for r = 1,...,n:
R, is the set of registers in S, that will be compared with some later input, that is,

R.={keS,.:F3se{r+1,....n}:k=k€FE,11,... Es_1and k=e € E, }.

wo = L™ and w,, = v, for k € R, and w,., = L for k € R,.

Note that the first move is equivalent to having a move ((jo, Ro, So), wo) — ((j1, R1,51),w1)

ar

where jo € Jr and Sy = Ry = 0. Let us now verify that ((jy—1, Rr—1,Sr—1), Wr—1) —>
((jr, R, Sr), w,) is indeed a valid move for r = 1,...,n, i.e. consistent with some transition
of Afsuba- We distinguish two cases:

If k=ein (E,)s,_, or e =k in E, for some k € m, take the transition

((jr—laRr—lasr—l)akaE, (jraRer))~ (A4)

Note that this transition is induced by the abstract transition j,._ 1 RSN jr and the pair
R,._1,S,_1 as per Construction A.17: if R,,_y ~>g, R’ theneither R, = R' or R, = R'\{k}
by definition of the sets R,_1 and R,., and moreover if k = o in (E,)s,_, then k € R,_;
by definition of R,_;. The move ((jr—1, Rr—1,Sr—1), wr—1) —= ((jr, Ry, S;), w,) clearly
satisfies the consistency conditions (i)—(iv) of Definition A.9 w.r.t. (A.4).

Otherwise, take the transition

((j?”*laR'r‘717S'l"fl)7m+1aR7ra (jrvaST))- (A5)

Note again that this transition is induced by the abstract transition j,._1 RSN Jr and
the pair R,._1,5,_1 as per Construction A.17: one has R,_; ~~ R, by definition of the
sets R,_ and R,. The move ((j,_1,Rr—1,Sr—1),wr—1) —— ((j,, Ry, Sy),w,) clearly
satisfies the consistency conditions (i)—(iv) of Definition A.9 w.r.t. (A.5).

L(Afsuba) € L(Ang): Let a1 - - an, € L(Agsuba) with accepting run
(q07w0) a—1> ((jla Rlv Sl)vwl) a—2> e a_"> ((]Tm Rn; Sn)vwn)

The first move is equivalent to having a move ((jo, Ro, So), wo) —= ((j1, R1, S1),w;) where

A

j() S J[ and SO = Ro = @ For r = 1,...,’/1 the move ((jr_l,Rr_l,S,«_l),w,-_l) —
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((4r, Ry, Sr), w;) is consistent with a transition of Ag,ps induced by some abstract transition

Jr1 L, Jr in abs(d) and the pair R,_1,S,_1. This yields the accepting run
(jo,So,’U()) a—1> (jlaslavl) ‘1_2> T a—n> (jnaSnaUn)

in A where vy = af’, and v, € A™ for r =1,...,n is defined as follows:
for k € R, put vy = wrp;
for k € S, put v, = ay;
for k € S, \ R, if k = k in (E,)g,_, then take v, = v,_1 %, and if ¢ = k in E, then
take v, = ai. Note that at least one of these cases must occur because S,_1 ~ g, S;.
Moreover, if both £ = k and e = k in E, then also k = e in E, and moreover k € S,_1,
whence k € R,_;. Therefore v,y = a, as the move ((jy—1, Rr—1,S—1), wr_1) ——
((jr, Ry, Sr),w;) is consistent with a transition of Agypa induced by j,._1 E, jr and
R,_1,Sy_1, which is of the form ((j,—1,Rr—1,Sr-1),k,---) since ® = k in E,. Hence v, x
is properly defined.

It remains to show that ((jr—1,Sr—1),vr-1) SN ((Jr, Sr),v,) is a valid transition of A.
By definition we have S,_1 ~g, Sy, so we only need to show that the transition is consistent
with (E,)s,_,. Indeed:

Ifk=ein (E,)s,_, (hence k € R,_1) then a transition of Agypa induced by j,_1 LN I
and R,_1,S5,_1 is of the form ((j,.—1,Rr—1,Sr—1),k,--), and since by assumption the
move ((Jr—1, Rr—1,Sr—1), Wr_1) SN ((jr, Rr, Sr),w,) is consistent with it, we have
Ur—1,k = Wr—1,k = Q.

Now suppose that k = k in (E,)s,._, but not k = e in (E,)g,_, (hence not e =k in E,).
We distinguish two subcases. If k € S,_1\R,_1, then k € S, \R,, so by definition of v, j, we
get vy_15 = Ur . If kK € R,_1, then the transition of Agp, induced by jr—1 LN Jr and
R,_1,S,_1 is given by ((j,_1,Rr—1,S—1),m + 1, R, (j, R, S;)) where R,_1 ~p_R,
and S,_1 ~g,. Sr. Since the move ((jr—1, Rr—1,Sr-1), Wr_1) 2 ((jr, R, Sy), w,) is
consistent with that transition, we have v,_1 ; = Wr—1p = Wy = Vr k.

This concludes the proof. |

We conclude:
» Theorem A.19. Positive register automata and FSUBA are equivalent.

Proof. Every language accepted by some FSUBA as in Definition A.9 is clearly positive, and
by Remark A.11 it is NOFA-recognizable, hence by Theorem 3.2 it is accepted by some positive
register automaton. Conversely, every language accepted by positive register automaton
is positive and NOFA-recognizable (using Theorem 3.2 again), and so Theorem 2.17 and
Lemma A.18 show that is accepted by an FSUBA. <

Details for Remark 4.3

We prove that the language L C A" of all words where no data value occurs exactly once is
not NOFA-recognizable. Suppose that L is recognized by a NOFA A, and let m € IN such
that every state has a support of size m. Choose m + 1 distinct names aq, ..., any1. Then
the word w = aj ...am+4101 - .. am41 lies in L, hence it admits an accepting run

al Am 41 al ag Am+1

9o e Gm+1 a aE G-
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Since supp g¢m+1 has at most m elements, some a; is fresh for g, +1. Choose a name a;- fresh
for ai,...,am41 and gnm41, and let T = (a; a;). Then by equivariance of transitions we have

the following accepting run:

’
ay a; aj+1 Am+41 _ al / az Am 41 ’
T qo ﬂ-q] T Qm+1 = Qm+1 q qm+1.

/_.-.

This means that the word aq - - - a;

Q41061 - Q5 - - Gmq 1S accepted by A although it
does not lie in L, a contradiction.

Proof of Theorem 4.4

The “if” statement follows from Proposition 4.2. For the “only if” statement, suppose that
L C A* is a positive NOFA-recognizable data language; then L is accepted by a NOFRA
A=(Q,4,1,F) as given by Construction 2.7. Our task is to construct an MSO™ " -sentence
¢ such that, for all w € A",

A accepts w <~ w satisfies .

We shall make use of the characterization of accepted words from Proposition 2.15: when
interpreted over w = b; ... b,, the sentence ¢ will state existence of an abstract run satisfying
condition (2.1). For this purpose, we introduce for every abstract transition (j, E, j') € abs(9)
a second-order variable R(; g ;) with the intended interpretation

R pin(x) = (, E, j') is the a-th transition of an accepting abstract run of A.
The sentence ¢ is then given as follows:
Y = 3(]',E',j)eabs((?)}z(j,E,j/)- @run A V. Hquz) cee Hqu) Paux \ Peq-

Here §(j,E,j)eab5(5)R(j7E7j/) denotes the concatenation of all AR(; g ;) where (j, £, j") € abs(d),
and we make the convention that quantifiers have maximal scope. The subformula @y,
ensures that the variables R(; g j) define an accepting abstract run of A; the subformula
Yaux ensures that the second-order variables Eq,(f) (k =1,...,m) are interpreted as the
auxiliary predicates of Notation 2.14; the subformula ¢.q states the equality condition (2.1).

In more detail, the three subformulas are given as follows:

Definition of @pyn:

Prun = V. \V  Rypn()
(j,B,j")€abs(5)

A Va. A ~(Rpg)(@) ARG p7)(@))
(G, E.j")#F,E,j ) €abs(d)
A V.T:Vy SucC(l’;y) — \/ R(],E,j’)(x) A\ R(j’,E',j”)(ZJ)

(4,E,5"),(3",E",j"" ) €abs()

A Ve first(z) = \/ R(j.p5n(2)
(3.E.5")Eabs(6)
JeJI
A Vz.last(zx) = \/ R(j.m,5) (@)

(4,E,5")€abs(5)
j'edr
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As usual ¢ = € means — V &, and the formulas succ(z, y), first(z) and last(z) define the
successor relation and the first and last position, respectively:

succ(z,y) =z <yA-Jz.x < zAz <y, first(z) = =Jy.y < z, last(z) = -Jy.z < y.

The first two lines assert that every position « is associated with a unique abstract transition
of A, and the remaining part that these transitions form an accepting abstract run.

Definition of paux:

b = N N (Bupin@) = E@)

k=1 (j,E,j")€abs(s)

oe=kcFE
A Ve = A A (Rapan@) A EaT) = B ()
k,k=1 (4,E,j")€abs(8)
k=keE
A VEQ - vEqY. | A —(x)
ar VB, [ A (R¢,p,(x) = Eaqp '(z))
k=1 (j,E,j")€abs(s)
o=keFE
A =(x) (z)
A Vy.Va.sucely, z /\ A (Rupn() MBS () = Eai(2) ]
=1 (j,E,j")€abs(s)
k=keFE

= /\Vy Eq\”(y) = Eay" ().
k=1

The first two lines state that the predicates Eq,(f) satisfy the two clauses of Notation 2.14,

and the remaining part of the formula asserts that they are minimal with that property. This
entails that Eq,(f) is precisely the inductively defined predicate of Notation 2.14.

Definition of eq:

Yeq = Vy.Vz.succ(y,z /\ /\ (R(pjn(z )/\Eq(m)( ) = z~2).

1 (4,E,j")€abs(d)
k=ecE

Proof of Proposition 5.1
We start with two preliminary remarks on directed colimits,

» Remark A.20. Given a directed diagram D: I — Set, its colimit cocone D; —— colim D
(i € I) is characterized by two properties: (i) the morphisms ¢; are jointly surjective (every
element of colim D lies in the image of some ¢;), and (ii) for every i € I and x,y € D; such that
ci(z) = ¢i(y), there exists j >4 in I such that D, ;(x) = D; ;(y), where D; ; = D(i — j) is
the connecting morphism induced by the unique arrow ¢ — j in I. The same characterization
applies to directed colimits in Nom and RnNom, since colimits in these two categories are
formed at the level of underlying sets.

» Remark A.21. Recall that an object X of a category % is finitely presentable if the functor
€ (X,—): € — Set preserves directed colimits. By Remark A.20, this means precisely that
for every directed diagram D: I — € with colimit cocone ¢;: D; — colim D (i € I),
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1. every morphism f: X — colim D factorizes as f = ¢; o g for some i € [ and g: D; — C;

2. the factorization is essentially unique: given another factorization f = ¢; - h, one has
D;jog=D;;oh for some j >iin [I.

Moreover, we need

» Lemma A.22. Let X be a nominal renaming set generated by a single element x € X,
that is, X = {p-x:p € Fin(A)}. Then X is orbit-finite.

Proof. Take a Perm(A)-equivariant map e: A#™ — X, where m € IN, whose image contains
z. Since the forgetful functor U: RnNom — Nom has a left adjojnt F': Nom — RnNom
sending A#™ to A™ [27, Thm. 3.7], the map e uniquely extends to a Fin(A)-equivariant
map €: A™ — X. Choose w € A™ such that x = €(y). The map e is surjective because X
is generated by x. Since A™ is orbit-finite, it follows that X is orbit-finite (using that e is
Perm(A)-equivariant, hence it sends orbits to orbits). <

Now we prove Proposition 5.1. By [29, Prop. 2.3.7] orbit-finite nominal sets are precisely
the finitely presentable objects of Nom. Hence we only need to prove the corresponding
statement for nominal renaming sets, which can be reduced to the one for nominal sets.

Thus suppose that X € RnNom is finitely presentable. Express X as the directed union
of its orbit-finite Fin(A)-equivariant subsets. To see that this is indeed a directed colimit,
note that the cocone of inclusions is jointly surjective: every xz € X is contained in the
Fin(A)-equivariant subset {o -z : o € Fin(A)}, which is orbit-finite by Lemma A.22. Thus
the identity map idx : X — X factorizes through some inclusion X’ < X of an orbit-finite
Fin(A)-equivariant subset, which implies that X = X’ and thus X is orbit-finite.

Conversely, suppose that X € RnNom is orbit-finite. Let ¢;: C; — C (i € I) be a
directed colimit in RnNom (with connecting morphisms ¢; ;: C; — C; for i < j), and let
f+ X — C; be a Fin(A)-equivariant map. Since X is finitely presentable as a nominal set,
f factorizes in Nom as f = ¢; - g for some ¢ € I. The map g is Perm(A)-equivariant, but

may not be Fin(A)-equivariant. To fix this, choose elements z1,...,z, € X representing
the orbits of X, and names ay,...,aq € A such that suppz, C {a1,...,aq} forr=1,... n.
Moreover, let p1, ..., pi € Fin(A) be all renamings that restrict to a map from {as,...,aq}
to {a1,...,aq} and fix all names in A\ {ay,...,aq}. For each z,, ps we have

ci(g(ps - wr)) = f(ps - ) = ps - f(xr) = ps - ci(g(zr)) = ci(ps - g(z1))

using that ¢; and f are Fin(A)-equivariant. Thus ¢; ;(g(ps - ) = ¢ j(ps - g(z,)) for some
j > i, and so ¢; j(g(ps - ) = ps - ¢ij(g(z,)). Since I is directed, we may choose j
independently of r and s. Thus, after replacing g with ¢; ; o g and ¢ with j, we may assume
that g(ps - ©) = ps - g(x,.) for all r; s.

We now show that this implies g(p - z) = p- g(x) for all x € X and p € Fin(A), hence
g is Fin(A)-equivariant. First, since the elements x4, ..., z, represent the orbits of X, we
have x = 7 - z, for some r and m € Perm(A). Choose 7 € Perm(A) that restricts to an
injective map from p o w[{as,...,aq}] to {a1,...,aq}. Then 7. p- 7 restricts to a map from
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{a1,...,aq4} to {a1,...,aq}, hence is equal on {ay,...,aq} to some ps. It follows that

glp-z) =gt~ T p-m-2,)
1'9(7"/7'71"1‘7«)
=7""-g(ps - 1)
=71 ps-g(z)
=T 1'T'/)'7T'g(l‘r)
=p-g(m- )
=p-g(z).

:7'7

The third and fifth step follows from supp x,, supp g(z,) C {a1,...,aq}, the fourth step by
the choice of g, and the second and sixth step use Perm(A)-equivariance of g.

This concludes the proof that f factorizes through ¢; in RnINom. That the factorization
is essentially unique is immediate from the corresponding property in Nom.

Proof of Proposition 5.2

An object X of a category ¥ is finitely generated if the hom-functor € (X, —) preserves
directed unions, i.e. colimits of directed diagrams D: I — % for which each connecting
morphism D; ; (i < j), is monic. (In locally finitely presentable categories [3], including
all presheaf categories, the colimit injections of a directed union are also monic.) Clearly
every finitely presentable object is finitely generated. We will first prove that super-finitary
presheaves in Set! and Set” coincide with finitely generated presheaves, and subsequently
prove that the latter coincide with finitely presentable presheaves.

» Proposition A.23. For a presheaf P € Set?, ¢ e {I,F}, the following are equivalent:

(a) P is a finitely generated object of Set? ;

(b) P is super-finitary;

(c) P is a quotient of a finite coproduct of representables; that is, there exists a componentwise
surjective natural transformation p: [],c; €(S;, —) = P with I finite and S; Cr A

Proof. (a) = (b) Let P: ¥ — Set be finitely generated. Since every presheaf in Set? is
the directed union of its componentwise finite sub-presheaves, P itself is componentwise
finite. For every S Cf A we consider the sub-presheaf Pg C P defined by

psT=|J) |J PplPS) for TCA.
S'CS pe?(S',T)

Note that Pg is super-finitary with generating set S. Since Pgr, Ps C Pryg for all R, S Cf A,
the map D: (PfA,C) — Set?, S — Ps, yields a directed diagram of monomorphisms with
colimit cocone Pg S.p (S Cf A). By hypothesis the presheaf P is finitely generated,
so the identity map id: P — P factorizes through some Pg £, P. This implies that the

inclusion is surjective, whence P = Pg is super-finitary.

(b) = (c) For every presheaf P € Set? and S Cf A we have the natural transformation ¢
whose component at T' C¢ A is given by

or: H PS' x€(S',T) — PT, (z,p) — Pp(x).
s'Cs

If P is super-finitary and S a generating set, then o is surjective for each T.
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(¢) = (a) This follows from two general facts: First, in every presheaf category the
representable functors are finitely presentable [3, Example 1.2(7)], thus finitely generated.
Second, in every locally finitely presentable category (hence in every presheaf category), finitely
generated objects are closed under finite coproducts and strong quotients [3, Prop. 1.69]. <«

» Lemma A.24. Finitely generated objects in Set?, € e {I,F}, are closed under finite
products and sub-presheaves (hence under finite limits).

Proof. Closure under finite products. We first prove that a product €(S1, —) x €(Ss, —) of
representables is finitely generated, i.e. super-finitary. Assuming w.l.o.g. that S;, 5, Cf A
are disjoint, we prove that S; U Sy is a generating set. Thus let T Cf A and (01,02) €
€ (S1,T) x €(S2,T). Then there exists S C S U Sy and p € €(C,T) that corestricts to a
bijection 7: S — 01[S1] U 02[S2]. Let o}, denote the corestriction of oy to o1[S1] U 02[Sa].
Then o, = por~tooy, ie. (01,02) = (€(S1,p) x €(Sa,p)) (r~ oo}, 7~ oal). This proves
% (S1,—) x €(S2,—) to be super-finitary.

Now we turn to the general case. Suppose that Py, P>: ¥ — Set are finitely gener-
ated presheaves. Then, by Proposition A.23, there exist componentwise surjective natural
transformations

€k H %(Si(k), —) — Py

i€l

for k = 1,2, where I is finite and Si(k) C¢ A. They induce the componentwise surjective
natural transformation

[Wier, jer %(SZ-(U, —) x %(SJ(?)’ -)

112

(Iier, €S, 2)) % (Iep, €5, )

i&l XEg

Pl X PQ,

Since %(Sfl), —) X %(Sj(z), —) is finitely generated as shown above, and finitely generated
objects in any locally finitely presentable category are closed under finite coproducts and
strong quotients, we conclude that P, x P, is finitely generated.

Closure under sub-presheaves. We first prove that every sub-presheaf @ C €(C,—) of a
representable presheaf is finitely generated, i.e. super-finitary. We may assume that C # ()
and that @ is not the constant functor on (@, for otherwise the claim is obvious. We consider
the cases € =1 and € = F separately:
% =1: Choose S Cs A of least cardinality such that QS # 0; since QS C I(C, S) one has
|C| < |S]. Note that QS = 1(C, S): for any two maps o,7 € I(C,S) one has Tt =7 oo
for some bijection 7w: S — S, hence o € QS implies 7 € QS. Given T C¢ A and 0 € QT,
one has |C] < |S| < |T'| and hence ¢ factorizes as C' — S -2 T for some p, T € I. Then
7€ QS =1(C,S) and 0 =€ (C, p)(7) = Qp(7). Hence Q is super-finitary, as claimed.
% = F: We prove that the set C' generates Q. Given T Cf A and o € QT, choose a
map 7 € F(T,C) that sends every element of ¢[C] C T to a preimage under o, and
is arbitrary otherwise. (Here we use that C' # .) Then 7 oo = Q7(0) € QC and
og=cot10o0=F(C,0)(T00)=Qo(r o0), proving that @ is super-finitary.

Now we turn to the general case. Suppose that Q C P is a sub-presheaf of a finitely
generated presheaf P € Set®. By Proposition A.23 we have a componentwise surjective
natural transformation e: [[,.; €(S;, —) — P with [ finite. Form the following pullback:
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Q——=——P

By extensivity of the presheaf topos Set?, the presheaf H is of the form H = ;e H; for
sub-presheaves H; C €(S;, —). Each H; is finitely generated as shown above, hence so is H
because finitely generated objects are closed under finite coproducts. |

Finally, we have the following simple criterion for coincidence of finitely presentable and
finitely generated objects, see [2, Lemma 3.32]:

» Lemma A.25. Let € be a locally finitely presentable category where strong and reqular
epimorphisms coincide and finitely generated objects are closed under kernel pairs. Then the
finitely presentable and finitely generated objects of € coincide.

With these preparations, Proposition 5.2 now easily follows. By Proposition A.23 we
only need to show coincidence of finitely presentable and finitely generated objects in Setcg,
where € € {I,F}. To this end apply Lemma A.25: every presheaf category is locally finitely
presentable, regular and strong epis coincide in every topos (and are just the epimorphisms),
and closure of finitely generated objects under kernel pairs follows from Lemma A.24.

Proof of Proposition 5.3
For the proof the following result (see e.g. [1, Lem. 2.4]) will be helpful:

» Lemma A.26. For every adjunction F' 4 U: € — 2 between categories with directed
colimits, if U preserves directed colimits then F' preserves finitely presentable objects.

To prove that the left adjoints in (5.2) preserve finitely presentable objects, it suffices to
show that their right adjoints preserve directed colimits (Lemma A.26).
The forgetful functors E* and U preserve all colimits because colimits in the four categories
are formed at the level of underlying sets.
To show that I, preserves directed colimits, let ¢ : Cp, — C (k € K) be a directed colimit
cocone in Nom. Then the morphisms (I,cg)s: (I.C)S — (I,C)S are jointly surjective
for every S C¢ A by [30, Lem. 5.14], and any two elements of (I,C)S merged by (I.ck)s
are merged by (I.ck,)s for some k <[ because this holds in the directed colimit cocone
() in Nom. Therefore the morphisms I, ¢ form a colimit cocone in Set’.
The proof that J, preserves directed colimits is analogous.
It remains to show that the four right adjoints preserve finitely presentable objects.
U clearly preserves finitely presentable objects. i.e. orbit-finite sets (Proposition 5.1).
To show that E* preserves finitely presentable objects, by Proposition 5.3 we need to show
that for every super-finitary presheaf P: F — Set the presheaf E*P = Po E: 1 — Set is
super-finitary. Clearly P o E(T) = P(T) is finite for every T' C¢ A. Moreover, we claim
that any set S Cf A generating P also generates P o E. Indeed, suppose that T' Cf A
and x € (Po E)T = PT. Then x = Pp(z') for some S’ C S and p: S” — T. The map
p factorizes as p = p1 o pg where py: S” — T is injective and S” C S’. Thus, putting
2" = Ppo(z'), we have

v = Pp(a') = Pp1(Ppo(z')) = Pp(a") = (P o E)p1(z") € (P o E)p1[(P o E)S"],

proving that P o E is super-finitary.
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To show that the functor I, preserves finitely presentable objects, by Proposition 5.1 and
Proposition 5.3 we need to show that its sends orbit-finite nominal sets to super-finitary
presheaves. Thus let X € Nom be orbit-finite. Then (I, X)T is finite for every T Cf A
because an orbit-finite set contains only finitely elements of any given finite support.
We claim that I, X is generated by any set S C¢ A of n = max,cx |supp 2| names. To
see this, let x € (I,X)T, that is, + € X with support 7. Then z is supported by
some subset 77 C T with at most n elements, that is, x € (I, X)T". Choose a bijection
w: S" — T where S’ C S, which extends an injection p: S’ — T. It then follows that
r = (LX)p(r~! 2) = x, as required.

An analogous argument shows that .J, preserves finitely presentable objects.

Proof of Proposition 6.9

» Remark A.27. Recall that by definition strong epimorphisms satisfy the diagonal fill-in
property: For every commutative square as shown below where e is a strong epimorphism
and m is a monomorphism, there exists a unique d: B — C making both triangles commute.

A—» B
o2 s
L]
C "> D
We will make use of the pullback lemma, see e.g. [10, Prop. 2.5.9]:

» Lemma A.28. Given a commutative diagram as shown below in a category with pullbacks,
1. if (1) and (II) are pullbacks, then the outer rectangle is a pullback;

2. if (II) and the outer rectangle are pullbacks, then (I) is a pullback.
o —— e — @

@ | |

e — e — e

In the following let A = (Q,%,4,I,F) and A’ = (Q',%,',I’, F') be nondeterministic -

automata over the same alphabet ¥ and suppose that h: A’ — A is a morphism such that

h, = id. We prove the two parts of the proposition.

1. For every n > 0 we show that L™ (A’) < L(™(A) as subobjects of ¥. We only consider
the case n > 0, as the argument for n = 0 is very similar. The universal property of the
pullback AccRun 4 yields a unique morphism e such that the upper part and the left-hand
part of the diagram below commute; note that the outside and the other parts commute
by definition.

m(?})
~AccRunygy 2= I'x (Ex Q)" ' x ¥ x F' —
i hix (id ><h5)‘”_1><id xhe
\L —(n) l«

AccRung = I x (Ex Q)" ! x L x F

€

dn, A dn,A’

al
s
=
o
3
.

n
ms

0 —————— (@ xEXxQ)"

hy (heXid X he)™

my,

() — 5 (@ X D X Q)
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Diagonal fill-in yields a unique morphism i: L") (A") — L™ (A) making the upper part
and the left-hand part of the diagram below commute; the outside and the other parts
commute by definition. Hence the morphism i witnesses that L™(A’) < LM (A).

Cn,A’

LM (A" AccRun 4/
\\\\) ) /
LM (A) «—%  AccRuny

(™ () I Jmm) —c)

L(A) L(A) ) 8/

ot I (X Q)X S X F
2 “
' hix (id x hs)™ ™ xid X hy
sn P I'x (Ex Q)" x ¥ x F'

(A7)

2. Now suppose that hs is a strong epimorphism in % and that the three squares (6.1)
are pullbacks. Our task is to show that L™ (A") = L") (A) for all n > 0; as above we
only consider the case n > 0. We first observe that the upper rectangle of (A.6) is a
pullback. To see this, note that the outside is a pullback by definition, and that the
lower rectangle is a pullback by our assumption on h and the fact that in every category

pullbacks commute with products. Thus Lemma A.28.1 shows that the composite of

the upper and the central rectangle forms a pullback, as it is is equal to the composite

of the outside and the lower rectangle. Moreover the central rectangle is a pullback by
definition, and so by Lemma A.28.2, the upper rectangle is a pullback as well.

Since strong epimorphisms in € are stable under pullbacks and products (Assumptions 6.1),
the morphism h; x (id xhs)" ™1 x id xhs appearing in the upper rectangle is a strong
epimorphism. Using stability under pullbacks again, we see that e is a strong epimorphism.
Therefore, by the uniqueness of image factorizations, the diagonal fill-in ¢ in (A.7) is an
isomorphism, proving that L™ (A’) = L("(A) as subobjects of X"

Proof of Proposition 6.10

1. Given a functor G: € — 2 we define the lifted functor as follows:

(GQ. G, Go, GI, GF)

G: NAut(%) — NAut(2)
(Q7 2’ 67 I? F) —
{ (hsa ha) — (Gh57 Gha)

Herein, the objects G§, GI, and GF are given by the image factorizations shown below,
with can denoting the canonical morphism induced by the product projections:

Go

Gmgl

€Gs

Go
[res

GQXEXQ) —H— GO xGE X GQ

Gl —51 4 GI

Gm]l %i
G1

GQ

GF —% 4 GF

GmFl %;
GF

GQ

We only need to prove that (Ghs, Gh,) is an NAut(2)-morphism for every NAut(%)-

morphism h = (hs, hy) : A — A between automata A’

(Ql7 Zl?

&, I',F') and A =

(Q, X, 0, I, F). Indeed, via diagonal fill-in we obtain the dashed morphisms making the
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diagrams below commute; note that in all three diagrams the outside commutes because
h is an NAut(%)-morphism, and the parts not involving the dashed morphisms commute
either by definition or by naturality of can. The central part of the first diagram and the
lower parts of the other two diagrams show that (Ghs, Gh,) is an NAut(%)-morphism.

Gy che as
Geo’ €Gs
(€7 [ - » Go
Gmyg: m§I Ima Gms
Gg’ x GY' x GQ’GWSGQ x GX XSQ
/Can can \
/ ’ /
GQ x ¥ x Q) T GQx % xQ)
ar el GI GF’ o GF
N s ~ ~
eﬁx KPE eGF/& );GF
Gmy/ GI -2 GT Gmp Gm g GF -2.GF Gmp
me )\ ’K M7)\ ’K
y G’ mEN p GF’ mﬁ\
GQ Gh, GO GQ Gh, GO

2. Let L HR: € — 2 be an adjunction with unit 7: idgy — RL and counit e: LR — id¢.

We only need to establish the following two statements:

a. for every Z-automaton A = (Q,X,4,1, F) the pair 7, = (ng,ns): A — RLA is an
NAut(Z)-morphism;

b. for every %-automaton A = (Q,%,d,1, F) the pair 4 = (eg,ex): LRA — A is an
NAut(%)-morphism.

Then L - R is an adjunction with unit 77 and counit . Indeed, naturality of 7j and & and

the triangle laws are immediate from the corresponding properties of 7 and e.

The proof of the first statement is given by the commutative diagrams below, where we
write Ly, Lp, Ls for LI, LF, L and the dashed morphisms are just given by composition.
In all three diagrams the outside commutes by naturality of 7, and the parts not involving

the dashed morphisms commute by definition.

s

( o )

RS- S — s RLs it RLs Rews RLS

méI Imm lRmLé lRLm(g

QXZXQ4>RLQXRLEXRLQ%a—nR(LQxLExLQ)mRL(QxExQ)

nQ XNz XnQ

NexsxQ
n RLI e RLF
| |
( ReLI ( ReLF
3 = RL; © 35— SFIr oy
R y RL; <21 RL; RLm; F ->- RLp ¢~ RLp RLmp
-~ ~
mII mTLl/ mFI mRLF/
- Rmp,, v Rmpp

Q —5* RLQ Q RLQ

nQ
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Similarly, the second statement is proven by the three diagrams below, where we write Ry,
R, R;s for RI, RF, Ré and the dashed morphisms are given by diagonal fill-in. Here we
use the fact that L preserves strong epimorphisms, being a left adjoint, and that strong
epimorphisms are closed under composition.

€5

[ 1

Ler TR, 3
8 S N TPR. = N 6

LR6 LRs

LRm(;l leR(g ImLRé Imé

LR(Q x ¥ x Q) 7= L(RQ x RX X RQ) —» LRQ X LRY X LRQ — > Q@ xXxQ

EQXEn XEQ

o 7

EQRXxEZXQ
LRI i LRF i
Le‘RI 1 Leryp 1
¥ eTRT 3 ¥ TRy ——— 3
LRmy LR; —5 LRy ----- > I LRmp LRp —_—5 LRp --=-» F
\LmRI W Iml \LmRF ;RF ImF
N v N v
LRQ —> Q LRQ — Q

This concludes the proof.

Proof of Proposition 7.3

Put Lan = Lang and consider the morphism
o: Lan(L) ="y Lan(vy) HLan vy e HLan V) ]_[VIF — v

in Set”, where ¢: L — V" is the inclusion and cany, is the canonical morphism induced by
the product projections, and form its image factorization

¢ = (Lan(L) <% [ <M, vpp).

We prove that L is a positive closure of L. First, the diagram below demonstrates that
L C LE, witnessed by the morphism (coim ¢)E o nr, where 7 is the unit of the adjunction
Lan 4 E*: Set” — Set!. Indeed, all parts commute either by definition or by naturality.

(coimp)E IE

L —"  lan(L)E
lLan(b)E
Lan(V*)E

(ime)E

(L Lan(V{")) E

( cang)E
Hk nVMkT \L[k) *
[T,

[T v* (LI Lan(VD)*) E

Vi Vi E ViE
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To show that L is minimal with that property, let K C Vi such that L C K E; denote the
inclusions by ¢: K < Vg and £: L — KE. By the universal property of Lan(L), there
exists a unique &: Lan(L) — K such that £ = ¢E on. Now consider the first diagram below;
its left-hand part commutes by definition, and the outside commutes because it does so when
restricted to E and precomposed with the universal map 7, see the second diagram (note
that ¢ = @F on by the diagram above). Hence we obtain the dashed morphism via diagonal
fill-in, witnessing that L C K.

3

Lan(L) K
A
Lan(L)J/ ,’/
coim ¢ 3///
Lan(V}*) / Lan(L)E
1 iE
— n
[Llan() I |
1 l ¥ KE +—— L wE
kcank IL
im YE
Lan(V;)* v N
L aH’;< 1) Ve E
Vg =— 1 «——

Proof of Proposition 7.5

» Remark A.29. The left Kan extension LangP: F — Set of a presheaf P: I — Set along
E: 1< F is computed as follows, see e.g. [24, Thm. X.3.1]:
For S C¢ A the set Lang P(S) is the colimit of the diagram

Ds: ELS — Set, (p: ET — S) — PT.

Here E|S is the comma category whose objects are maps p: BT — S in F where T' Cf A
and whose morphisms from p to p’': ET' — S are maps 7: T — T’ in I such that
p = p' o ET. For an even more explicit description of LangP(S) consider the set of all
pairs (x, p) where p: ET — S for some T' C¢ A and € PT, and for any two such pairs
put (z,p) ~ (2, p’) iff there exists a ziz-zag

T=T) T &Ty— - Ty, =T

in T and elements x; € PT; (i =0,...,n) such that g = x, xo, = ', P1;(x;—1) = x; for i
odd, and Pr;(z;) = x;—1 for i > 0 even. Then ~ is an equivalence relation, and Lang P(.S)
is the set of equivalence classes [z, p] of ~. The colimit injection ¢,: PT — LangP(S)
associated to p € F|.S maps z € PT to [z, p].

For o: S — S’ in F, the map LangP(0): LangP(S) — Lang P(S’) sends [z, p] to [z, 0 0p].
For a morphism f: P — P’ in Set!, the component of Langf: LangP — LangP’ at
S Cr A is given by [z, p] — [fr(z), p| where p: ET — S and = € PT.

Let A= (Q,V,6,1, F) be a nondeterministic Set'-automaton with a strong presheaf Q
of states. We put Lan = Lang and A = Lan A, that is,

A= (LanQ7VFagaj7F),

where § = Land, [ = LanI and F = Lan F are obtained via the image factorizations of
Proposition 6.10. Our task is to show that A accepts the language L(A), that is, L(™" (A) =

L(A)(n) for all n > 0. We shall only treat the case n > 0; the argument for n = 0 is similar.
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The universal property of the pullback AccRun™

Step 1. a

making the diagram below commute:

yields a unique morphism ¢

Land, a

Lan(AccRun{™) Lan ™

e @)
AccRunZ

Lanmm{™

o f

Ix(VexLan@Q)" ! x Ve x F LN (Lan@ x V& x Lan Q)"

n
Lanmy

Lanmyx (id x A)" ! xid xLanmp

ez x(id x id)™" ! xid XGFT

Lan] x (LanVj x Lan@Q)""! x LanV§ x Lan F’

can™

can

Land, a

Lan(I x (Vi x Q)" ' x Vi x F) Lan(Q x Vi x Q)"
Step 2. We will show below that ¢ is a (strong) epimorphism. With this we can conclude
the proof as follows. Consider the diagram below, where p is the projection. The part marked
(%) commutes because the outside and all other parts commute either by definition or by
naturality. By definition, (A)(n) is the image of the morphism can o Lan m(LT?A) appearing

on the left-hand side of the diagram. Since Lane, 4 is an epimorphism (using that the left

adjoint Lan preserves epimorphisms), the morphism can o Lan mén()A)

image, and by commutativity of (x) and because € is an epimorphism, this image is precisely

olane, 4 has the same

(n)

: LOV(A) — V. Hence L(V(A) = L(A) "

mp as subobjects of V", as required.
~—— Lan(L(™(A)) Lanen.a Lan(AccRunff)) ~
(%) IE
(n)( 7 €A (n)
L™ (A) AccRun;
m ™ —(n)
L(Zl lmz
Lanm{[0,) v Ix(VexLanQ)" 1 x Vpx F Lanmm "
‘ Te} x(id x id)™ " xid xeg;
(LanVi)" +—2— Lanl x (Lan Vi x Lan Q)1 x LanVj x Lan F°
canT Tcan
s Lan(V) mLL Lan(I x Vix Q x Vi x F) +—
Step 3. It remains to prove the above claim that ¢ is an epimorphism, i.e. each component

€s: Lan(AccRunEf))S — AccRun(;)S (SCrA)

is surjective. We first give an explicit description of €g using Remark A.29. For each
T C¢ A the set AccRunE:)T consists of all T-supported runs of A, that is, all triples
(po,a1,p1,--.,an,pn) where pg € IT, p, € FT, and (py—1,ar,p;) € 6T for r = 1,...,n.
Then the map eg is given by

(0, 01,41, an,qn),p] +—  ([q0,p), p(ar), [q1,pl,- -, p(an), [an, p)),

for all p: ET — S in F and (qo,a1,41,---,0n,qn) € AccRun%)T.
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To prove g surjective, regard the pullback AccRun%)S as a subset of ((Lan@)S x VS x
(Lan Q)S)™, see Definition 6.6. Then every element of AccRun%n)S is a tuple of the form
([0, p1], pr(ar), lav, pul, a1, p2ls p2(a2), (a2, p2l. - - - [@n—1, Pul, Pr(an); [4n, pu]) (A.8)

where [qo, p1] € (Lan1)S, [gn, pn] € (Lan F)S, [(¢._1,ar,qr), pr] € (Land)S for r =1,...,n
(putting ¢} := qo), and [¢r, pr] = [¢)., pr41] for r = 1,...,n — 1. We will show that we can

choose the representatives such that ¢, = ¢/. forr =1,...,n—1and p; =--- = p, =: p. Then
(g0, @1, q1, -+ Qnsqn) € AccRunXl) and thus eg maps [(qo, @1, 41, - - -, Gn, qn), p] to (A.8).
Suppose that we already have ¢, = ¢/ for r =0,...,m —1and p; = -+ = p,, =: p for

some m < n. We show that we can modify ¢, ¢m+1, p and pp,41 in such a way that this

property also holds after m + 1 steps. This is achieved by suitable choice of permutations and

fresh names, much like in the proof of Proposition 2.8. Recall that we assume the presheaf

Q@ to be strong, that is, Q = ]_[].EJH(SJ-7 —) for some finite set J and S; Cr A.

1. Let p: T — S and pmi1: Tinp1 — S. Since [gm, p] = [@),, pm+1] in Lan @, the states
dm, 4, must belong to the same summand of @, that is, ¢, € I(S;,T) and ¢, €
I(S;j, T41) for some j € J. Let T + T, 41 denote the disjoint union of T" and T},+1 with
injections inl,inr. Then we have the following zig-zag in F|S"

S

P Pm+1
[o;pm+1]
Einl Einr

ET — B BT+ Tpp) «—E" = BT,y

Hence, by replacing T and T),4+1 with T 4 T}, 41, we may assume that 7' = T}, 11.
2. Since G, ¢,,,: S; — T are injective maps, there exists a bijection 7: T' — T such that
gm = T 0 ql,,, witnessing that

(@ @mt1s Gm1)s Pmtt) = (@ T(Qmsg1)s T O Gus1)s Prg1 © 7r_1] in Land,

in particular [¢),, pm+1] = [@m, pm+1 0 7 1] in Lan Q. Therefore, after replacing p,,+1 by
pm+10m 1+ and ¢, by ¢m, we may assume that g, = q,,.
3. Finally, we consider the following zig-zag in F|S:

S
/ TMN
Einl E( E.

ET — " BT +T) «—2 = FET

where ¢: T — T + T is the injective map sending every element a € ¢,,[S;] C T to inl(a),
and every other element of T" to inr(a). Note that inl og,, = to¢,, and that the right-hand

triangle commutes: since [gm, p] = [Gm, Pm+1] We have p 0 ¢ = pPmt1 © Gm, hence the
maps p, pm+1: ET — S agree on ¢,,[S;] C T. Therefore, after replacing p and pp,4+1 with
[P, Pmt1], Q05 1, - -+, @m Dy inlogo, ... inlogy = ¢ 0 gm, gmi1 By t(¢m+1) and a by i(a),

we can assume that p = pp,41.

This concludes the proof of Proposition 7.5.

Proof of Theorem 7.7.1
» Remark A.30. For a presheaf automaton A = (Q,Ve,d,1,F) in Set?, ¢ € {L,F}, we
write ¢ % q if (q,a,q") € 6S for S Cf A. The accepted word language W(L(A)) is the set

of all a;...a, € A* for which there exists an accepting run, i.e. a sequence of transitions
qo%)ql ?%qn where S C¢ A, qo € IS and ¢, € FS.
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» Remark A.31. We recall the left adjoint I*: Set' — Nom of I,, a.k.a. the sheafification
functor [30, Lem. 6.7]. For each P € Set', the nominal set I* P is defined as follows:
The underlying set of I* P is the colimit of the directed diagram

Dp:Ic — 1 -5 Set,

where Ic is the poset of finite subsets of A, i.e. the restriction of I to inclusion maps

igr: S i) T for S C T C¢ A. More explicitly, elements of I*P are equivalence classes
[S, x] for the equivalence relation on [[gc 4 PS = {(S,z): S5 Cf A, x € PS} given by

(S,x) ~ (5, 2") if 3ITDS,5. Pisr(zx) = Pigq(2)).
The group action on I*P is given by
7 - [S, 2] = [x[S], Pr|s(x)] for # € Perm(A) and [S,z] € " P,
with 7|g: S — 7[S] denoting the domain-codomain restriction of w: A — A.

Since directed colimits in Set commute with finite limits, the left adjoint I* preserves
finite limits, in particular products and monomorphisms. In fact, this property holds in
general for sheafification functors [25, Thm. IIL.5.1].

One direction of Theorem 7.7.1 is established by the following lemma. Recall the embedding
I,: Nom — Set' (Section 5) and its lifting I, : NAutg,(Nom) — NAut,(Set') from (6.2).

» Lemma A.32. Every NOFA A is word-language equivalent to the Set'-automaton I, A.

Proof. By definition of I, every accepting run

ay az An

qo q1 e In (A.9)

of the NOFA A yields the accepting run

ai az Qn,
— g — o — A.10
q0 5 q1 S N qn ( )
of the presheaf automaton I, A, where S C¢ A is any set of names containing a1, ..., a, and

supporting qo, . .., ¢,. Conversely, every accepting run (A.10) of I, A yields the accepting
run (A.9) of A. <

Similarly, for the reverse direction we use the lifting I" : NAutg,(Set!) = NAute,(Nom).

» Lemma A.33. Every super-finitary nondeterministic Set'-automaton A is word-language
equivalent to the NOFA I'A.

Proof. The inclusion W (L(A)) C L(I"A) holds because every accepting run
aiy az An
WP
of A yields the accepting run
(S, q0] 2 [S, q1] 2 --- 225 [S, qa]

of I"A. For the proof of L(I"A) C W(L(A)), suppose that a; - --a, € L(I"A). By definition
of f*A, an accepting run of a; - - - a, then has the form

as

[Slaqo] 'H‘l—% [S17q1] = [S27q/1] 'a2—_> [52,(]2] = [537ql2} —

an—1

[Sn—17Qn—1] = [Sn7Q;L—1] s [Sru(Jn]
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where ¢/._, :—> qr in A (putting ¢} := qo) for r = 1,...,n, and [S1, qo] = [S1,7,] for some

S1 Cs A and gy € ISy, and [S,,, q,] = [Sn,q,] for some S,, C¢ A and g,, € F'S,,. Replacing
the sets S1,...,S8,, 51,5, by their union we can assume that S; =---S, =5, =5, =: S.
Since [5, ¢;] = [S,q}.] we know that there exists T, 2 S such that Pigr(q,) = Pisr(q.).
Similarly, we have sets T, T,, 2 S witnessing that [S, q] = [S,q,] and [S,qn] = [5,7,]-

Taking the union again, we can assume that T} = --- T, = Ty = T,, =: T. Hence, after

replacing q1, ..., qn,qg, 4, by Pisr(q1),... Pisr(gn), Pisr(Gy), Pisr(q,) we can assume
that ¢, = ¢, for r=1,...,nand gy =qo € IT and ¢, =7, € FT. We conclude that

Qn

L I . T . N, =q ;=
do pa G =q T q2 = Q2 T n—1 = qp—1 T an
is an accepting run of A, proving L(I"A) C W (L(A)). <

Proof of Theorem 7.7.2

One may argue analogously to Theorem 7.7.1, replacing Set’ by Set” and NOFA by NOFRA
(which are equivalent to NOFA for positive word languages by Theorem 2.9). We give an
alternative argument that relates Set'- and Set"-automata in a more direct manner. By
Theorem 7.7.1 it suffices to prove the following two lemmas.

» Lemma A.34. Every super-finitary nondeterministic Set” -automaton A accepts a positive
word language and is word-language equivalent to the super-finitary nondeterministic Set'-
automaton E"A.

Proof. Let A be a super-finitary nondeterministic Set™-automaton. We first prove that
W(L(A)) is a positive word language. Given a; ---a, € W(L(A)) and a renaming p: A — A,
choose S C¢ A such that ay---a, € L(A)(S). Then p(ay)---p(a,) € L(A)(p[S]) because
L(A) C V¢ is a sub-presheaf. Hence p(aq)--- p(a,) € W(L(A)), so W(L(A)) is positive.
Since E*: Set" — Set! is just a forgetful functor, clearly A is word-language equivalent
to the Set'-automaton E”A: both automata have the same accepting runs. |

» Remark A.35. For every presheaf language L C V;*, the positive closure L C Vi is given
at S Cf A by

L(S) = {p*(w) :w € L(T) and p € F(T, S) for some T C¢ A }.

Indeed, this language clearly satisfies the universal property of Definition 7.2. In particular,
if W(L) is a positive word language, then W (L) = W (L).

» Lemma A.36. Every super-finitary nondeterministic Set'-automaton A accepting a posit-
we word language is word-language equivalent to the super-finitary nondeterministic Setf-
automaton LangA.

Proof. Let A be a super-finitary nondeterministic Set'-automaton such that W(L(A)) is
a positive word language. Assuming w.l.o.g. that A has a strong presheaf of states, by
Proposition 7.5 the automaton LangA accepts the positive closure L(A) of L(A), and
Remark A.35 shows that W(L(A)) = W(L(A)). Hence A and LanpA are word-language

equivalent. <
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