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Abstract. We study guarantees for safe communication in systems of
systems composed of reactive components that communicate through
synchronised execution of common actions. Systems are modelled as
(extended) team automata, in which, in principle, any number of com-
ponent automata can participate in the execution of a communicating
action, either as a sender or as a receiver. We extend team automata
with synchronisation type speci�cations, which determine speci�c syn-
chronisation policies �ne-tuned for particular application domains. On
the other hand, synchronisation type speci�cations generate communi-
cation requirements for receptiveness and responsiveness. We propose a
new, liberal version of requirement satisfaction which allows teams to ex-
ecute arbitrary intermediate actions before being ready for the required
communication, which is important in practice. Then we turn to the com-
position of systems and show that composition behaves well with respect
to synchronisation type speci�cations. As a central result, we investigate
criteria that ensure the preservation of local communication properties
when (extended) team automata are composed. This is particularly chal-
lenging in the context of weak requirement satisfaction.

1 Introduction

We study guarantees for safe communication in systems of systems of intercon-
nected, reactive components that communicate through synchronised execution
of shared actions. We focus on the prevention of output actions from not being
accepted (i.e. no message loss) and input actions from not being provided (i.e. no
inde�nite waiting). The lack of safe communication in modular system models
may reveal design problems before implementation. To guarantee safe commu-
nication in such models, a characterisation for compatibility of two component
interactions free from message loss and inde�nite waiting was given in [15] and
lifted to n-ary interactions in multi-component systems in [16]. Both approaches
support compatibility for synchronous communication. A �rst exploration on
how to generalise compatibility notions to arbitrary synchronisation policies was
performed in [7] in the framework of team automata.

Team automata [8, 23] are a transition system model for systems of reactive
components di�erentiating input (passive), output (active), and internal (pri-
vately active) actions, in the line of I/O automata [19,29], interface automata [20,
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21], component-interaction automata [14], modal I/O automata [27], and con-
tract automata [3,4]. The distinguishing feature of team automata is their very
loose nature of synchronisation according to which, in principle, any number of
component automata can participate in the synchronised execution of a shared
communicating action, either as a sender or as a receiver. Team automata can
determine speci�c synchronisation policies de�ning when and which actions are
executed and by how many components.

Conditions for safe communication in terms of receptiveness and responsive-
ness were considered in [2,12,18,22] for (web) services and in [6,7,10,16] for team
automata. Output actions not accepted as input by some component are consid-
ered as message loss or as unspeci�ed receptions [13, 22]. If any (autonomously
chosen) output action is accepted, we call this receptiveness [7]. Orthogonally, we
recognise inde�nite waiting for input to be received in the form of an appropriate
output action provided by another component [15]. Since input relies on external
choice, it is su�cient if only one of the enabled input actions is responded to (by
other components), which we call responsiveness [6].

In [6], a representative set of synchronisation types was de�ned to classify
synchronisation policies (e.g., binary communication, multi-cast communication,
full synchronisation) realisable in team automata in terms of ranges for the num-
ber of sender and receiver components that can participate in a system commu-
nication. Moreover, a generic procedure was provided to derive requirements
for receptiveness and responsiveness for each synchronisation type. Communica-
tion safety of team automata was expressed in terms of their compliance with
receptiveness and responsiveness requirements. A team automaton is said to
be compliant with a given set of communication requirements if in each reach-
able state of the team the desired communications can immediately occur; if
the communication can eventually occur after some internal actions have been
performed, it is said to be weakly compliant (à la weak compatibility [5, 25]).

In the short paper contribution [10], we brie�y reviewed our previous ap-
proach from [6] and we identi�ed some limitations leading to issues for future
research. A �rst issue was that the assignment of a single synchronisation type
to a team, as in [6], is too restrictive and that we need to �ne tune the number of
synchronising sending and receiving components per action. For this purpose we
introduce, in the current paper, synchronisation type speci�cations which assign
a synchronisation type individually to each communicating action. Such speci-
�cations uniquely determine a team formalised by an extended notion of team
automaton (ETA). On the other hand, any synchronisation type speci�cation
generates communication requirements to be satis�ed by the team.

A second issue was that we realised that even the weak compliance notion
proposed in [6] is too restrictive for practical applications. In the current paper,
we overcome this problem by introducing a much more liberal compliance notion:
if a group J of components has issued a communication request, then we allow
the team to execute arbitrary other actions, not limited to internal ones, before
being ready for the required communication (with the components in J ). This
leads to a powerful compliance notion not studied before (as far as we know).
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This apparently simple generalisation has a signi�cant consequence: among the
`arbitrary other actions' there may be output or input actions open to the en-
vironment. This is a potentially dangerous situation, since in this case local
communication properties can be violated after composition with other teams.

This leads us to the third, perhaps most important, contribution of the cur-
rent paper. We consider composition of systems and of teams. First, we show
that composition behaves well with synchronisation types (Theorem 1). Then
we investigate conditions under which communication properties are preserved
by ETA composition. The principle idea is that for this it should be su�cient to
consider interface actions and to check (global) compliance conditions for them.
We formulate appropriate conditions, �rst for the case of (strong) receptiveness
and responsiveness (Theorem 2) and then for the weak variant of the two, solving
the problem sketched above (Theorem 3). An intuitive running example guides
the reader through the paper.

Outline After introducing extended team automata (ETA) in Section 2, we
consider synchronisation type speci�cations and ETA determined by them in
Section 3. (Weak) compliance of ETA with communication requirements and safe
communication are treated in Section 4. In Section 5, we de�ne the composition
of systems and of teams, and we show that this works well with synchronisation
type speci�cations. In Section 6, we provide our main compositionality results.
Full proofs and some insightful counterexamples of the results presented in the
latter two sections can be found in [9]. After discussing related work in Section 7,
we conclude the paper in Section 8.

2 Background and Extended Team Automata

In this section, we summarise the basic notions concerning team automata and
introduce extended team automata. In contrast to the `classical' team automata
from [8, 23] and subsequent papers, extended team automata use system la-
bels which, in addition to the executed action, specify the team members that
participate in a synchronisation on an action. We start with some technical pre-
liminaries concerning labelled transition systems which will be reused for the
de�nitions of (local) component automata and (global) team automata.

A labelled transition system (LTS for short) is a quadruple L = (Q,Σ, δ, I)
consisting of a set Q of states, a set Σ of actions such that Q ∩ Σ = ∅, a
transition relation δ ⊆ Q×Σ ×Q and a nonempty set I ⊆ Q of initial states.

For an action a∈Σ, δa = δ∩ (Q×{a}×Q) denotes the set of a-transitions of

L. Instead of (p, a, p′)∈δ we may write p
a−→L p′. Action a is enabled in L at state

p∈Q, denoted by a enL p, if there exists p′ ∈Q such that p
a−→L p′. For Γ ⊆Σ,

we write p
Γ−→∗L p′ if there exist p0

a1−→L p1, . . . , pj−1
aj−→L pj for some j ≥ 0,

with p0, . . . , pj ∈ Q, a1, . . . , aj ∈Γ , p=p0, and p′=pj . A state p∈Q is reachable

if p0
Σ−→∗L p for some p0∈I. The set of reachable states of L is denoted by R(L).
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Component automata are LTSs with an additional distinction between input
and output actions.4 They form the basic building block of systems.

De�nition 1 (Component automaton). A component automaton (CA for
short) is an LTS A = (Q,Σ, δ, I) such that Σ is the union of two disjoint sets
Σinp and Σout of input and output actions, respectively.

In �gures, we emphasise the role of actions by adding su�x ? to input actions
and ! to output actions.

Systems A system is a pair S = (N , (Ai)i∈N ), where N is a �nite, non-
empty set of component names and (Ai)i∈N is an N -indexed family of CA
Ai = (Qi, Σi, δi, Ii) with actions Σi = Σi,inp∪Σi,out. The state space of S is given
by the Cartesian product Q =

∏
i∈N Qi. Hence a global system state is an N -

indexed family q = (qi)i∈N of local component states qi ∈ Qi. The initial states
of S are given by the product I =

∏
i∈N Ii. If ∅ 6= N ′ ⊆ N and q = (qi)i∈N is

a system state, the projection of q to N ′ is de�ned by projN ′(q) = (qi)i∈N ′ .
We refer to Σ =

⋃
i∈N Σi as the set of actions of S.5 Within Σ, we identify

Σcom =
⋃
i∈N Σi,inp ∩

⋃
i∈N Σi,out as the set of communicating actions in S.

Hence, an action of S is communicating in S if it occurs in (at least) one of its
CA as an input action and in (at least) one of its CA as an output action.

For an action a ∈ Σ, we let doma,inp(S) = { i | a ∈ Σi,inp } be its input
domain (in S) and doma,out(S) = { i | a ∈ Σi,out } its output domain (in S).
Hence a communicating action of S is such that both its output and input
domain in S are not empty.

Notation. Up to and including Section 4, we �x N and S as above.

Example 1. Consider a distributed chat system, where buddies can interact once
registered. For now, we consider two types of components: clients and servers,
depicted in Fig. 1 (left and middle, respectively). The arbiter will join only later
when we discuss system compositions. A server controls entries into the chat and
exits from the chat, and coordinates the main activity: forwarding client messages
to the chat. The communicating actions are partitioned into chat access actions
(join, leave, con�rmJ , con�rmL) and chat messaging (msg , fwdmsg). The non-
communicating actions are currently ask , grant , and reject . Let us assume a chat
system Schat consisting of two clients A1 and A2 and one server A3. Its state
space consists of tuples (p, q, r) with client states p and q and server state r.

We use extended labels as envisioned in [14] for multi component-interaction
automata, to indicate explicitly which components are actively participating in

4 In general, and in the classical team automata approach, a component automaton
can also have a distinguished set of internal actions. Since internal actions are not
really relevant for the scope of this paper, we omit them for the sake of simplicity.

5 If component automata were equipped with internal actions, then a syntactic com-
posability constraint would have to be applied to S requiring that each internal
action of a component automaton is unique to that component automaton.
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Fig. 1: [from left to right] CA for clients, servers, and arbiters [adapted from [10]]

system transitions. In the vector team automata of [11], vectors of component
actions are used for this purpose, giving rise to a concurrent semantics.

De�nition 2 (System labels). Let a ∈ Σ. A system label for a (in S) is a
triple (out, a, inp) where out, inp ⊆ N are subsets of N such that out ∪ inp 6= ∅
and a ∈ Σi,out for all i ∈ out and a ∈ Σi,inp for all i ∈ inp. The set of system
labels for a in S is denoted by Λa(S), while Λ(S) =

⋃
a∈Σ Λa(S) denotes the set

of all system labels in S.

System labels provide an appropriate means to describe which components
in a system execute together a computation step, i.e. a system transition.

De�nition 3 (System transitions). A triple (q, σ, q′) ∈ Q × Λ(S) × Q with
system label σ = (out, a, inp) is a system transition on a (in S) if (q(i), a, q′(i)) ∈
δi for all i ∈ out ∪ inp and q(i) = q′(i) for all i ∈ N \ (out ∪ inp).

For a ∈ Σ, the set of all system transitions on a in S is denoted by Εa(S),
while Ε(S) =

⋃
a∈Σ Εa(S) denotes the set of all system transitions in S.

If t = (q, (out, a, inp), q′) ∈ Ε(S) then any CA Ai for which i ∈ out ∪ inp

is said to participate in t . If i ∈ out, then Ai is a sender in t , otherwise
it is a receiver. Since, by de�nition of system labels, out ∪ inp 6= ∅, at least
one CA is participating in any system transition in S. Moreover, all system
transitions in Εa(S) are combinations of existing a-transitions from the CA in
S and all possible combinations of a-transitions occur in Εa(S). The elements
of Εa(S) are also referred to as synchronisations on a, even when only one CA
participates. A synchronisation on a communicating action a in which a CA
where a is an output action and a CA where a is an input action participate,
is called a communication. Obviously, for a non-communicating action a ∈ Σ,
either out or inp is empty in any system transition on a.

Example 2. The system transitions Εmsg(Schat) of Schat from Example 1 in
which CA A3 participates are the following: ((2, 2, 0), (∅,msg , {A3}), (2, 2, 3)),
((2, 2, 0), ({A1},msg , {A3}), (2, 2, 3)), ((2, 2, 0), ({A2},msg , {A3}), (2, 2, 3)), and
((2, 2, 0), ({A1,A2},msg , {A3}), (2, 2, 3)). Using this notation, we thus express
whether A1 or A2 participates or not in a synchronisation and hence whether or
not a communication takes place. Note that not all system transitions are mean-
ingful in applications. For instance, ((2, 2, 0), ({A1,A2},msg , {A3}), (2, 2, 3)) ex-
presses that both clients join to send msg to the server. If we want to rule
out undesired synchronisations we must declare a subset of admissible system
transitions, which is the underlying idea of team automata.



6 M.H. ter Beek et al.

Extended Team Automata The CA combined in a system are meant to
collaborate (form a team) through the simultaneous execution of shared actions.
Such teams are formalised by our notion of extended team automaton. They
are labelled transition systems with set of states Q and set of initial states I.
Their transitions are always a subset ε of Ε(S) containing the admissible system
transitions. Such subset is called a synchronisation policy . From the software
engineering perspective, it is the task of the team designer to determine an
appropriate synchronisation policy for a given system of components. We use
the system labels (out, a, inp) in Λ(S) as the actions in team transitions. This is
the main di�erence with the classical team automata from [8,23] and subsequent
papers, where actions a ∈ Σ would have been used in team transitions. However,
to study communication properties and their compositionality, explicit rendering
of the CA that actually participate in a transition of the team seems useful.

De�nition 4 (Extended team automaton). An extended team automaton
(ETA for short) over S is an LTS E = (Q,Λ(S), ε, I), where ε ⊆ Ε(S) is a
synchronisation policy over S.

3 Synchronisation Type Speci�cations

In [6], we proposed synchronisation types to specify in a convenient, syntac-
tic way synchronisation policies. A synchronisation type (snd, rcv) determines
ranges for the number of senders and the number of receivers that may take
part in a communication. Both, the sending multiplicity snd and the receiving
multiplicity rcv are given by intervals. If snd = [o1, o2] (with 0 ≤ o1 ≤ o2) and
rcv = [i1, i2] (with 0 ≤ i1 ≤ i2) then at least o1 and at most o2 senders and at
least i1 and at most i2 receivers are allowed. While o1 and i1 are always natural
numbers, the upper delimiters o2 and i2 can also be given as ∗, which indicates
that no upper limit is imposed. On the other hand, at most one of the lower
delimiters o1 or i1 can be zero. In this case an output (respectively, input) of a
communicating action can be performed by components without a participating
receiver (respectively, sender).

Notable synchronisation types that can be de�ned include binary communi-
cation ([1, 1], [1, 1]) and multicast communication ([1, 1], [0, ∗]), in which exactly
one CA outputs a communicating action while arbitrarily many CA input that
action. We can also express full synchronisation on an action a by requiring
as a synchronisation type for a (snd, rcv) with snd = [doma,out,doma,out] and
rcv = [doma,inp, doma,inp].

For the following, recall that S = (N , (Ai)i∈N ) is a composable system with
state space Q, actions Σ and communicating actions Σcom. In [6], we considered
the situation where all synchronisations in S follow a single synchronisation
type used uniformly for all communicating actions of the system. In practice
it is, however, necessary to relax this interpretation and de�ne synchronisation
types individually for each communicating action of the system. This leads to
our new notion of synchronisation type speci�cation.
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De�nition 5 (Synchronisation type speci�cation). A synchronisation type
speci�cation over S is a mapping st which assigns to all communicating actions
a ∈ Σcom a synchronisation type st(a) = (sndst(a), rcvst(a)).

For the non-communicating actions in S no synchronisation type is provided
since this is only relevant when systems are composed; see Sections 5 and 6.
We will now discuss how a synchronisation policy, and hence an ETA, can be
deduced from a synchronisation type speci�cation.

Let (snd, rcv) be a synchronisation type with snd = [o1, o2] and rcv = [i1, i2].
A system transition (q, σ, q′) ∈ Q × Λ(S) × Q with σ = (out, a, inp) is of type
(snd, rcv) if o1 ≤ #out ≤ o2 and i1 ≤ #inp ≤ i2, assuming n ≤ ∗ for any n ∈ N.

Remark 1. Note that for typing system transitions we use in a crucial way the
information provided by system labels. If we had mere actions as transition labels
of communications, as in team automata, it would not be clear whether a CA
with a `self-loop' participates in a communication or not. Consider, for instance,
the system labels and transition from Example 2. In a team automaton over
Schat there could be a transition ((2, 2, 0),msg , (2, 2, 3)) in which it is not clear
whether one, two, or none of the clients participate, i.e. whether or not msg ! is
actually executed and by whom. In team automata, this is typically resolved by
implicitly assuming that a loop of a CA in a transition implies its execution, a
`maximal' interpretation of ambiguous participation.

Each synchronisation type speci�cation determines a unique synchronisation
policy and hence a unique ETA in the following way:

De�nition 6 (Typed synchronisation policy). Let st be a synchronisation
type speci�cation over S.

1. The synchronisation policy determined by st, denoted by ε(st), is de�ned by
ε(st)a = { t ∈ Εa(S) | t is of type st(a) } if a ∈ Σcom; and ε(st)a = Εa(S) if
a ∈ Σ \Σcom.

2. The ETA determined by st is E(st) = (Q,Λ(S), ε(st), I).

Note that for non-communicating actions a ∈ Σ \Σcom for which no synchro-
nisation type is speci�ed, ε(st) is `maximal' in the sense that we set ε(st)a =
Εa(S). This means that we allow all possible synchronisations in S. This is
in contrast with [6], where we allowed arbitrary subsets of Εa(S) rather than
equality. It is, however, needed to get the compositionality results later on.

Example 3. Consider global state (2, 0, 5) of the chat system Schat from Exam-
ples 1�2, where client A1 can (autonomously) decide to execute either its output
action leave or its output action msg . To enforce receptiveness, there must be
at least one other CA ready to execute either action as an input action. Server
A3 only has output action fwdmsg locally enabled. If we set stchat(fwdmsg) =
([1, 1], [0, ∗]) as synchronisation type for fwdmsg , then the server is allowed to
move to state 0 by executing its output action fwdmsg on its own (rather than
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in a communication) after which the server is ready to accept inputs as re-
quired. This synchronisation type is not suitable for the other actions, e.g.
a client should be prohibited to join without acceptance by the server, thus
stchat(join) = ([1, 1], [1, 1]) would be appropriate. Therefore, we de�ne a syn-
chronisation type speci�cation stchat over Schat such that stchat(fwdmsg) =
([1, 1], [0, ∗]) and stchat(a) = ([1, 1], [1, 1]) for all other communicating actions
of Schat . The ETA determined by stchat is Echat(stchat).

4 Communication Requirements and Compliance

The idea of communication-safety in team automata is as follows. At each reach-
able global state of a team, whenever a communicating action is enabled at the
local states of some components J in accordance with the synchronisation type
of that action, then all components in J can execute this action from their local
states as a communication within the team.

Communication-safety of ETA in a nutshell Before giving formal de�ni-
tions, let us explain in a nutshell how our approach works. Consider an ETA
E(st) and a communication action a with, for instance, synchronisation type
st(a) = ([1, 1], [1, ∗]). Let Ai be a component of the system for which a is an
output action and let q be a global state of E(st) such that a is enabled at the
local state q(i) of Ai. Then we wish that a can be received by at least one other
component in the team. We express this by a receptiveness requirement issued by
component Ai and written as rcp({i}, a)@q. If the ETA E(st) is compliant with
this requirement, it is guaranteed that in state q, component Ai can synchronise
with other components in the team taking a as input.

Note that in case Ai could also execute another output action b with the same
synchronisation type at state q(i), subject to the corresponding receptiveness re-
quirement, then the two requirements would be combined through a conjunction
to rcp({i}, a)@q ∧ rcp({i}, b)@q. The reason for this is that components con-
trol their output actions and thus can internally decide which action to be sent.
Hence, the choice of either of them should lead to a reception. The expression
rcp({i}, a)@q ∧ rcp({i}, b)@q is called a receptiveness requirement generated by
st. Indeed, the information in the synchronisation type ([1, 1], [1, ∗]) determines,
due to the lower bound 1 of the output multiplicity [1, 1], that already one com-
ponent can induce a receptiveness requirement. On the other hand, the receive
multiplicity [1, ∗] tells us that a communication is really needed for the output
of a. Indeed, if the receive multiplicity were [0, ∗], then there would be no recep-
tiveness requirement. If, however, the output multiplicity of a were [2, ∗], then
at least two components for which a is enabled in the current local states would
be needed to issue a valid receptiveness requirement of the form rcp(J , a)@q
with J determining the set of output components.

For input actions one could require responsiveness with the intuition that
enabled inputs should be served by appropriate outputs. Unlike output actions,
however, input actions are controlled by the environment, i.e. input choice is
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external. Guaranteeing that for a choice of enabled inputs, one of them is sup-
plied with an output of other components su�ces for the progress of a com-
ponent waiting for a signal. Hence, if component Aj enables input actions a
and b in its local state q(j), then the responsiveness requirements, denoted
by rsp({j}, a)@q and rsp({j}, b)@q would be combined with a disjunction to
rsp({j}, a)@q∨rsp({j}, b)@q, which is called a responsiveness requirement gen-
erated by st. Of course, also responsiveness requirements can be issued by several
components J instead of {j}.

In general, a team automaton E(st) over a system S is called receptive (re-
spectively, responsive) if it is compliant with all receptiveness requirements (re-
spectively, responsiveness requirements) generated by st at all reachable states
of E(st). It is communication-safe if it is receptive and responsive.

Weak compliance In [6], we relaxed compliance to allow the team to execute
some intermediate internal actions before being ready for the required commu-
nication. As anticipated in the introduction and in [10], in this paper we further
relax the notion of weak compliance from [6]: if a group J of components has
issued a communication request we allow the team to execute, without partic-
ipation of J , some arbitrary other actions before being ready for the required
communication. This is a very �exible interpretation of interaction compatibility
that, to the best of our knowledge, has not yet been studied in a similar way in
the literature, likely because the permission of intermediate actions is dangerous
for obtaining compositionality results. Its formal de�nition is given in Def. 9.

Formal de�nitions and examples In the remainder of this section, we pro-
vide the formal de�nitions of the concepts explained above, partly illustrated by
examples. The de�nitions of communication requirements and compliance are
taken from [6], the de�nition of weak compliance in this general form is new and
the proposal to derive communication requirements from synchronisation type
speci�cations is inspired by [6], but simpli�ed and at the same time generalised
to �t with synchronisation types per action.

We still assume given a composable system S = (N , (Ai)i∈N ) with state
space Q, actions Σ and communicating actions Σcom.

De�nition 7 (Communication requirements). Let a ∈ Σcom and q ∈ Q.
� Let ∅ 6= J ⊆ doma,out(S) be such that a enAj

q(j) for all j ∈ J . Then
rcp(J , a)@q is a receptiveness requirement for a at q.

� Let ∅ 6= J ⊆ doma,inp(S) be such that a enAj
q(j) for all j ∈ J . Then

rsp(J , a)@q is a responsiveness requirement for a at q.
� A communication requirement at q is either the trivial requirement true or

a receptiveness or responsiveness requirement at q or a conjunction or dis-
junction of communication requirements at q.

When all non-trivial atomic requirements occurring in a communication re-
quirement ϕ are receptiveness (respectively, responsiveness) requirements, we
also refer to ϕ as a receptiveness (respectively, responsiveness) requirement.
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De�nition 8 (Compliance). Let E be an ETA over S with synchronisation
policy ε. Then E is compliant with a communication requirement ϕ at q ∈ Q if
either q /∈ R(E) or ϕ = true, or one of the following holds:

1. ϕ = rcp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists out ⊇ J
and inp 6= ∅ such that q

(out,a,inp)−−−−−−−→E q′
2. ϕ = rsp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists out 6= ∅

and inp ⊇ J such that q
(out,a,inp)−−−−−−−→E q′

3. ϕ = ψ1 ∧ ψ2 and E is compliant with ψ1 at q and with ψ2 at q
4. ϕ = ψ1 ∨ ψ2 and E is compliant with ψ1 at q or with ψ2 at q

Note that when E is compliant with a requirement as in 1. and 2. above,
then the components J can communicate through a synchronisation on a at q
involving more CA from the output and input domains of a.

Recall that Λ(S) denotes the labels of E and let ΛJ (S), with J ⊆ N , denote
the set of labels in which CA from J participate, i.e. system labels (out, a, inp)
such that j ∈ out ∪ inp for some j ∈ J .

De�nition 9 (Weak compliance). Let E be an ETA over S with synchro-
nisation policy ε. Weak compliance is de�ned analogously to De�nition 8 but
replacing 1. and 2. by the following items:

1. ϕ = rcp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists p ∈ Q,
out ⊇ J and inp 6= ∅ such that q

Λ(S)\ΛJ (S)−−−−−−−−→∗E p
(out,a,inp)−−−−−−−→E q′

2. ϕ = rsp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists p ∈ Q,
inp ⊇ J and out 6= ∅ such that q

Λ(S)\ΛJ (S)−−−−−−−−→∗E p
(out,a,inp)−−−−−−−→E q′

Compliance trivially implies weak compliance. Note that we require that the
CA determined by J do not participate in the intermediate transitions. More-
over, it is possible that also CA not participating in the foreseen communication,
do participate in the intermediate actions that are needed to reach the global
team state where it can occur. This is a phenomenon known as `state-sharing'
(cf. [8, 24]). It allows CA to in�uence potential synchronisations through their
local states without participating in the actual transition.

Example 4. We continue Example 3. In global state (2, 0, 5),A2 is locally enabled
to execute its output action join. Recall that stchat(join) = ([1, 1], [1, 1]). Then
the receptiveness requirement for join at state (2, 0, 5) is rcp({A2}, join)@(2,0,5),
i.e. output action join of A2 must be received as input by at least one other CA.
The only CA with join as an input action is the server A3, but join is not en-
abled at its local state 5. However, in an ETA E over Schat where A3 can transit
from state 5 to state 0 by a communication with A1 (or even alone) the CA A3

would subsequently be ready to execute join in a communication with A2. Since
the intermediate move of the server to state 0 is allowed by our new notion of
weak compliance, this E is weakly compliant with the given requirement.
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As discussed above, the guidelines for when which choice of communication
requirements is suitable, must consider the synchronisation types of actions. Let
st be a synchronisation type speci�cation over S, q ∈ Q and a ∈ Σcom such that
st(a) = ([o1, o2], [i1, i2]).

A receptiveness requirement rcp(J , a)@q is valid for st(a) if o1≤|J |≤o2 and
i1 6=0. The receptiveness requirement for q generated by st is the conjunction6∧

{ rcp(J , a)@q | a ∈ Σcom, rcp(J , a)@q is valid for st(a) }

A responsiveness requirement rsp(J , a)@q is valid for st(a) if i1≤ |J |≤ i2,
o1 6=0 and, for each j∈J , q(j) is a state at which only input actions are enabled.7
The responsiveness requirement for q generated by st is the disjunction8∨

{ rsp(J , a)@q | a ∈ Σcom, rsp(J , a)@q is valid for st(a) }

In summary, each synchronisation type speci�cation st for a system S of
components determines a synchronisation policy, i.e. an ETA E(st), and gen-
erates at the same time communication requirements. Then E(st) is (weakly)
communication-safe if it is (weakly) compliant with all requirements. This means
that the components in S coordinated by the synchronisation policy determined
by st work properly together.

De�nition 10. Let E(st) be an ETA determined by a synchronisation type spec-
i�cation st. E(st) is (weakly) receptive (respectively, (weakly) responsive) if it
is (weakly) compliant at all q ∈ R(E(st)) with the receptiveness (respectively, re-
sponsiveness) requirement for q generated by st. E(st) is (weakly) communication-
safe if it is receptive and responsive.

Example 5. We continue Examples 1�4. Let stchat be the chat system's synchro-
nisation type speci�cation as de�ned in Example 3. Let Echat(stchat) be the ETA
determined by stchat . An example of a generated receptiveness requirement is
rcp({A1},msg)@(2, 0, 5)∧rcp({A1}, leave)@(2, 0, 5)∧rcp({A2}, join)@(2, 0, 5).
As explained in Example 4, Echat(stchat) is weakly compliant with the second
conjunct. It is also weakly compliant with the �rst conjunct as after moving on its
own to state 0, the server can receivemsg . Requirement rcp({A1},msg)@(2, 0, 3)
is more tricky, since in state 3 the server already received a msg from client
A1 who wants to send another msg . Due to the new weak compliance notion
this is ok, since the server can execute its non-communicating external actions
ask followed by, e.g., reject to return to state 0 where it can receive msg . An
example of a generated responsiveness requirement is rsp({A3}, join)@(0, 0, 0)∨
rsp({A3}, leave)@(0, 0, 0)∨rsp({A3},msg)@(0, 0, 0). Clearly, Echat(stchat) is only
compliant with the �rst disjunct since either client can provide the required out-
put action join. It is important to note that requirements generated from inputs

6 We use a conjunction here since outputs are autonomously decided by components.
7 Otherwise the component has already a receptiveness requirement for an output.
8 We use a disjunction here since inputs rely on external choice.



12 M.H. ter Beek et al.

rely on external choice of the environment and therefore it is su�cient if one
of the o�ered inputs is served, which is expressed by the disjunction. We could
only discuss here a few requirements, but a thorough analysis shows that indeed
Echat(stchat) is weakly receptive and weakly responsive.

5 Systems of Systems and ETA Compositions

In this section, we consider systems of systems and the composition of ETA given
for each individual system. This yields ETA over the combined global systems.
We also show how a global synchronisation type speci�cation can be constructed
from the local ones respecting the underlying local ETA composition.

Let n ≥ 1 and let, for k = 1, . . . , n, Sk = (Nk, (Ak,i)i∈Nk
) be a system

with (Ak,i)i∈Nk
an Nk-indexed family of CA Ak,i = (Qk,i, Σk,i, δk,i, Ik,i) where

Σk,i = Σk,i,inp ∪Σk,i,out. Hence, Σk =
⋃
i∈Nk

Σk,i is the set of actions in Sk and
Σk,com =

⋃
i∈Nk

Σk,i,inp ∩
⋃
i∈Nk

Σk,i,out is its set of communicating actions.
To compose the single systems we assume that communicating actions within

one system cannot be used to interact with other systems. So, we say that the
family of systems (Sk)k∈[n] is composable if for all k ∈ [n] and for all k 6= l ∈ [n],
Nk ∩ Nl = ∅ and Σk,com ∩ Σl = ∅. Hence, in a composable family of systems,
component names and communicating actions are unique to a system.

De�nition 11 (System composition). The composition of a composable fam-
ily (Sk)k∈[n] is the system

⊗
k∈[n] Sk = (

⋃
k∈[n]Nk, (Ak,i)(k,i)∈[n]×Nk

).

Notation. For the rest of the paper, we �x n ∈ N>0 and Sk for k ∈ [n], as above.
We moreover assume that (Sk)k∈[n] is composable and that S =

⊗
k∈[n] Sk with

state space Q and initial states I.

The set of actions of S is Σ =
⋃

(k,i)∈[n]×Nk
Σk,i =

⋃
k∈[n]Σk and the set of

communicating actions in S is

Σcom =
⋃

(k,i)∈[n]×Nk

Σk,i,inp ∩
⋃

(k,i)∈[n]×Nk

Σk,i,out

Obviously, Σcom contains the communicating actions Σk,com of each sub-
system Sk but also actions which occur as input action in a component of one
sub-system and as output action in a component of another sub-system. The
latter are called interface actions and de�ned by Σinf = Σcom \

⋃
k∈[n]Σk,com.

Example 6. We now add an arbiter to the chat system Schat from Examples 1�4
to regulate message forwarding by composing Schat with the singleton system
{A4}, depicted in Fig. 1 (right). The idea is that the server must ask the ar-
biter to grant or reject permission to forward a message. The two systems Schat
and {A4} form a composable family of systems; ask , grant , and reject are the
interface actions.
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Given the composable family of systems (Sk)k∈[n], we describe how to com-
pose an extended team automaton over S =

⊗
k∈[n] Sk from given ETA Ek =

(Qk, Λ(Sk), εk, Ik) over Sk, k ∈ [n].

An ETA obtained as a composition of (Ek)k∈[n] is an ETA over S. So it has
state space Q, set of initial states I, and set of actions Σ as de�ned above.
The essential part concerns the choice of the synchronisation policy ε for the
composed ETA. We proceed as follows to de�ne the system transitions of ε for
each a ∈ Σ:

1. For each non-communicating action a ∈ Σ \Σcom, we de�ne

εa = { (q, (out, a, in), q′) ∈ Εa(S) | for all k ∈ [n], s.t.Nk ∩ (out ∪ in) 6= ∅ :

(projNk
(q), (out ∩Nk, a, in ∩Nk), projNk

(q′)) ∈ εk,a }

Hence, εa is the set of all system transitions for a in S whose projections to
sub-systems Sk having action a belong to εk,a.

2. If a ∈ Σcom (a communicating action in S) we distinguish two cases:

(a) a ∈
⋃
k∈[n]Σk,com : Then, by composability, there is exactly one k ∈ K

such that a ∈ Σk,com and a is unique to Sk. Fix this k and de�ne

εa = { (q, (out, a, in), q′) ∈ Εa(S) |
(projNk

(q), (out, a, in), projNk
(q′)) ∈ εk,a }

Due to the uniqueness of a to Sk, εa is the set of all extensions of system
transitions in εk,a to the state space of S.

(b) a ∈ Σinf : Now a is an action shared as input and output action of
some components of S but not shared as an input and output action
of components in any sub-system Sk. Therefore it is the design choice
of the overall system architect to determine a set of system transitions
εa ⊆ Εa(S).

This procedure leads to a unique ETA once a set of system transitions is
provided for each interface action a ∈ Σinf .

De�nition 12 (Composition of ETA). Let for all k ∈ [n], Ek be an ETA
over Sk with εk its synchronisation policy. Let εinf ⊆

⋃
a∈Σinf

Εa(S) be a set of
system transitions in S for the interface actions from Σinf .

The extended team automata composition
⊗εinf

k∈[n] Ek of (Ek)k∈[n] w.r.t. εinf
is the ETA over S with synchronisation policy ε such that:

1. For all a ∈ Σ \Σcom, εa is de�ned as in item 1. above.

2. For all k ∈ [n] and a ∈ Σk,com, εa is de�ned as in item 2.(a) above.

3. For all a ∈ Σinf , εa = (εinf )a.

If n = 2 we write E1 ⊗εinf E2 for
⊗εinf

k∈[n] Ek.
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The next theorem shows the relationship between ETA composition and syn-
chronisation types. If a family of ETAs is given, each one determined by a certain
synchronisation type, then it is enough to specify synchronisation types for the
interface actions in order to get the composition of the ETAs as an ETA gener-
ated by a single synchronisation type.

Theorem 1. Let for all k ∈ [n], Ek(stk) be an ETA determined by synchroni-
sation type speci�cation stk and let stinf (a) be a synchronisation type for each
interface action a ∈ Σinf . Then

⊗εinf
k∈[n] Ek(stk) = E(st), where for all a ∈ Σinf ,

(εinf )a = { t ∈ Εa(S) | t is of type stinf (a) } and st is the synchronisation type
speci�cation over S, de�ned by:

1. st(a) = stk(a) for all k ∈ [n] and a ∈ Σk,com and

2. st(a) = stinf (a) for all a ∈ Σinf .

Proof. (sketch) The proof is straightforward using the (syntactic) composability
assumption for systems and the de�nition of ETA composition.

6 Compositionality of Communication Properties

We now study compositionality of communication properties. The issue here is
to investigate conditions under which communication properties are preserved
by ETA composition. The principle idea is that for this it should be su�cient to
consider interface actions and to check (global) compliance conditions for them.
We start by considering receptiveness and responsiveness.

Theorem 2. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
and a ∈ Σinf .

1. Assume that Ek(stk) is receptive for all k ∈ [n]. If, for all q ∈ R(E(st)) and
a ∈ Σinf , E(st) is compliant with all receptiveness requirements rcp(J , a)@q
that are valid for st(a) = stinf (a), then E(st) is receptive.

2. Assume that Ek(stk) is responsive for all k ∈ [n]. If, for all q ∈ R(E(st)) for
which the responsiveness requirement generated by st has the form∨

{ rsp(J, a)@q | a ∈ Σinf , rsp(J, a)@q is valid for st(a) = stinf (a) }9 (1)

E(st) is compliant with (1), then E(st) is responsive.

Proof. (sketch) The proof relies on the fact that projections projNk
(q) of globally

reachable states q ∈ R(E(st)) to a sub-system Sk are reachable in Ek(stk). Then
one can propagate communication properties concerning communicating actions
a ∈ Σk,com from Ek(stk) to E(st). For interface actions compliance of E(st) with
communication requirements is anyway assumed as a proof obligation.

9 Thus, (1) involves only responsiveness requirements concerning interface actions.
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The following corollary reformulates the second case in Theorem 2 to make it
symmetric to the �rst case. This yields, however, a strengthening of the condition
in the second case of Theorem 2 disregarding the fact that for responsiveness
requirements it is always su�cient if just one of the input alternatives is served.

Corollary 1. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
and a ∈ Σinf . Assume that Ek(stk) is responsive for all k ∈ [n]. If, for all q ∈
R(E(st)) and a ∈ Σinf , E(st) is compliant with all responsiveness requirements
rsp(J , a)@q that are valid for st(a) = stinf (a), then E(st) is responsive.

Next we consider compositionality of the weak notions of receptiveness and
responsiveness. The idea is to require weak compliance of the global team with
all communication requirements concerning interface actions and then to rely on
weak receptiveness (respectively, weak responsiveness) of the sub-teams. How
this works is demonstrated by the following example.

Example 7. Consider from Examples 1�6 the chat system Schat and the singleton
system {A4} consisting of the arbiter. From Example 3 we take the synchroni-
sation type speci�cation stchat for the chat system and the ETA Echat(stchat)
determined by stchat . Since {A4} has no communicating actions, there are no
synchronisation types and the ETA determined by the empty synchronisation
type speci�cation st∅ is Earbiter (st∅) which coincides with A4 but has system la-
bels (∅, ask , {A4}), ({A4}, grant ,∅), and ({A4}, reject ,∅) instead of ask , grant ,
and reject . The latter are the interface actions. For them we choose the synchro-
nisation type stinf (ask) = stinf (grant) = stinf (reject) = ([1, 1], [1, 1]).

Now consider the ETA composition Echat(stchat) ⊗ Earbiter (st∅) = E(st),
where st is de�ned by stchat and stinf as described in Theorem 1. To show how
weak receptiveness of Echat(stchat) (cf. Example 5) can be propagated to E(st), we
consider as an example the receptiveness requirement rcp({A1},msg)@(2, 0, 3, 0)
concerning the communicating action msg of Echat(stchat) at the global state
(2, 0, 3, 0) of E(st). In state 3 the server already received amsg from clientA1 who
wants to send another msg . The weak compliance of the sub-team Echat(stchat)
with rcp({A1},msg)@(2, 0, 3) has shown us (cf. Example 5) that in the scope
of Echat(stchat) the server can execute the interface action ask followed by, e.g.,
reject to return to state 0 where it can receive msg . The crucial point is now that
in the global scope of E(st) the server can communicate with the arbiter such
that server and arbiter together perform ask followed by, e.g., reject and thus
the server returns to state 0 where it can receive msg . Hence the compliance of
Echat(stchat) with rcp({A1},msg)@(2, 0, 3) is propagated to E(st).

The example shows that weak compliance of the overall ETA E(st) with
communication requirements concerning interface actions (ask and reject in the
example) is a crucial assumption needed for compositionality. But there is still
a subtle point to be taken into account as illustrated in the next example.

Example 8. Let A1, A2, and A3 be the following three component automata:

A1 : p0
a!−→ p1, p0

c?−→ p2 A2 : q0
b!−→ q1

a?−→ q2 A3 : r0
c!−→ r1

b?−→ r2
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Let system S1 consist of A1 and A2 and S2 be the system consisting only of A3.
The only communicating action in S1 is a, since b and c are interface actions.
Let E1(st1) be the ETA over S1 determined by st1(a) = ([1, 1], [1, 1]). There are
two receptiveness requirements generated by st1 which are rcp({A1}, a)@(p0, q0)
and rcp({A1}, a)@(p0, q1). Obviously, E1(st1) is weakly compliant with both. For
instance the �rst one is satis�ed by the system transitions

(p0, q0)
({A2},b,∅)−−−−−−−→E1(st1) (p0, q1)

({A1},a,{A2})−−−−−−−−−→E1(st1) (p1, q2)

The intermediate transition before accepting a executes interface action b.
Since S2 has no communicating actions, there are no synchronisation types

and the ETA determined by the empty synchronisation type speci�cation st∅
is E2(st∅) which coincides with A3 when actions are replaced by system labels.
Now we set stinf (b) = stinf (c) = ([1, 1], [1, 1]) and consider the ETA composition
E1(st1) ⊗ E2(st∅) = E(st). For interface action b we get receptiveness require-
ment rcp({A2}, b)@(p0, q0, r0) and for c we get rcp({A3}, c)@(p0, q0, r0). E(st)
is weakly compliant with the �rst one and compliant with the second one. So all
looks �ne. In the �rst case the weak compliance holds because of the transitions

(p0, q0, r0)
({A3},c,{A1})−−−−−−−−−→E(st) (p2, q0, r1)

({A2},b,{A3})−−−−−−−−−→E(st) (p2, q1, r2)

The subtle point is here that in the �rst transition A3 `calls back' to a component
in S1, namely A1, before satisfying the receptiveness requirement of A2. This
creates a kind of cycle which makes the overall team E(st) not weakly compliant
with rcp({A1}, a)@(p0, q0, r0). Indeed, if A1 wants to send a then A2 must �rst
send b to A3 which must �rst send c to A1. Hence the requirement of A1 to send b
is not satis�able in the overall team. Therefore we must exclude the possibility
of such `call backs' when checking weak compliance for interface actions. This is
taken into account in the conditions (a) and (b) of Theorem 3, where we consider
weak compliance without participation of components of the sub-system where
a requirement stems from.

The necessary assumptions discussed so far for obtaining compositionality
in the cases of weak receptiveness and weak responsiveness are summarised in
the following theorem. It additionally requires determinism of the sub-teams in
order to get a unique lifting of intermediate activities in sub-teams when weak
compliance is considered.

Theorem 3. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
such that stinf (a) = ([o1,#doma,out(S)], [i1,#doma,inp(S)]) with o1, i1 ∈ {0, 1}
for all a ∈ Σinf . Let each Ek(stk) be deterministic and weakly receptive (respec-
tively, weakly responsive).

Assume that E(st) is weakly compliant, for all a ∈ Σinf and q ∈ R(E(st)),
with all atomic communication requirements rcp(J , a)@q and rsp(J , a)@q that
are valid for stinf (a). Moreover, assume that if ∅ 6= J ⊆ Nk for some k ∈ [n],
then the weak compliance holds `without participation of components in Nk \J ',
i.e. we assume that:
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(a) rcp(J , a)@q holds since there exist p, q′ ∈ Q, out ⊇ J and ∅ ⊆ inp such

that out ∩Nk = J and q
Λ(S)\ΛNk

(S)
−−−−−−−−−→∗E(st) p

(out,a,inp)−−−−−−−→E(st) q′, and
(b) rsp(J , a)@q holds since there exist p, q′ ∈ Q, ∅ ⊆ out and inp ⊇ J such

that inp ∩Nk = J and q
Λ(S)\ΛNk

(S)
−−−−−−−−−→∗E(st) p

(out,a,inp)−−−−−−−→E(st) q′.

Then E(st) is weakly receptive (respectively, weakly responsive).

Proof. (sketch) For interface actions weak compliance of E(st) with communi-
cation requirements is anyway assumed as a proof obligation. For non-interface
actions we have to propagate communication properties concerning communi-
cating actions a ∈ Σk,com from a sub-team Ek(stk) to E(st). The tricky point
is here that the notion of weak compliance in a sub-team is so �exible that it
allows some intermediate actions before a desired output (respectively, input) is
accepted by the sub-team Ek(stk). In particular, the intermediate actions can be
interface actions. Then it must be guaranteed that those interface actions can
be executed as synchronisations in the overall team E(st) which is ensured by
conditions (a) and (b).

Example 9. Consider the ETA composition Echat(stchat)⊗ Earbiter (st∅) = E(st)
of Example 7. The ETA Echat(stchat) is deterministic, weakly receptive, and
weakly responsive (cf. Example 5) and so is, trivially, the ETA Earbiter (st∅).
Then for the interface actions ask , grant , and reject we obtain the receptive-
ness requirements rcp({A3}, ask)@(p, q, 3, 0), rcp({A4}, grant)@(p, q, 4, 1), and
rcp({A4}, reject)@(p, q, 4, 1) for any states p and q of the two clients such that
the given global state is reachable within E(st). Obviously, E(st) is (even) com-
pliant with these requirements. Hence condition (a) of Theorem 3 holds.

Now on the other hand, for the interface actions we obtain the responsiveness
requirements rcp({A3}, grant)@(p, q, 4, 1), rcp({A3}, reject)@(p, q, 4, 1), and
rcp({A4}, ask)@(p, q, r, 0) for any local states p, q, r such that the given global
state is reachable within E(st). Obviously, E(st) is (even) compliant with the
�rst two requirements and with the third requirement if r = 3. In all other pos-
sible cases for r, E(st) is weakly compliant with rcp({A4}, ask)@(p, q, r, 0). For
instance, in the initial state (0, 0, 0, 0) there is a path in E(st) without partici-
pation of the arbiter reaching state (2, 0, 3, 0) (where the server already received
a msg from client A1). Then the input ask of the arbiter can be served by the
server. Since this holds similarly in all other cases, condition (b) of Theorem 3
is satis�ed. Hence, as a consequence of Theorem 3, E(st) is weakly receptive and
weakly responsive.

7 Related Work

In the literature, compatibility notions are typically restricted to receptive-
ness requirements in system models with binary, synchronous commmunica-
tion [4, 25�28]. Our approach is generic, generating notions of communication
safety for various kinds of synchronisation types. Concerning receptiveness and
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synchronisation type st(a) = ([1, 1], [1, 1]) for all actions a, it subsumes, e.g.,
compatibility notions of [4, 15] and [20] (for closed systems), and, for a limited
weak case, those of [22] and [5].

We are aware of just a few approaches that consider notions of compatibil-
ity with respect to responsiveness. Both [15] and [22] consider system models
with synchronous composition. Notably, in [15] responsiveness is captured by
deadlock-freeness, while in [22] responsiveness is expressed as part of the de�-
nition of bidirectional complementarity compatibility. The latter, however, does
not support a choice of input actions like we do. Finally, [17] can express sending
constraints on partners in an asynchronous environment. It supports two kinds
of communication styles: client/server and peer-to-peer.

Synchronisation types constrain the number of components which can simul-
taneously execute a shared action. There are approaches which do not rely on
shared actions but specify possible interactions by determining which actions
may or must synchronise. This originates already in Winskel's synchronisation
algebras [31] providing an abstract model to specify di�erent synchronisation
styles for parallel composition. For describing system architectures BIP [1] pro-
poses interaction models using connectors for ports (actions) of components.
Typical architecture styles can be graphically represented [30]. Also composi-
tionality results are provided but the focus is not on the analysis of input and
output compatibilities.

8 Conclusion

We considered ETA, their speci�cation by synchronisation types, and their
(weak) compliance with communication requirements generated from synchro-
nisation type speci�cations. In this sense our approach is generic, generating
notions of communication safety for various kinds of synchronisation types. An
essential contribution concerns the composition of systems and of ETA, and
the investigation of criteria ensuring preservation of communication properties
by composition. Veri�cation of communication requirements in concrete cases
is still a tedious task, which should be supported by appropriate future tools.
Moreover, the validation of our approach on the basis of larger case studies is
a future goal. From a software engineering perspective we are also interested in
hierarchical designs where sub-teams are �rst encapsulated into CA by hiding
communicating actions to make analysis of larger systems feasible, e.g., by using
techniques of minimisation with respect to observational equivalence. Moreover,
to support reusability we could also add an explicit notion of system connector to
match actions of di�erent systems by renaming. A further desired extension con-
cerns the introduction of designated states in CA where execution can stop but
may also continue, in addition to states where progress is required. As sketched
in [10], their addition has signi�cant and useful consequences for the derivation
of communication requirements and compliance.
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