
Formal Development of Multi-Purpose Interactive
Application (MPIA) for ARINC 661

N. K. Singh1, Y. Aït-Ameur1, D. Méry2, D. Navarre3, P. Palanque3, and M. Pantel1

1 INPT-ENSEEIHT / IRIT, University of Toulouse, France
2 LORIA,Université de Lorraine & Telecom Nancy, Nancy, France

3 IRIT, Université de Toulouse, Toulouse, France
neeraj.singh@toulouse-inp.fr, yamine.aitameur@toulouse-inp.fr,
dominique.mery@loria.fr, navarre@irit.fr, palanque@irit.fr,

marc.pantel@toulouse-inp.fr

Abstract. This paper reports our experience for developing Human-Machine In-
terface (HMI) complying with ARINC 661 specification standard for interactive
cockpits applications using formal methods. This development is centered around
our modelling language FLUID, which is formally defined in the FORMEDI-
CIS4 project. FLUID contains essential features required for specifying HMI.
For developing Multi-Purpose Interactive Applications (MPIA), we follow the
following steps: an abstract model of MPIA is developed in the FLUID language;
the MPIA FLUID model is used to produce an Event-B model for checking the
functional behaviour, user interactions, safety properties, and interaction related
to domain properties; the Event-B model is also used to check temporal proper-
ties and possible scenario using the ProB model checker; and finally, the MPIA
FLUID model is translated to Interactive Cooperative Objects (ICO) using Pet-
Shop CASE tool to validate the dynamic behaviour, visual properties and task
analysis. These steps rely on different tools to check internal consistency along
with possible HMI properties. Finally, the formal development of MPIA case
study using FLUID and diving into other formal techniques, demonstrates relia-
bility, scalability and feasibility of our approach presented in the FORMEDICIS
project.

Keywords: Human-machine interface (HMI), formal method, refinement and proofs,
Event-B, PetShop, verification, validation, animation.

1 Introduction

Developing a human-machine interface (HMI) is a difficult and time-consuming task [22]
due to complex system characteristic and user requirements, which allows anticipat-
ing human behaviour, system components and operational environment. Moreover, the
designing principles of HMI are different from the traditional software development
process, including techniques and tools [29]. To consider every aspect of HMI develop-
ment process, from requirement analysis to implementation, in a single framework is a

4 https://w3.onera.fr/Formedicis/

2 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

challenging task. Since a long time, formal methods play an important role for analyz-
ing system interaction [5, 10, 11], and their use has been widely adopted in the current
development process of HMI. Yet, to our knowledge there is no standard approach that
can be used to formally develop and design a safety-critical HMI.

Our ongoing project, FORMEDICIS [14], aims to propose a suite that can be used
for developing and designing safety-critical HMIs. In this project, we develop a pivot
modelling language, FLUID, to specify HMI requirements using states, assumptions,
expectations, nominal and non nominal properties, and scenarios. Formal models can
be derived from the FLUID model for verification, validation, simulation and anima-
tion. The derived formal models use theorem provers and model checkers for analyzing
the different required functional properties, nominal and non nominal properties, and
scenarios. In our work, we use the Event-B [1] modelling language for producing an
abstract formal model and the PetShop CASE tool [27] for producing Interactive Co-
operative Objects (ICO) model [23]. The produced models are analyzed with specific
developed tools, for example, Rodin [2] is used for Event-B models, and PetShop for
ICO models. The analyzed models provide feedback to the original FLUID model to
obtain the final FLUID model. Note that the abstract Event-B model can be refined
to get a final concrete model to generate source code for Domain Specific Language
dedicated to HMI implementation (i.e., smala, djinn).

We propose to illustrate the FORMEDICIS approach applying it for the develop-
ment of a complex case study issued from aircraft cockpit design: MPIA (Multi-Purpose
Interactive Applications). First, we develop a FLUID model for MPIA and then we gen-
erate an Event-B model and an ICO model from the developed FLUID model. In this
development, we begin by specifying different components of MPIA, including func-
tional behaviour, states, assumptions, expectations, interactions, properties and scenar-
ios. The formal development of MPIA in Event-B preserves the required behaviour
in the developed model. In the generated model, we prove important properties, such
as functional behaviour, user interactions, safety properties, and interaction related do-
main properties. We use the ProB model checker tool [21] to analyze and validate the
developed models, and to check temporal properties and possible scenario for HMI.
In the ICO model, we provide the dynamic behaviour of MPIA. The developed ICO
specification fully describes the potential interactions that users may have with the ap-
plication. It covers both input and output aspects related to users. In the ICO formalism,
there are four components: a cooperative object which describes the behaviour of the
object, a presentation part, activation function and rendering function to link between
the cooperative object and the presentation part.

This paper is organized as follows. Section 2 presents the required background.
Section 3 describes the FLUID language. In Section 4, we describe our selected MPIA
case study. In section 5, we present a formal development of the case study in FLUID.
Section 6 and Section 7 present the formal developments of the FLUID model in Event-
B and PetShop, respectively. In Section 8, we provide an assessment of our work and
Section 9 presents related work. Finally, Section 10 concludes the paper with future
work.

Formal Development of MPIA for ARINC 661 3

2 Preliminaries

2.1 The Modelling Framework: Event-B

This section describes the modelling components of the Event-B language [1]. The
Event-B language contains two main components, context for describing the static prop-
erties of a system using carrier sets s, constants c, axioms A(s, c) and theorems Tc(s, c),
and machine for describing behavioural properties of a system using variables v, invari-
ants I(s, c, v), theorems Tm(s, c, v), variants V (s, c, v) and events evt. A context can
be extended by another context, a machine can be refined by another machine and a
machine can use sees relation to include other contexts.

An Event-B model is characterized by a list of state variables possibly modified by
a list of events. A set of invariants I(s, c, v) shows typing invariants and the required
safety properties that must be preserved by the defined system. A set of events presents
a state transition in which each event is composed of guard(s) G(s, c, v, x) and action(s)
v : |BA(s, c, v, x, v′). A guard is a predicate, built on state variables, for enabling the
event’s action(s). An action is a generalized substitution that describes the ways one or
several state variables are modified by the occurrence of an event.

The Event-B modelling language supports the correct by construction approach to
design an abstract model and a series of refined models for developing any large and
complex system. This refinement, introduced by the REFINES clause, transforms an ab-
stract model to a more concrete version by modifying the state description. The refine-
ment allows us to model a system gradually by introducing safety properties at various
refinement levels. New variables and new events may be introduced in a new refinement
level. These refinements preserve the relation between the refining model and its corre-
sponding refined concrete model, while introducing new events and variables to specify
more concrete behavior of a system. The defined abstract and concrete state variables
are linked by introducing the gluing invariants. The generated proof obligations ensure
that each abstract event is correctly refined by its concrete version.

Rodin [2] is an integrated development environment (IDE) for Event-B modelling
language based on Eclipse. It includes project management, stepwise model devel-
opment, proof assistance, model checking, animation and automatic code generation.
Once an Event-B model is modelled and syntactically checked on the Rodin platform
then a set of proof obligations (POs) is generated using the Rodin proof engine. Event-
B supports different kinds of proof obligations, such as invariant preservation, non-
deterministic action feasibility, guard strengthening in refinements, simulation, variant,
well-definedness etc. More details related to the modelling language and proof obliga-
tions can be found in [1].

2.2 ICO Notation and PetShop CASE Tool

This section recalls the main features of the Interactive Cooperative Objects (ICOs)
formalism that we use for the software modelling of interactive systems. The ICO for-
malism is a formal description technique dedicated to the specification of interactive
systems [23]. It uses concepts borrowed from the object-oriented approach (dynamic

4 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

instantiation, classification, encapsulation, inheritance, client/server relationship) to de-
scribe the structural or static aspects of systems, and uses high-level Petri nets to de-
scribe their dynamic or behavioural aspects.

ICOs are dedicated to the modelling and the implementation of event-driven inter-
faces, using several communicating objects to model the system, where both behavior
of objects and communication protocol between objects are described by the Petri net
dialect called Cooperative Objects (CO). In the ICO formalism, an object is an entity
featuring four components: a cooperative object which describes the behavior of the
object, a presentation part (i.e. the graphical interface), and two functions (the activa-
tion function and the rendering function) which make the link between the cooperative
object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the "input" aspects of the
interaction (i.e. how user actions impact on the inner state of the application, and which
actions are enabled at any given time) and its "output" aspects (i.e. when and how the
application displays information relevant to the user). These aspects are expressed by
means of the activation function (for input) and the rendering function (for output).
ICOs description do not integrate graphical rendering of information and objects. This
is usually delegated to Java code or to other description techniques such as UsiXML [9].
The ICO notation is fully supported by a CASE tool called PetShop [27]. All the models
presented in the next sections have been edited and simulated using PetShop. Some
formal analysis is also supported by the tool but limited to the underlying Petri net,
removing the specificities brought by the high-level Petri net model.

3 FLUID Language

The FLUID language5 is developed in the FORMEDICIS project. The FLUID language
is organized in three main parts to describe static, dynamic and requirements parts.
The static part defines type definition, constant, sets and the required features for in-
teractions. The dynamic part defines a state-transition system for describing interactive
system. The requirements part expresses the required behaviour, including user tasks
and scenarios. A FLUID model is an INTERACTION module which is composed of
six sections (see Fig. 1). Three sections, DECLARATION, ASSUMPTIONS and EX-
PECTATIONS, describe the static part of a model. The STATE and EVENT sections
describe the dynamic part of a model, and the REQUIREMENT section describes the
requirement part of a model. The DECLARATION section allows to define new typing
information that can be used to describe a HMI model.

The typing information may depend on generic and abstract types, such as sets,
constants, enumerated sets, and natural and integer numbers. The STATE section
declares a list of variables, which are classified as Input, Output, SysInput and
SysOutput. The interactions between system and user can be characterized by the
Input and Output variables while the interactions between system components can be
characterized by SysInput and SysOutput variables. Note that all these variables can
be tagged using domain knowledge concepts borrowed from an external knowledge.

Formal Development of MPIA for ARINC 661 5

Model using the @tag (i.e. Enabled,
Visible, Checked, Colors) to make ex-
plicit the HMI domain properties of
HMI components. The EVENT sec-
tion describes a set of events to present
a state transition in which each event
is composed of guard(s) and action(s).
All these events are also categorized
as acquisition, presentation and
internal events. Acquisition events
model acquisition operations of HMI
component by modifying the acqui-
sition state variables. Similarly, the
presentation events model presentation
operation by modifying the presenta-
tion state variables. The internal events
model internal operations by modify-
ing the internal state variables. These
classification of events allow to check
reactive properties, such as one stating
that every acquisition is immediately
followed by a presentation event or an
internal event. This section also con-
tains an INITIALISATION event to set
an initial value to each defined variable.

INTERACTION Component_Name
DECLARATION

SETS s
CONSTANT c

STATE
Input State Variables
Output State Variables
SysInput State Variables
SysOutput State Variables

v //A variable without @tag
v@tag //A variables with domain specific @tag

EVENTS
INIT

Acquisition Events
Presentation Events
Internal Events

Event evt@tag[x]
where
G(s, c, v, x, v@tag, x@tag)

then
v : |BA(s, c, v, x, v′, v@tag, x@tag, v′@tag)

end
ASSUMPTIONS

A(s, c)
EXPECTATIONS

Exp(s, c)
REQUIREMENTS

PROPERTIES
Prop(s, c, v, v@tag)

SCENARIOS
NOMINAL

SC(s, c, v, v@tag)
NON NOMINAL

NSC(s, c, v, v@tag)
END Component_Name

Fig. 1: FLUID Model structure
The ASSUMPTIONS section introduces the required assumptions related to envi-

ronment that includes the user and machine agents. These assumptions can be expressed
in form of logical properties to express HMI properties. The EXPECTATIONS section
describes prescriptive statements that are expected to be fulfilled by the parts of the
environment of an interactive system. Note that the assumptions and expectations can
be expressed in the same way, but both of them are different. The REQUIREMENTS
section is divided into two subsections, known as PROPERTIES and SCENARIOS.
The PROPERTIES section describes all the required properties of an interactive system
that must be preserved by a defined system. These properties can be expressed in logic
formulas. The SCENARIOS section describes both nominal and non-nominal scenar-
ios using algebraic expressions, like CTT [28], for analyzing possible acceptable and
non-acceptable interactions.

4 MPIA Case Study

ARINC 661 is a standard, designed by the Airlines Electronic Engineering Committee
(AEEC), for normalizing the definition of a Cockpit Display System (CDS) [6] and
it provides a guideline for developing the CDS independent from the aircraft systems.
The CDS provides graphical and interactive services to use applications within the flight

5 Deliverable D1.1a: Language specification Preliminary version

6 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

deck environment. It controls user-system interaction by integrating input devices, such
as keyboard and mouse.

We present the Multi-Purpose Interactive Application (MPIA) that complies with
ARINC 661 standard to demonstrate our formal modelling and verification approach
considering several software engineering concepts related to HMI. Fig. 2 depicts MPIA
which is a real User Application (UA) for handling several flight parameters. This ap-
plication contains a tabbed panel with three tabs, WXR for managing weather radar in-
formation, GCAS for Ground Collision Avoidance System parameters and AIRCOND
for dealing with air conditioning settings. A crew member is allowed to switch in any
mode (see Fig. 2) using tabs. These tabs have three different applications which can be
controlled by the pilot and the co-pilot using any input devices.

The MPIA window of any tab is composed of three main parts: information area,
workspace area and menu bar. The information area is the top bar of any tab that splits
in two parts for displaying the current state of the application on the left part and the er-
ror messages, actions in progress or bad manipulation when necessary on the right part.
The workspace area shows changes according to the selected interactive control panel.
For example, WXR workspace displays all the modifiable parameters of the weather
radar sensor, GCAS workspace shows some of the working modes of GCAS, and AIR-
COND workspace displays the selected temperature inside an aircraft. The menu bar
area contains three tabs for accessing the interactive control panels related to WXR,
GCAS and AIRCOND.

Fig. 2: Snapshots of the MPIA (from left to right: WXR, GCAS and AIRCOND)

5 Formal Development of MPIA in FLUID

We present a formal description of MPIA in FLUID. Due to space limitation, we show
only the FLUID model of weather radar information (WXR) and the other windows
widgets, such as GCAS and AIRCOND, of MPIA are developed in a similar way.
For modelling the HMI of WXR in FLUID, we define a set of enumerated datatypes
and a constant to represent system properties in DECLARATION clause. Three enu-
meration sets are: WXR_MODE_SELC_SET for modes, WXR_TILT_STAB_MSG for
messages, and WXR_ACTIONS for actions. A constant WXR_ANGL_RANG is de-
fined a range of tilt angle. In WXR model, we define several state variables in STATE
clause for representing Input, Output, SysInput and SysOutput states.

Formal Development of MPIA for ARINC 661 7

There are four variables to represent input or acquisition states and six variables to
represent output or presentation states. All these variables associated with tag informa-
tion (Input, Enabled, Visible, Checked, etc.) are defined with the given datatypes. Note
that the associated tags are defined in a HMI library, including types.

To model the functional inter-
active behaviour of WXR, we
define a set of events, including
an INIT event in the EVENT
clause. The INIT event only
sets initial value for each state
variable while the other events
are used to model possible
HMI behaviour (state changes).
In the INIT event, we show
initial state of an acquisition
variable (A_ModeSelection)
and a presentation variable
(P_checkMode), including tag
details. Other state variables
and their associated tags are
initialized in a similar way.

DECLARATION
// WXR Mode enumeration set
TYPE WXR_MODE_SELC_SET = enumeration (M_OFF, STDBY, TST, WXON, WXA)
// WXR Tilt and Stabilisation message enumeration set
TYPE WXR_TILT_STAB_MSG = enumeration (ON, OFF, AUTO, MANUAL)
// WXR Tilt angle range
CONSTANT WXR_ANGL_RANG = [-15 .. 15]
// WRX actions
TYPE WXR_ACTIONS = enumeration (TILT_CTRL, STAB_CTRL)

STATE Section
// Acquisition states
A_ModeSelection@{Input, Checked} : WXR_MODE_SELC_SET // Mode state
A_TiltSelection@{Input, Enabled} : WXR_TILT_SELC_SET // Tilt state
A_Stabilization@{Input, Enabled} : WXR_STAB_SELC_SET // Stabilization state
A_TiltAngle@{Input,Enabled} : WXR_ANGL_RANG // Tile angle state
. . .
// Presentation states
// Radio buttons presentation states
P_checkMode@{Output, Checked} : WXR_MODE_SELC_SET → BOOL
// CTRL tilt button presentation state
P_ctrlModeTilt_Button@{Output, Enabled} : WXR_ACTIONS
// CTRL tilt label presentation state
P_ctrlModeTilt_Label@{Output, Visible} : WXR_TILT_STAB_MSG
// CTRL stablization button presentation state
P_ctrlModeStab_Button@{Output, Enabled} : WXR_ACTIONS
// CTRL stablization label presentation state
P_ctrlModeStab_Label@{Output, Visible} : WXR_TILT_STAB_MSG
// Tilt angle value in the presentation state
P_TiltAngle@{Output, Enabled} : WXR_ANGL_RANG

The FLUID model contains 6 acquisition events in the acquisition clause, and 7
presentation events in the presentation clause. Here, we only show two acquisition
events (modeSelection and tiltCtrl) and one presentation event (checkMode) to
demonstrate the modelling concepts related to HMI. Note that the name of acquisition
event is followed by @Acquisition, and the name of presentation event is followed by
@Presentation. The semantics of FLUID language guarantee that an acquisition event
is always followed by the corresponding presentation event or internal event to express
an interaction behaviour composed of several atomic events related to input, output etc.

The event modeSelection is allowed to select any mode to the input or acquisition
state (A_ModeSelection) from the workspace area of WXR (see Fig. 2). Note that only
input variable and associated tag value are updated through event’s actions. Similarly,
the event tiltCtrl is used to select a possible action to the input or acquisition state
(A_TiltSelection). In this event, the actions are also used to update input variable,
including tag. The event checkMode presents the state changing behaviour of a widget
(radio) defined in the workspace area (see Fig. 2).

The guard of this event state that the selected widget option, acquired by the acquisi-
tion state (A_ModeSelection) should not be Checked. The action of this event shows
the selected option as TRUE and the other options as FALSE, and the associated tag
is updated as TRUE. Other events related to acquisition and presentation are modelled
in a similar way.

8 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

The REQUIREMENTS clause of FLUID
model contains a set of required prop-
erties, and nominal and non nominal
scenarios. In our model, we define 8
safety properties to check the correct-
ness of HMI model. The first safety prop-
erty (Prop_1) states that always a sin-
gle option is selected from the workspace
area (see Fig. 2). The second property
(Prop_2) states that the acquisition event
modeSelection is always followed by
the presentation event checkMode. Other
properties are defined to check the inter-
action behaviour of HMI components. We
define a nominal scenario SC_1 and a
non nominal NSC_1 which are started
by the INIT event that is followed by the
mode selection, tilt selection, stabilization
and tilt angle activities using interleav-
ing operator (||). Note that each activity
is composed of acquisition and presenta-
tion events in a sequential order (;). In ad-
dition, if there are more than one possi-
ble events of acquisition, or presentation
then we use optional operator [] to com-
pose them. To simulate these scenarios
iteratively, we use ∗ operator. Note that
the nominal scenario is realizable to show
possible HMI interactions, while the non
nominal scenario is not realizable and the
given scenario of HMI interaction is not
valid.

EVENTS Section
// Initialisation Event
INIT =
A_ModeSelection := OFF
A_ModeSelection@Checked := TRUE
. . .
// Only OFF mode is selected at initialisation
P_checkMode := {i 7→ j | i ∈ WXR_MODE_SELC_SET ∧
j = FALSE } ∪ { M_OFF 7→ TRUE }) \ {M_OFF 7→ FALSE}
P_checkMode@Checked := TRUE
. . .

// ACQUISITION Events
// Any mode is allowed to select from WXR to acquisition state
Event modeSelection@Acquisition =

ANY
mode

WHERE
mode : WXR_MODE_SELC_SET

THEN
A_ModeSelection := mode
A_ModeSelection@Checked := TRUE

END

// The tilt selection model : AUTO or MANUAL (to acquisition state).
// The CTRL push-button allows to swap between the two modes

Event tiltCtrl@Acquisition =
ANY
n_tilt

WHERE
n_tilt : WXR_ACTION ∧ n_stab = TILT_CTRL ∧
n_stab@Enabled = TRUE

THEN
A_TiltSelection := n_tilt
A_TiltSelection@Enabled := TRUE

END

Event stabCtrl@Acquisition = . . .
Event tiltAngle@Acquisition = . . .
Event tiltAngle_Greater_15@Acquisition = . . .
Event tiltAngle_Less_15@Acquisition = . . .

// PRESENTATION Events
// Presentation of radio button: Only selected mode will be checked as TRUE
Event checkMode@Presentation =

WHEN
A_ModeSelection@Checked = TRUE

THEN
P_checkMode := ({i 7→ j | i ∈ WXR_MODE_SELC_SET
∧ j = FALSE } ∪ { A_ModeSelection 7→ TRUE })\
{A_ModeSelection 7→ FALSE}
P_checkMode@checked := TRUE

END
Event ctrlModeTilt_Auto@Presentation = . . .
Event ctrlModeTilt_Manual@Presentation = . . .
Event ctrlModeStab_On@Presentation = . . .
Event ctrlModeStab_Off@Presentation = . . .
Event tiltAngle_True@Presentation = . . .
Event tiltAngle_False@Presentation = . . .

REQUIREMENTS Section
PROPERTIES
Prop1 :∀ m1,m2· m1∈ WXR_MODE_SELC_SET ∧ m2∈ WXR_MODE_SELC_SET ∧ m1 7→ TRUE ∈ prj1(prj1(P_checkMode)) ∧

m2 7→ TRUE ∈ prj1(prj1(P_checkMode)) ⇒ m1=m2
Prop2 :G(e(modeSelection@Acquisition) ⇒ X (e(checkMode@Presentation))))
Prop3 :(e(tiltAngle@Acquisition) ⇒ (e(tiltAngle_True) or e(tiltAngle_False@Presentation)))
Prop4 :{P_ctrlModeTilt_Label = (AUTO 7→Output)7→TRUE ⇒ P_ctrlModeStab_Label = (OFF 7→Output) 7→TRUE}
Prop5 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_ctrlModeStab_Label = (ON 7→Output)7→TRUE}
Prop6 :{P_ctrlModeTilt_Label = (AUTO 7→Output)7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL 7→Output)7→FALSE}
Prop7 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL 7→Output) 7→TRUE}
Prop8 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_TiltAngle = (10 7→Output)7→TRUE}

SCENARIOS
NOMINAL
SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)
|| (tiltCtrl@Acquisition; (ctrlModeTilt_Auto@Presentation [] ctrlModeTilt_Manual@Presentation))
|| (stabCtrl@Acquisition; (ctrlModeStab_On@Presentation [] ctrlModeStab_Off@Presentation))
|| (tiltAngle@Acquisition [] tiltAngle_Greater_15@Acquisition [] Evt_tiltAngle_Less_15@Acquisition);
(tiltAngle_True@Presentation [] Evt_tiltAngle_False@Presentation))∗

NON NOMINAL
SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)
|| (tiltCtrl@Acquisition; ctrlModeTilt_Auto@Presentation ; (stabCtrl@Acquisition[]tiltAngle@Acquisition)))∗

In this model, the SC_1 shows possible interactions of WXR HMI while the NSC_1
shows some of the impossible WXR HMI interactions, for example, if an acquisition of

Formal Development of MPIA for ARINC 661 9

tilt selection is followed by the auto mode presentation then the acquisition of stabiliza-
tion or tilt angle is not possible.

6 Exploring the MPIA FLUID Model in Event-B

We describe the analysis of FLUID model in Event-B [1]. The Event-B model has been
hand written from the FLUID model for mathematical reasoning and consistency check-
ing. We translate the FLUID model into Event-B as follows: 1) An INTERACTION
Fluid component is interpreted in form of machine and context of the Event-B lan-
guage; 2) All the constants and sets defined as a Fluid model correspond to an Event-B
context; 3) Fluid states are translated into a set of variables in an Event-B model, and
the variable typing is also defined as typing invariants of Event-B; 4) Fluid initialisation
event and the other events are transformed into an Event-B initialisation event and to
a set of events; and 5) All the properties of FLUID model are translated into Event-B
invariants. Note that some the properties are translated into temporal properties in LTL
or CTL formula in ProB. Finally, the produced Event-B model is checked within the
Rodin environment and all the defined safety properties proved successfully. In the
translated model, we define two different contexts, the first one contains domain spe-
cific information related to HMI while the other one is used to define static properties
of HMI. In the domain specific context, we define possible tag information for different
widgets, for example, we define an enumerated set HMI_TAG to state the tag properties
of HMI states in daxm1. In addition, we also define three constants, CHECKED, VIS-
IBLE and ENABLED, as boolean to define tag information for HMI widgets (daxm2).
In the second context, we declare three enumerated sets, WXR_MODE_SELC_SET
for modes, WXR_MODE_SELC_SET for a set of messages, and WXR_ACTIONS
for a set of actions to specify the MPIA components using axioms (axm1-axm3).
Enumerated sets are defined using the partition statement. We also declare a constant,
WXR_ANGL_RANG, to specify a range (-15 .. +15) of the tilt angle in axm4.

daxm1 : partition(HMI_TAG, {Input}, {Output}, {SysInput}, {SysOutput})
daxm2 : CHECKED = BOOL ∧ V ISIBLE = BOOL ∧ ENABLED = BOOL

axm1 : partition(WXR_MODE_SELC_SET, {M_OFF}, {STDBY }, {TST}, {WXON}, {WXA})
axm2 : partition(WXR_TILT _STAB_MSG, {AUTO}, {MANUAL}, {ON}, {OFF})
axm3 : partition(WXR_ACTIONS, {TILT _CTRL}, {STAB_CTRL})
axm4 : WXR_ANGL_RANG = −15 .. 15

An Event-B machine is also derived from the FLUID model that is translated straight-
forward. The generated Event-B model shows the HMI behaviour and possible interac-
tions with MPIA widgets. In this model, we introduce 11 state variables (inv1 - inv11)
to model dynamic behaviour of the system. All these variables are similar to FLUID
model that is declared as tuple using cartesian product (×). Note that each variable
contains state information and tag information related to HMI. In the current model,
we introduce a safety property saf1 (see property Prop1) to state that there is only
one mode selected from the MODE SELECTION of WXR. Note that other properties
(Prop2 - Prop8) of the FLUID model are defined later in the ProB model checker.

10 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

inv1 : A_ModeSelection ∈ WXR_MODE_SELC_SET ×HMI_TAG × CHECKED
inv2 : A_TiltSelection ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv3 : A_Stabilization ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv4 : A_TiltAngle ∈ WXR_ANGL_RANG ×HMI_TAG × ENABLED
inv5 : P _checkMode ∈ (WXR_MODE_SELC_SET → BOOL) ×HMI_TAG × CHECKED
inv6 : P _ctrlModeTilt_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv7 : P _ctrlModeTilt_Label ∈ WXR_TILT _STAB_MSG ×HMI_TAG × V ISIBLE
inv8 : P _ctrlModeStab_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv9 : P _ctrlModeStab_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv10 : P _ctrlModeStab_Label ∈ WXR_TILT _STAB_MSG ×HMI_TAG × V ISIBLE
inv11 : P _TiltAngle ∈ WXR_ANGL_RANG ×HMI_TAG × ENABLED
saf1 : ∀m1,m2·m1 ∈ WXR_MODE_SELC_SET ∧m2 ∈ WXR_MODE_SELC_SET∧

m1 7→ TRUE ∈ prj1(prj1(P _checkMode)) ∧m2 7→ TRUE ∈ prj1(prj1(P _checkMode))⇒m1 = m2

In this translated model, we introduce 14 events, including the INITIALISATION
event. The INITIALISATION event is used to set the initial value for each declared
state. All these state variables are assigned as tuples to show initial states of MPIA.
For example,
P_checkMode is
set as M_OFF
mode and other
modes are not
selected from the
option widget of
MPIA (see act6).

EVENT INITIALISATION
BEGIN

act1 : A_ModeSelection := M_OFF 7→ Input 7→ TRUE
act2 : A_TiltSelection := TILT _CTRL 7→ Input 7→ TRUE

. . .

. . .
act6 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪

{M_OFF 7→ TRUE}) \ {M_OFF 7→ FALSE}) 7→ Output 7→ TRUE
act7 : P _ctrlModeTilt_Button := TILT _CTRL 7→ Output 7→ TRUE

. . .

. . .
END

The event modeSelection@Acquisition selects the WXR mode in acquisition mode.
The guard of this event allows to choose any mode by selecting the option widget.
The action of this event states
that the acquisition state
A_ModeSelection of WXR
mode sets the selected mode
with tag information, such
as this variable is in acquisi-
tion state and checked. The
event tiltCtrl@Acquisition
is also specified in similar
style to model the acquisition
behaviour of the tilt angle.

EVENT modeSelection@Acquisition
ANY mode

WHERE
grd1 : mode ∈ WXR_MODE_SELC_SET

THEN
act1 : A_ModeSelection := mode 7→ Input 7→ TRUE

END

EVENT tiltCtrl@Acquisition
ANY n_tilt

WHERE
grd1 : n_tilt ∈ WXR_ACTIONS ×HMI_TAG × ENABLED∧

prj1(prj1(n_tilt)) = TILT _CTRL ∧ prj2(n_tilt) = TRUE
THEN

act1 : A_TiltSelection := n_tilt
END

The eventcheckMode@Presentation is related to presentation to model the WXR
mode. The guard of this event state that acquisition state, A_ModeSelection, of WXR
mode is checked (TRUE) and the action of this event updates the presentation state vari-
able, P_checkMode. The P_checkMode is set as only the selected acquisition mode
and other modes are not selected from the option widget of MPIA (see act1). Other re-
maining acquisition and presentation events are modelled in a similar way. A complete
formal development of the MPIA case study is available at6.

EVENT checkMode@Presentation
ANY n_tilt

WHERE
grd1 : prj2(A_ModeSelection) = TRUE

THEN
act1 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪

{prj1(prj1(A_ModeSelection)) 7→ TRUE})\
{prj1(prj1(A_ModeSelection)) 7→ FALSE}) 7→ Output 7→ TRUE

END

6 http://singh.perso.enseeiht.fr/Conference/FTSCS2019/MPIA_Models.zip

Formal Development of MPIA for ARINC 661 11

6.1 Model Validation and Analysis

This section summarises the generated proof obligations using Rodin prover. This de-
velopment results in 44 proof obligations, in which 41 (93%) are proved automatically,
and the remaining 3 (7%) are proved interactively by simplifying them.

The model analysis is performed using ProB [21] model checker, which can be
used to explore traces of Event-B models. The ProB tool supports automated consis-
tency checking, constraint-based checking and it can also detect possible deadlocks.
Note that the generated Event-B model is used directly in ProB. In this work, we use
the ProB tool as a model checker to prove the absence of errors (no counterexample
exists) and deadlock-free. We also define LTL properties (Prop1-Prop7) in ProB of
the FLUID model to check the correctness of the generated MPIA model. Note that
the ProB uses all the described safety properties during the model checking process to
report any violation of safety properties against the formalized system behaviour. To
validate the developed MPIA model, we also use the ProB tool for animating the mod-
els. This validation approach refers to gaining confidence that the developed models are
consistent with requirements.

The ProB anima-
tion helps to iden-
tify the desired be-
haviour of the HMI
model in different
scenarios.

Prop1 : (G(e(AE_modeSelection) => X(e(PE_checkMode))))
Prop2 : (e(AE_tiltAngle) => (e(PE_tiltAngle_True)ore(PE_tiltAngle_False)))
Prop3 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (OFF |− > Output)|− > TRUE}
Prop4 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (ON|− > Output)|− > TRUE}
Prop5 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > FALSE}
Prop6 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > TRUE}
Prop7 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _TiltAngle = (10|− > Output)|− > TRUE}

7 Exploring the MPIA FLUID Model in PetShop

This section describes the development of FLUID model in PetShop for verifying MPIA
interaction behaviour using Petri nets. The ICO specification of MPIA is executable that
allows us to get a quick prototype before its implementation. The MPIA model is also
generated in ICO specification language from the FLUID model manually. Note that
the ICO model only consider input and output aspects extracted from the MPIA FLUID
model. These input and output aspects are defined by adding more precise details for
execution purpose by analysing and refining the MPIA FLUID model. Note that the
refinement of FLUID model is beyond the scope of this paper. In the following section,
we describe only the development of MPIA in PetShop.
Structuring of the Modelling. ICOs are used to provide a formal description of the
dynamic behaviour of an interactive application. An ICO specification fully describes
the potential interactions that users may have with the application. The specification
encompasses both the "input" aspects of the interaction (i.e. how user actions impact on
the inner state of the application, and which actions are enabled at any given time) and
its "output" aspects (i.e. when and how the application displays information relevant
to the user). In the ICO formalism, an object is an entity featuring four components: a
cooperative object which describes the behaviour of the object, a presentation part, and
two functions (the activation function and the rendering function) which make the link
between the cooperative object and the presentation part. As stated above we present

12 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

how ICOs are used for describing an interactive application using the WXR application
presented in the introduction part of the section 4. We thus successively presents the
four ICO parts for that application.
Presentation Part. The Presentation of an object states its external appearance. In the
case of a WIMP interface, this Presentation is a structured set of widgets organized
in a set of windows. Each widget is for the user to interact with the interactive system
(provide input) and/or for the system to present information to the user (present output).
The way used to render infor-
mation (either in the ICOs de-
scription and/or code) is hid-
den behind a set of rendering
methods (in order to render
state changes and availability
of event handlers) and a set
of user events, embedded in a
software interface, in the same
language as the one used for
the COs interface description.

Public interface WXR_PAGE extends ICOWidget {
// List of user events.
public enum WXR_PAGE_events {asked_off, asked_stdby, asked_wxa,
asked_wxon, asked_tst, asked_auto asked_stabilization,
asked_changeAngle}
// List of activation rendering methods.
void setWXRModeSelectEnabled(WXR_PAGE_events, List<ISubstitution>);
void setWXRTiltSelectionEnabled (WXR_PAGE_events, List<ISubstitution>);
// List of rendering methods.
void showModeSelection (IMarkingEvent anEvent);
void showTiltAngle (IMarkingEvent anEvent);
void showAuto (IMarkingEvent anEvent);
void showStab (IMarkingEvent anEvent);
}

Fig. 3: Software interface of the page WXR from the user ap-
plication MPIA

Cooperative Objects. Using the Cooperative Object (CO) description technique, ICO
adds the following features: (1) Links between user events from the presentation part
and event handlers from the Cooperative Object description; (2) Links between user
events availability and event-handlers availability; and (3) Links between state in the
Cooperative Object changes and rendering. As stated above, a CO description is made
up of a software interface and its behaviour is expressed using high-level Petri nets.
The WXR page does not offer public methods (except the default ones for allowing the
event mechanism), and this is why there is no software interface here. Figure 4 shows
the entire behaviour of page WXR which is made of two non connected parts:
− The Petri net in the upper part han-
dles events received from the 5 Check-
Buttons (see left-hand side of Figure 2
for the presentation part). Even though
they are CheckButtons the actual be-
haviour of that application makes it
only possible to select one of them at
a time. The current selection (an inte-
ger value from 1 to 5) is carried by the
token stored in MODE_SELECTION
place and corresponds to one the possi-
ble CheckButtons (OFF, STDBY, TST,
WXON, WXA). The token is modified
by the transitions (new_ms = 3 for in-
stance) using variables on the incoming
and outgoing arcs as formal parameters
of the transitions.

Fig. 4: High-level Petri net model describing the be-
haviour of the page WXR

− The Petri net in the lower part handles events from the 2 PicturePushButton and the
EditBoxNumeric. Interacting with these buttons will change the state of the application.

Formal Development of MPIA for ARINC 661 13

In the current state, this part of the application is in the manual state and the tokens are
placed in the NOT_AUTO and STABILIZATION_OFF. This configuration of tokens is
required to make available of the edit box to the user (visible on the model as transition
changeAngle_T1 is in a darker colour).

Activation Function. For WIMP interfaces user towards system interaction (inputs)
only takes place through widgets. Each user action on a widget may trigger one of the
CO event handlers. The relationship between user services and widgets is fully stated by
the activation function that associates each event from the presentation part to the event
handler to be triggered and to the corresponding rendering method for representing the
activation or the deactivation: When a user event is triggered, the Activation function is
notified (via an event mechanism) and requires the CO to fire the corresponding event
handler providing the value from the user event. When the state of an event handler
changes (i.e. becomes available or unavailable), the Activation function is notified (via
the observer and event mechanism presented above) and calls the corresponding acti-
vation rendering method from the presentation part with values coming from the event
handler.

The activation function is fully
expressed through a mapping
to a CO behaviour element.
Figure 5 shows the activation
function for page WXR. Each
line in this table describes the
three objects taking part in the
activation process. Fig. 5: Activation Function of the page WXR

The first line, for instance, describes the relationship between the user event ask_off
(produced by clicking on the CheckButton OFF), the event handler off (from the be-
haviour) and the activation rendering method setWXRModeSelectEnabled from the
presentation part. More precisely: (i) When the event handler off becomes enabled,
the activation function calls the activation rendering method setWXRModeSelectEn-
abled providing it with data about the enabling of the event handler. On the physical
interaction side, this method call leads to the activation of the corresponding widget
(i.e. presenting the checkButton OFF as available). (ii) When the button OFF of the
presentation part is pressed, the presentation part raises the event called asked_off. This
event is received by the activation function which requires the behaviour part to fire the
event handler off (i.e. the transition off_T1 in the Petri net of Figure 4).

Rendering function. For WIMP interfaces system towards user interaction (outputs)
present to the user the state changes that occurs in the system. The rendering function
maintains the consistency between the internal state of the system and its external ap-
pearance by reflecting system states changes on the user interface. Indeed, when the
state of the Cooperative Object changes (e.g. marking changes for a given place), the
Rendering function is notified (via the observer and event mechanism) and calls the
corresponding rendering method from the presentation part with tokens or firing values
as parameters. In a similar way as for the Activation function, the Rendering function
is fully expressed as a CO class.

14 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

The rendering function of the WXR application is presented in Fig. 6. In this table
one line describes the three objects taking part in the rendering process. The first line for
instance describes the relationship between the place MODE_SELECTION, the event
linked to this place (and in which we are interested in token_enter) and the rendering
method showModeSelection from the presentation part component.
The signification of this line is:
When a token enters the place
MODE_SELECTION, the rendering
function is notified and calls the rendering
method showModeSelection providing it
with data concerning the new marking of
the place that is used as parameters of the
rendering method. Fig. 6: Rendering Function of the page WXR

8 Assessment

There is no development framework for covering every aspect of modelling and design-
ing related to interactive systems. FORMEDICIS project has proposed a framework for
developing and designing interactive systems complying with ARINC 661 standard.
This is the first integrated framework for formal development of HMI. To support the
proposed framework, we have developed a pivot modelling language, FLUID, to spec-
ify HMI requirements supporting correct by construction. Since a long time, stepwise
refinement plays an important role for modelling complex systems. In this project, we
also target to design an interactive system abstractly and then develop a concrete model
progressively closed to an implementation. This progressive development allows us to
introduce functional behaviour and safety properties related to system and user interac-
tions, and reducing the proof effort during the system development.

The proposed language is expressive enough to cover possible functional behaviour,
system input and output states, presentation, and nominal and non-nominal scenarios.
The FLUID language allows us to build a complex HMI systematically, including rea-
soning for each step systematically considering functionalities, properties and domain
knowledge related to HMI. We have already developed the HMIs for Automatic Cruise
Control (ACC) and Traffic alert and Collision Avoidance System (TCAS). We can pro-
vide a list of safety properties, and nominal and non-nominal scenarios to check the
correctness of a formalized system including interaction behaviour. The properties and
scenarios derive from the usability principles, such as learnability, flexibility and ro-
bustness. To demonstrate the practicality of the proposed language, we have developed
industrial examples. Note that the formal verification and analysis have been conducted
in other supporting tools, such as Rodin, ProB and PetShop CASE Tool. The presented
case study also does not cover the whole set of usability principles. In particular, the
current work is focused on consistency, observability, tagging and task conformance.
Moreover, we have used the ProB model checker to validate the developed model with
respect to the given safety properties. In addition, the ICO specification fully describe
the potential interactions that users may have with the application to validate the dy-
namic behaviour, visual properties and task analysis.

Formal Development of MPIA for ARINC 661 15

There are several pros and cons of our approach. To model an interactive system
in FLUID language has a great advantage because it allows us to model different com-
ponents of interactive system together and moreover, such modelling approach allows
to have a common understanding to various stakeholders. Regarding the FLUID model
analysis, we are dependent on other tools which can be used for verification and con-
sistency checking. In our MPIA case study, we use the Event-B modelling language for
specifying system and defining safety properties while we use ICO for analysing pos-
sible interactions by refining the FLUID model. In addition, for analysing the possible
scenarios we have used CTT. Note that the use of different tools provides us more confi-
dence and allows us more freedom to work independently for specific part of a complex
system. On the other hand we need to check the combined approach is feasible for an
interactive system and the integration of different tools do not introduce any error.

9 Related Work

Several approaches are developed in the past years for modelling, designing, verifying
and implementing interactive systems. Due to increasing complexity, formal methods is
considered as a first-class citizen for modelling and designing the interaction behaviour
of HMI for critical systems. There are several approaches, such as Petri net, process
algebra and model checking, have been used successfully for checking the intended
behaviour of HMI. Palanque et al. [25, 26] propose the development of HMI using In-
teractive Cooperative Objects (ICO) formalism, in which the object-oriented framework
and possible functional behaviour are described with high-level Petri-nets.

Compos et al. [11] propose a framework for checking the HMI system for a given
set of generic properties using model checkers. Navarre et al. [24] propose a framework
for analyzing the interactive systems, particularly for the combined behaviour of user
task models and system models to check whether a user task is supported by the system
model. Bolton et al. [10] propose a framework to analyze human errors and system
failures by integrating the task models and erroneous human behaviour.

In [5], the authors propose an incremental development of an interactive system us-
ing B methods to model the important properties of HMI, such as reachability, observ-
ability and reliability. A development lifecycle for generating source code for HMI from
an abstract model is presented in [3]. The Event-B language is used for developing the
multi-model interactive system supporting with CARE properties using correct by con-
struction approach in [4]. In [19], the authors propose an approach with supported tools
based on CAV architecture, hybrid model of MVC and PAC, for developing HMI from
specification to implementation. In [16], the authors present a developed methodology,
based on MVC architecture, for developing an HMI using a correct by construction
approach for introducing functional behaviour, safety properties and HMI components.

A formal interaction mechanism is described using the synchronous data flow lan-
guage Lustre [17] at ONERA. In [7], the authors present derivation of possible interac-
tions from an informal description of the interactive system. These derived interactions
are used to model a formal model of the interactive system for checking and validating
the required HMI behaviour of interactive system, and for generating the test cases [8].
A modelling language, LIDL (LIDL Interaction Description Language), is proposed

16 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

in [20] to describe a formal description of possible interaction of HMI. In this language,
the static nature of HMI is specified using interfaces and the dynamic nature of HMI is
specified as interactions. The semantics of this language is based on synchronous data
flows similar to Lustre that makes the process easy for formal verification and code gen-
eration. In [15], the authors propose a formal development process for designing HMI
for safety-critical systems using LIDL and S3 solver.

The project CHI+MED [13] proposes modelling in Modal Action Logic (MAL) and
proofs in PVS for developing HMI of medical systems. In [18], the authors present a
methodology to design a user interface compliant with use-related safety requirements
using formal methods. In [12], the authors propose an approach for checking the re-
quired properties of executable models of interactive software in djnn framework. The
djnn framework describes interactive components in hierarchical manner, including the
low level details such as graphics, behaviours, computations and data manipulations.

All the above approaches are confronted with lack of abstraction and formal design
patterns for handling different aspects of interactive systems. Nevertheless, the main
contribution of these researches and studies is to demonstrate only parts of the interac-
tive systems such as interaction, task analysis etc. To our knowledge there is no work
related to modelling, refinement, domain knowledge, scenarios, task analysis together
for developing interactive systems. Our project is the first integrated framework for
modelling and designing interactive systems by defining different components of in-
teractive systems. Note that our defined language FLUID is able to model interaction
behaviour, domain properties, scenarios and tasks properties for interactive systems us-
ing a correct by construction. To specify everything in one language provides common
understanding to various stockholders.

10 Conclusion

This paper presents a formal approach for developing Human Machine Interface com-
plying with ARINC 661. This development approach is centered around the pivot mod-
elling language, FLUID, which is proposed in our FORMEDICIS project for specifying
HMI requirements. A FLUID model consists of states, assumptions, expectations, nom-
inal and non nominal properties, and scenarios. A formal model can be derived from a
FLUID model for reasoning and analyzing an interactive behaviour of a system under
the given safety properties. In our work, we have used the Event-B modelling language
for producing a formal model and PetShop CASE tool for producing ICO model. We
have used MPIA case study for developing a FLUID model. Further, the FLUID model
is used for producing Event-B model and ICO model. The Event-B model is used to
check interaction behaviour considering domain properties, including safety properties,
and the ICO model is used for validating visual properties and in task analysis. More-
over, we have also used the ProB model checker tool to analyze and to validate the
developed MPIA model. The formalization and the associated proofs presented in this
work can be easily extended to other formal methods and model checkers that can be
used for modelling interactive systems.

As future work, our objective is to define a refinement relationship for FLUID mod-
els to get closer to an implementation. Such refinement allows us to perform formal

Formal Development of MPIA for ARINC 661 17

verification at the code level and we do not need to add any other verification approach.
Another future work is to automate the model generation process from a FLUID model,
so that a formal model can be produced and verified in any target modelling language.

Acknowledgment. This study was undertaken as part of the FORMEDICIS (FOR-
mal MEthods for the Development and the engineering of Critical Interactive Systems)
ANR-16-CE25-0007.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, New York, NY, USA, 1st edn. (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An open
toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol. Transf. 12(6),
447–466 (Nov 2010)

3. Aït-Ameur, Y.: Cooperation of formal methods in an engineering based software develop-
ment process. In: Integrated Formal Methods, Second International Conference, IFM 2000,
Dagstuhl Castle, Germany, November 1-3, 2000, Proceedings. pp. 136–155 (2000)

4. Ait-Ameur, Y., Ait-Sadoune, I., Baron, M.: Etude et comparaison de scénarios de développe-
ments formels d’interfaces multi-modales fondés sur la preuve et le raffinement. In: RSTI-
Ingénierie des Systèmes d’Informations 13(2). pp. 127–155 (2008)

5. Aït-Ameur, Y., Girard, P., Jambon, F.: Using the B formal approach for incremental spec-
ification design of interactiv systems. In: Engineering for Human-Computer Interaction,
IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-
Computer Interaction, September 14-18„ Heraklion, Crete, Greece. pp. 91–109 (1998)

6. ARINC 661-2: Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. Arinc Specification 661-2 (2005)

7. Ausbourg (d’), B., Durrieu, G., Roché, P.: Deriving a formal model of an interactive system
from its UIL description in order to verify and to test its behaviour. In: Proceedings of the
Eurographics Workshop DSV-IS’96. Namur, Belgium (June 1996)

8. Ausbourg(d’), B.: Using Model Checking for the Automatic Validation of User Interfaces
Systems. In: Markopoulos, P., Johnson, P. (eds.) Design, Specification and Verification of
Interactive Systems ’98. Eurographics, Springer (June 1998)

9. Barboni, E., Martinie, C., Navarre, D., Palanque, P.A., Winckler, M.: Bridging the gap be-
tween a behavioural formal description technique and a user interface description language:
Enhancing ICO with a graphical user interface markup language. SCP 86, 3–29 (2014)

10. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model checking human
- automation interaction using task analytic models. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 41(5), 961–976 (2011)

11. Campos, J.C., Harrison, M.D.: Systematic Analysis of Control Panel Interfaces Using Formal
Tools, pp. 72–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

12. Chatty, S., Magnaudet, M., Prun, D.: Verification of properties of interactive components
from their executable code. In: Proceedings of the 7th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems. pp. 276–285. EICS’15, ACM, NY, USA (2015)

13. Curzon, P., Masci, P., Oladimeji, P., Rukšėnas, R., Thimbleby, H., D’Urso, E.: Human-
Computer Interaction and the Formal Certification and Assurance of Medical Devices: The
CHI+MED Project. In: 2nd Workshop on Verification and Assurance (Verisure2014), in as-
sociation with Computer-Aided Verification (CAV), Vienna Summer of Logic (2014)

14. FORMEDICIS Project. https://w3.onera.fr/Formedicis/

18 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

15. Ge, N., Dieumegard, A., Jenn, E., d’Ausbourg, B., Aït-Ameur, Y.: Formal development pro-
cess of safety-critical embedded human machine interface systems. In: 11th International
Symposium on Theoretical Aspects of Software Engineering, TASE’17. pp. 1–8 (2017)

16. Geniet, R., Singh, N.K.: Refinement based formal development of human-machine interface.
In: Software Technologies: Applications and Foundations - STAF 2018 Collocated Work-
shops, Toulouse, France, June 25-29, 2018, Revised Selected Papers. pp. 240–256 (2018)

17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language Lustre. In: Proceedings of IEEE. pp. 1305–1320. No. 9 in 79 (September 1991)

18. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Verification of user interface software:
The example of use-related safety requirements and programmable medical devices. IEEE
Trans. Human-Machine Systems 47(6), 834–846 (2017)

19. Jambon, F.: From formal specifications to secure implementations. In: Computer-Aided De-
sign of User Interfaces III, Proceedings of the Fourth International Conference on Computer-
Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. pp. 51–62 (2002)

20. Lecrubier, V.: A formal language for designing, specifying and verifying critical embed-
ded human machine interfaces. Theses, INSTITUT SUPERIEUR DE L’AERONAUTIQUE
ET DE L’ESPACE (ISAE) ; UNIVERSITE DE TOULOUSE (Jun 2016), https://hal.
archives-ouvertes.fr/tel-01455466

21. Leuschel, M., Butler, M.: ProB: A Model Checker for B, pp. 855–874. LNCS, Springer
(2003)

22. Myers, B.A.: Why are human-computer interfaces difficult to design and implement? Tech.
rep., Carnegie Mellon University, Pittsburgh, PA, USA (1993)

23. Navarre, D., Bastide, R., Palanque, P.: A tool-supported design framework for safety critical
interactive systems. Interacting with Computers 15(3), 309–328 (2003)

24. Navarre, D., Palanque, P.A., Paternò, F., Santoro, C., Bastide, R.: A tool suite for integrating
task and system models through scenarios. In: 8th International Workshop on Interactive
Systems: Design, Specification, and Verification (DSV-IS). pp. 88–113 (2001)

25. Palanque, P., Bastide, R., Sengès, V.: Validating interactive system design through the verifi-
cation of formal task and system models, pp. 189–212. Springer US, Boston, MA (1996)

26. Palanque, P.A., Bastide, R.: Petri net based design of user-driven interfaces using the interac-
tive cooperative objects formalism. In: Design, Specification and Verification of Interactive
Systems, Proc. of the First International Eurographics Workshop, Italy. pp. 383–400 (1994)

27. Palanque, P.A., Ladry, J., Navarre, D., Barboni, E.: High-fidelity prototyping of interactive
systems can be formal too. In: Human-Computer Interaction. New Trends, 13th International
Conference, HCI International 2009, San Diego, CA, USA, Part I. pp. 667–676 (2009)

28. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models, pp. 362–369. Springer US, Boston, MA (1997)

29. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N.: Designing the User In-
terface - Strategies for Effective Human-Computer Interaction, 6th Edition. Pearson (2016)

