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Abstract. The timed pattern matching problem is an actively studied topic be-

cause of its relevance in monitoring of real-time systems. There one is given a

log w and a specificationA (given by a timed word and a timed automaton in this

paper), and one wishes to return the set of intervals for which the log w, when re-

stricted to the interval, satisfies the specificationA. In our previous work we pre-

sented an efficient timed pattern matching algorithm: it adopts a skipping mech-

anism inspired by the classic Boyer–Moore (BM) string matching algorithm. In

this work we tackle the problem of online timed pattern matching, towards em-

bedded applications where it is vital to process a vast amount of incoming data

in a timely manner. Specifically, we start with the Franek-Jennings-Smyth (FJS)

string matching algorithm—a recent variant of the BM algorithm—and extend it

to timed pattern matching. Our experiments indicate the efficiency of our FJS-

type algorithm in online and offline timed pattern matching.

1 Introduction

Monitoring of real-time properties is an actively studied topic with numerous applica-

tions such as automotive systems [19], medical systems [8], data classification [6], web

service [26], and quantitative performance measuring [12]. Given a specification A
and a log w of activities, monitoring would ask questions like: if w has a segment that

matches A; all the segments of w that match A; and so on.

For a monitoring algorithm efficiency is a critical matter. Since we often need to

monitor a large number of logs, each of which tends to be very long, one monitoring

task can take hours. Therefore even constant speed up can make significant practical

differences. Another important issue is an algorithm’s performance in online usage sce-

narios. Monitoring algorithms are often deployed in embedded applications [18], and

this incurs the following online requirements:

• Real-time properties, such as: on prefixes of the log w, we want to know their

monitoring result soon, possibly before the whole log w arrives.
• Memory consumption, such as: early prefixes of w should not affect the monitoring

task of later segments of w, so that we can throw the prefixes away and free memory

(that tends to be quite limited in embedded applications).
• Speed of the algorithm. In an online setting this means: if the log w arrives at a

speed faster than the algorithm processes it, then the data that waits to be processed

will fill up the memory.

http://arxiv.org/abs/1706.09174v1
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Fig. 1. An example of timed pattern matching. For the pattern timed automaton A and the target

timed word w, as shown, the output is the set of matching intervals {(t, t′) | w|(t,t′) ∈ L(A)} =
{(t, t′) | t ∈ [3.7, 3.9), t′ ∈ (6.0,∞)}. Here $ is a special terminal character.

Table 1. Matching problems

log, target specification, pattern output

string matching a word w ∈ Σ∗ a word pat ∈ Σ∗ {(i, j) ∈ (Z>0)
2 | w(i, j) = pat}

pattern matching a word w ∈ Σ∗ an NFAA {(i, j) ∈ (Z>0)
2 | w(i, j) ∈ L(A)}

timed pattern matching a timed word w ∈ (Σ × R>0)
∗ a timed automaton A {(t, t′) ∈ (R>0)

2 | w|(t,t′) ∈ L(A)}

Constant improvement in aspects like speed and memory consumption will be appre-

ciated in online settings, too: if an algorithm is twice as fast, then this means the same

monitoring task can be conducted with cheaper hardware that is twice slower.

The goal of the current paper is thus monitoring algorithms that perform well both

in offline and online settings. We take a framework where timed words—they are essen-

tially sequences of time-stamped events—stand for logs, and timed automata express a

specification. Both constructs are well-known in the community of real-time systems.

The problem we solve is that of timed pattern matching: see §2.1 for its definition; Fig. 1

for an example; and Table 1 for comparison with other matching problems.

Towards the goal our strategy is to exploit the idea of skip values in efficient string

matching algorithms (such as Boyer–Moore (BM) [7]), together with their automata-

based extension for pattern matching by Watson & Watson [34], to skip unnecessary

matching trials. In our previous work [32] we took the strategy and introduced a timed

pattern matching algorithm with BM-type skipping. The current work improves on this

previous BM algorithm: it is based on the more recent Franek–Jennings–Smyth (FJS)

algorithm [13] for string matching (instead of BM); and our new algorithm is faster

than our previous BM-type one. Moreover, in online usage, our FJS-type algorithm

better addresses the online requirements that we listed in the above. This is in contrast

with our previous BM-type algorithm that works necessarily in an offline manner (it

must wait for the whole log w before it starts).

Contributions Our main contribution is an efficient algorithm for timed pattern match-

ing that employs (an automata-theoretic extension of) skip values from the Franek–

Jennings–Smyth (FJS) algorithm for string matching [13]. By experiments we show

that the algorithm generally outperforms a brute-force one and our previous BM al-

gorithm [32]: it is twice as fast for some realistic automotive examples. Through our

theoretical analysis as well as experiments on memory consumption, we claim that our

algorithm is suited for online usage scenarios, too. We also compare its performance

with a recent tool Montre for timed pattern matching [29], and observe that ours is

faster, at least in terms of the implementations currently available.

In its course we have obtained an FJS-type algorithm for untimed pattern matching,

which is one of the main contributions too. The algorithm is explained rather in detail,

so that it paves the way to our FJS-type timed pattern matching that is more complex.

A central theme of the paper is benefits of the formalism of automata, a mathe-

matical tool whose use is nowadays widespread in fields like temporal logic, model



3

checking, and so on. We follow Watson & Watson’s idea of extending skipping from

string matching to pattern matching [34], where the key is overapproximation of words

and languages by states of automata. Our main contribution on the conceptual side is

that the same idea applies to timed automata as well, where we rely on zone-based

abstraction (see e.g. [4, 5, 14]) for computing reachability.

Related Works Several algorithms have been proposed for online monitoring of real-

time temporal logic specifications. An online monitoring algorithm for ptMTL (a past

time fragment of MTL) is in [27] and an algorithm for MTL[U,S] (a variant of MTL

with both forward and backward temporal modalities) is in [15]. In addition, a case

study on an autonomous research vehicle monitoring [19] shows such procedures can

be performed in an actual vehicle—this is where our motivation comes from, too.

We have chosen timed automata as a specification formalism. This is because of

their expressivity as well as various techniques that operate on them. Some other for-

malisms can be translated to timed automata, and via translation, our algorithm offers

to these formalisms an online monitoring algorithm. In [3], a variant of timed regular

expressions (TREs) are proved to have the same expressive power as timed automata.

For MTL and MITL, transformations into automata are introduced for many different

settings; see e.g. [2, 10, 20, 22, 24].

The work with closest interests to ours is by Ulus, Ferrère, Asarin, Maler and their

colleagues [29–31]. In their series of work, logs are presented by signals, i.e. values

that vary over time. Their logs are thus state-based rather than event-based like timed

words. Their specification formalism is timed regular expressions (TREs). An offline

monitoring algorithm is presented in [30] and an online one is in [31]. These algo-

rithms are implemented in the tool Montre [29], with which we conduct performance

comparison. The difference between different specification formalisms (TREs, timed

automata, temporal logics, etc.) are subtle, but for many realistic examples the differ-

ence does not matter. In the current paper we exploit various operations on automata,

most notably zone-based abstraction.

Notations Let Σ be an alphabet and w = a1a2 . . . an ∈ Σ∗ be a string over Σ, where

ai ∈ Σ for each i ∈ [1, n]. We let w(i) denote the i-th character ai of w. Furthermore,

for i, j ∈ [1, n], when i ≤ j we let w(i, j) denote the substring aiai+1 . . . aj , otherwise

we let w(i, j) denote the empty string ε. The length n of the string w is denoted by |w|.
Organization of the Paper In §2 are preliminaries on: our formulation of the prob-

lem of timed pattern matching; and the FJS algorithm for string matching. The FJS-type

skipping is extended to (untimed) pattern matching in §3, where we describe the algo-

rithm in detail. This paves the way to our FJS-type timed pattern matching algorithm

in §4. In §4 we also sketch zone-based abstraction of timed automata, a key technical

ingredient in the algorithm. In §5 we present our experiment results. They indicate our

algorithm’s performance advantage in both offline and online usage scenarios.

2 Preliminaries

2.1 Timed Pattern Matching

Here we formulate our problem. Our target strings are timed words [1], that are time-

stamped words over an alphabet Σ. Our patterns are given by timed automata [1].
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Definition 2.1 (timed word, timed word segment) For an alphabetΣ, a timed word is

a sequence w of pairs (ai, τi) ∈ (Σ×R>0) satisfying τi < τi+1 for any i ∈ [1, |w|−1].
Letw = (a, τ ) be a timed word. We denote the subsequence (ai, τi), (ai+1, τi+1), · · · , (aj , τj)
by w(i, j). For t ∈ R≥0, the t-shift of w is (a, τ) + t = (a, τ + t) where τ + t =
τ1 + t, τ2 + t, · · · , τ|τ | + t. For timed words w = (a, τ ) and w′ = (a′, τ ′), their ab-

sorbing concatenation is w ◦ w′ = (a ◦ a′, τ ◦ τ ′) where a ◦ a′ and τ ◦ τ ′ are usual

concatenations, and their non-absorbing concatenation is w ·w′ = w ◦ (w′ + τ|w|). We

note that the absorbing concatenation w ◦ w′ is defined only when τ|w| < τ ′1.

For a timed word w = (a, τ ) on Σ and t, t′ ∈ R>0 satisfying t < t′, a timed word

segment w|(t,t′) is defined by the timed word (w(i, j) − t) ◦ ($, t′) on the augmented

alphabet Σ⊔{$}, where i, j are chosen so that τi−1 ≤ t < τi and τj < t′ ≤ τj+1. Here

the fresh symbol $ is called the terminal character.

Definition 2.2 (timed automaton) Let C be a finite set of clock variables, and Φ(C)
denote the set of conjunctions of inequalities x ⊲⊳ c where x ∈ C, c ∈ Z≥0, and

⊲⊳ ∈ {>,≥, <,≤}. A timed automaton A = (Σ,S, S0, C,E, F ) is a tuple where:

Σ is an alphabet; S is a finite set of states; S0 ⊆ S is a set of initial states; E ⊆
S × S × Σ × P(C) × Φ(C) is a set of transitions; and F ⊆ S is a set of accepting

states. The components of a transition (s, s′, a, λ, δ) ∈ E represent: the source, target,

action, reset variables and guard of the transition, respectively.

We define a clock valuation ν as a function ν : C → R≥0. We define the t-shift

ν + t of a clock valuation ν, where t ∈ R≥0, by (ν + t)(x) = ν(x) + t for any x ∈ C.

For a timed automaton A = (Σ,S, S0, E, C, F ) and a timed word w = (a, τ ), a run

of A over w is a sequence r of pairs (si, νi) ∈ S × (R≥0)
C satisfying the following:

(initiation) s0 ∈ S0 and ν0(x) = 0 for any x ∈ C; and (consecution) for any i ∈ [1, |w|],
there exists a transition (si−1, si, ai, λ, δ) ∈ E such that νi−1 + τi − τi−1 |= δ and

νi(x) = 0 (for x ∈ λ) and νi(x) = νi−1(x) + τi − τi−1 (for x 6∈ λ). A run only

satisfying the consecution condition is a path. A run r = (s, ν) is accepting if the

last element s|s|−1 of s belongs to F . The language L(A) is defined to be the set

{w | there is an accepting run of A over w} of timed words.

Definition 2.3 (timed pattern matching) Let A be a timed automaton, and w be a

timed word, over a common alphabet Σ. The timed pattern matching problem requires

all the intervals (t, t′) for which the segmentw|(t,t′) is accepted by A. That is, it requires

the match set M(w,A) = {(t, t′) | w|(t,t′) ∈ L(A)}.

The match set M(w,A) is in general uncountable; however it allows finitary represen-

tation, as a finite union of special polyhedra called zones. See [32].

2.2 String Matching and the FJS Algorithm

String matching is a fundamental problem in computer science. Given a pattern string

pat and a target string w, it requires the set
{

(i, j) ∈ (Z>0)
2
∣

∣w(i, j) = pat
}

of all the

occurrences of pat in w. A brute-force algorithm, by trying to match |pat | characters

for all the possible |w|− |pat | positions of the pattern string, solves the string matching

problem in O(|pat ||w|). Efficient algorithms for this classic problem have been sought
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Fig. 2. The Franek–Jennings–Smyth (FJS) algorithm for string matching: an example

for a long time, with significant progress made as recently as in the last decade [11].

Among them the Knuth–Morris–Pratt (KMP) algorithm [21] and the Boyer–Moore

(BM) algorithm [7] are well-known, where unnecessary matching trials are skipped

utilizing skip value functions. Empirical studies have shown speed advantage of BM—

and its variants like Quick Search [28]—over KMP, while theoretically KMP exhibits

better worst-case complexityO(|pat |+|w|). By combining KMP and Quick Search, the

Franek–Jennings–Smyth (FJS) algorithm [13], proposed in 2007, achieves both linear

worst-case complexity and good practical performance.

The current paper’s goal is to introduce FJS-like optimization to timed pattern

matching. We therefore take the FJS algorithm as an example and demonstrate how

skip values are utilized in the string matching algorithms we have mentioned.4

The FJS algorithm combines two skip value functions: ∆ : Σ → [1, |pat | + 1] and

β : [0, |pat |] → [1, |pat |]; the former ∆ comes from Quick Search and the latter β

comes from KMP (the choice of symbols follows [13]). See Fig. 2 where the pattern

string pat = STRING is shifted by 6, 4 and 3 (instead of one-by-one).

In the first shift we use the Quick Search skip value ∆(S) = 6: we try matching the

tail of pat ; it fails (pat(6) 6= w(6)); then we find that the next character w(7) = S of

the target only occurs in the first position of the pattern. Formally we define ∆ by

∆(a) = min
( {

i ∈ [1, |pat |]
∣

∣ a = pat(|pat | − i+ 1)
}

∪
{

|pat |+ 1
} )

for a ∈ Σ. (1)

In the example of Fig. 2 we have ∆(I) = 3 and ∆(Q) = 7.

Now we are in the second configuration of Fig. 2 and we try matching the tail

pat(6) = G with w(12). It fails and we invoke the Quick Search skip value function ∆;

this results in a shift by ∆(R) = 4 positions.

1 2 3 4 5 6

S T R I N G

✗ * S T R I N G
✗ * * S T R I N G
✓ * * * S T R I N G

Fig. 3. β(3) = 3,

where the argument

3 is the length of

the successful par-

tial match.

For the shift from the third configuration to the fourth in Fig. 2

we employ the KMP skip value function β. It is defined as fol-

lows. Observe first that, in the third configuration of Fig. 2, match-

ing trials from the head succeed for three positions and then fail

(w(11, 13) = pat(1, 3), w(14) 6= pat(4)). From this information

alone we can see that, for a potential string match, the pattern string

must be shifted at least by β(3) = 3. See Fig. 3 where shifting

the pattern string pat by one or two positions necessarily leads to a

mismatch with pat(1, 3). It is important here that we know pat(1, 3)
coincides with w(11, 13) from the previous successful matching trials. Formally:

β(p) = min{n ∈ [1, pat ] | pat(1, p− n) = pat(1 + n, p)} for p ∈ [0, |pat |]. (2)

4 The FJS-type algorithm we present here is a simplified version of the original FJS algorithm.

Our simplification is equipped with all the features that we will exploit later for pattern match-

ing and timed pattern matching; the original algorithm further omits some other trivially unnec-

essary matching trials. We note that, because of the difference (that is conceptually inessential),

our simplified algorithm (for string matching) no longer enjoys linear worst-case complexity.
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Algorithm 1 The FJS string matching algorithm (simplified)

Require: A target string w and a pattern string pat .

Ensure: Z is the set of matching intervals.

1: n← 1; ⊲ n is the position in w of the head of pat

2: while n ≤ |w| − |pat |+ 1 do

3: while w(n+ |pat | − 1) 6= pat(|pat |) do ⊲ Try matching the tail of pat

4: n← n+∆(w(n+ |pat |)) ⊲ Quick Search-type skipping

5: if n > |w| −m+ 1 then return

6: if pat = w(n, n+ |pat | − 1) then ⊲ We try matching from left to right

7: p← |pat |+ 1; Z ← Z ∪ {[n, n+ |pat | − 1]}
8: else

9: p← min{p′ | pat(p′) 6= w(n+ p′ − 1)} ⊲ Matching trials fail at position p for the first time

10: n← n+ β(p) ⊲ KMP-type skipping

In the FJS algorithm we combine the two skip value function ∆ and β. Specifically:

let us be in a configuration where pat(1) is in the position of w(1 + n). We first try

matching the pattern’s tail pat(|pat |) with its counterpart w(|pat |+ n); if it fails we

invoke the Quick Search skipping ∆; otherwise we turn to the pattern’s head pat(1) try

matching from left to right. After its success or failure we invoke the KMP skipping β.

Note that preference is given to the Quick Search skipping. See Algorithm 1.

It is important that the skip value functions∆ : Σ → [1, |pat |+1] and β : [0, |pat |] →
[1, |pat |] rely only on the pattern string pat . Therefore it is possible to pre-compute the

function values in advance (i.e. before a target string w arrives); moreover since |pat | is

usually not large those values can be stored effectively in look-up tables. Skipping by

these skip values does not improve the worst-case complexity, but practically it brings

pleasing constant speed up, as demonstrated in Fig. 2.

Finally we note the following alternative presentation of ∆ and β.

∆(a) = min{n ∈ Z>0 | Σ
n
pat ∩Σ|pat|aΣ∗ 6= ∅} for each a ∈ Σ,

β(p) = min{n ∈ Z>0 | Σ
n
pat(1, p) ∩ pat(1, p)Σ∗ 6= ∅} for each p ∈ [0, |pat |].

(3)

3 An FJS-Type Algorithm for Pattern Matching

In this section we present our first main contribution, namely an adaptation of the FJS

algorithm (§2.2) from string matching to pattern matching.

Definition 3.1 (pattern matching) Let A be a nondeterministic finite automaton over

an alphabet Σ (a pattern NFA), and w ∈ Σ∗ be a target string. The pattern matching

problem requires all the intervals (i, j) for which the substring w(i, j) is accepted by

A. That is, it requires the set
{

(i, j)
∣

∣ 1 ≤ i ≤ j ≤ |w| and w(i, j) ∈ L(A)
}

.

For an example see Fig. 4, where the automaton A satisfies L(A) = L({ab, cd}cc∗d).
A brute-force algorithm solves pattern matching in O(|S||w|2), where S is the state

space of the pattern A (the factor |S| is there due to nondeterminism). Some optimiza-

tions are known, among which is the adaptation of the Boyer–Moore algorithm by Wat-

son & Watson [34]. In their algorithm they adapt the BM-type skip values to pattern

matching: the core idea in doing so is to overapproximate languages and substrings, so

that the skip value function can be organized as a finite table and hence can be computed

in advance. Our adaptation of the FJS algorithm employs similar overapproximation.
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s0start

s1

s2

s3 s4 s5

a

c

b

d

c

c

d

1 2 3 4 5 6 7 8 9 10 11 12

w = a b d a b c c b a b c d
L(A) ∋ a b c d

Fig. 4. Pattern matching. For the pattern NFA A on the left, for which it is easy to see that

L(A) = L({ab, cd}cc∗d), the output is {(9, 12)} as shown on the right.

L(A) =



















abcd, cdcd,
abccd , cdccd ,
abcccd , cdcccd ,

...



















; L′′ = L′·Σ∗ =

{

abcd, cdcd,
abcc, cdcc

}

Σ∗

Fig. 5. Overapproximation of the language L(A)

In the original FJS algorithm (for string matching) one uses skip value functions

∆ : Σ → [1, |pat |+ 1] and β : [0, |pat |] → [1, |pat |] . (4)

One may wonder what we can use in place of |pat |, now that the pattern A can accept

infinitely many words that are unboundedly long.

It turns out that our adaptations have the types

∆ : Σ → [1,m+ 1] and β : S → [1,m] , (5)

where m is the length of the shortest words accepted by A and S is the state space

of A. Intuitively, the original ∆ does a comparison of the pattern pat with a character

a ∈ Σ and the original β does a comparison of pat with the substring w(i, j) of the

target string we actually read in the last matching trial. Thus the adaptation can be done

by a finite presentation of the overapproximation of L(A) and w(i, j).
More specifically, for the approximation of L(A): 1) we focus on the length m of

the shortest accepted strings (four in the example of Fig. 4); 2) we collect all the prefixes

of length m that appear in L(A) (abcd, cdcd, abcc, cdcc in the same example); and 3)

we let an overapproximationL′′ consist of any word that starts with those prefixes. See

Fig. 5 for illustration; precise definitions are as follows.

m = min{|w| | w ∈ L(A)} L′ =
{

w′ ∈ Σm
∣

∣∃w′′ ∈ Σ∗. w′w′′ ∈ L(A)
}

L′′ = L′ ·Σ∗

Here L′ ⊆ Σm is necessarily a finite set; thus L′′ = L′ ·Σ∗ is an overapproximation of

L(A) with a finite representation L′.

For the overapproximation of the substring w(i, j) that we actually read at the last

matching trial, we exploit the set S(w(i, j)) = {s ∈ S | s0
w(i,j)
−−−−→ s in A} of states

of A. We have w(i, j) ∈ {w′ | ∀s ∈ S(w(i, j)), ∃s0 ∈ S0. s0
w′

−→ s in A} , when

S(w(i, j)) 6= ∅. Using the overapproximation same as the one for L′, we obtain an

overapproximation of such w(i, j) represented by at most 2|S| sets.

Let us demonstrate our two skip value functions ∆ and β using the example in

Fig. 4; the execution trace of our algorithm is in Fig. 6. In the first configuration we try

to match the tail of all the possible length-4 prefixes of L(A) with w(4) = a, which

fails. Then we invoke the Quick Search-type skipping ∆(w(5)) = ∆(b); since b occurs

no later than in the second position in L′ = {abcd, abcc, cdcd, cdcc}, we can skip by

three positions and reach the second configuration.
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1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

pat

a b c d

a b c c

c d c d

c d c c

∆(b)=3
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

pat

a b c d

a b c c

c d c d

c d c c

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

{s1} {s3} {s4} {s4} ∅ ✗

β(s4)=2
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

pat

a b c d

a b c c

c d c d

c d c c

∆(b)=3
=⇒

1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

pat

a b c d

a b c c

c d c d

c d c c

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

a b d a b c c b a b c d

{s1} {s2} {s4} {s5}✓

Fig. 6. Our FJS-type algorithm for pattern matching, for the example in Fig. 4

Algorithm 2 The FJS algorithm for pattern matching, for a target w and a pattern A

Ensure: Z is the set of matching intervals.

1: n← 1; ⊲ n is the position in w of the head of pat

2: while n ≤ |w| −m+ 1 do

3: while ∀w′ ∈ L′. w(n+m− 1) 6= w′(m) do ⊲ Try matching the tail of L′

4: n← n+∆(w(n+m)) ⊲ Quick Search-type skipping

5: if n > |w| −m+ 1 then return

6: Z ← Z ∪ {(n, n′) | w(n, n′) ∈ L(A)} ⊲ We try matching by feeding w(n, |w|) to A

7: n′ ← max{n′ ∈ [1, |w|] | ∃s0 ∈ S0, s ∈ S. s0
w(n,n′)
−−−−−→ s} ⊲ n′ is the position of the last successful match

8: S′ ← {s ∈ S | ∃s0 ∈ S0. s0
w(n,n′)
−−−−−→ s} ⊲ Matching trials stack at the states S′

9: n← n+maxs∈S′ β(s) ⊲ KMP-type skipping

We again try matching from the tail; this time we succeed since w(7) = c ap-

pears as a tail in L′. We subsequently move to the phase where we match from left to

right, much like in the original FJS algorithm (§2.2). Concretely this means we feed the

automaton A (see Fig. 6) the remaining segment w(4)w(5) . . . from left to right; we

obtain {s1}{s3}{s4}{s4}∅ as the sequence of reachable sets. Since no accepting states

occur therein and we have reached the emptyset, we conclude that the matching trial

starting at the position w(4) is unsuccessful.

a b c

c d c

}

= L′

s4
✗ * a b c d

* a b c c
* c d c d

* c d c c















= L′✗

✗

✗

✗ * * a b c d

* * a b c c

* * c d c d

* * c d c c















= L′✗

✓

✓

Fig. 7. β(s4)

Now we invoke the KMP-type skipping β. In the original FJS al-

gorithm we used the data of successful partial matching (w(4, 7) =
abcc in the current case) for computing β; this is not possible, how-

ever, since it is infeasible to prepare skip values for all possible

w(i, j). Instead we use the data S(w(4, 7)) = {s4} and the set

L′
s4

= {abc, cdc} as an overapproximation of the partial match

w(4, 7) = abcc. The intuition of the set L′
s4

is that: for a word w′

to drive A from an initial state to s4, w′ must have either abc or cdc as its prefix. In

Fig. 7 is how we compute the skip value β(s4), using the approximant L′
s4

of the par-

tial match and the approximant L′ of the pattern. Note also that it follows the same

pattern as Fig. 3.

We are now in the fourth configuration in Fig. 6. The matching trial at the position 9
fails and we invoke the Quick Search-type skipping, much like before. In the fifth con-

figuration, the matching trial at the position 12 succeeds, which makes us try matching

from the left, feeding A with w(9, 12). We reach s5 and thus succeed.

Overall our FJS-type algorithm for pattern matching is as in Algorithm 2. The skip

value functions therein are defined as follows. They are similar to the ones in (3). Since

L′ and L′
s are all finite, computing ∆ and β is straightforward.
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Definition 3.2 (Skip values in our FJS-type pattern matching algorithm) Let A =
(Σ,S, S0, E, F ) be a pattern NFA, a ∈ Σ be a character, s be a state of A, and

As = (Σ,S, S0, E, {s}) be the automaton where s is the only accepting state. Let

ms = min{|w| | w ∈ L(As)} (the length of a shortest word that leads to s) and

m = mins∈F ms (the length of a shortest accepted word). The skip value functions

∆ : Σ → [1,m+ 1] and β : S → [1,m] are defined as follows.

L′ = {w(1, m) | w ∈ L(A)} L′
s = {w(1,min{ms,m}) | w ∈ L(As)}

∆(a) = min{n ∈ Z>0 | Σ
nL′ ∩ΣmaΣ∗ 6= ∅}

β(s) = min{n ∈ Z>0 | Σ
nL′ ∩ L′

sΣ
∗ 6= ∅}

4 An FJS-Type Algorithm for Timed Pattern Matching

Here we present our second main contribution: an FJS-type algorithm for timed pattern

matching. It is superior to our previous Boyer–Moore-type algorithm [32], in its per-

formance both in offline and online scenarios. We fix a target timed word w = (a, τ )
and a pattern timed automaton A = (Σ ⊔ {$}, S, S0, C,E, F ). We further assume the

following that means A is a suitable pattern for timed pattern matching.

Assumption 4.1 A satisfies the following: any transition to an accepting state is la-

belled with the terminal character $; no other transition is labelled with $; and there is

no transition from an accepting state.
The basic idea of our FJS-type algorithm here is the same as in §3: we use two

skip value functions ∆ and β; and and for their finitary representation we let states of

automata overapproximate various infinitary data, as we explain later. In the current

timed setting, however, we cannot use a pattern timed automaton A itself to play the

same role—in a run of A a state is always accompanied with a clock valuation that

takes continuous values. We overcome this difficulty relying on the zone abstraction of

timed automata, a construction that turns a timed automaton into an NFA maintaining

reachability (see e.g. [14]).5

Definition 4.2 (zone) Let A be a timed automaton over the set C of clock variables,

and M be the maximum constant occurring in the guards of A. A zone is a |C|-
dimensional polyhedron specified with a conjunction of the constraints of the form

ν(xj)− ν(xi) ≺ c, ν(xi) ≺ c or −ν(xi) ≺ c, where ≺ ∈ {<,≤} and c ∈ [−M,M ].
A zone automaton Z for a timed automaton A is an NFA whose states are pairs

(s, α) of a state s of A and a zone α; it is meant to be a finite abstraction of the timed

automaton A via which we study properties of A. There are many different known con-

structions of zone automata (see e.g. [4, 14]): they come with different efficiency (i.e.

the size of the resulting NFA), and with different preservation properties (bisimilarity to

A, similarity, etc.). For our current purpose it does not matter which precise construc-

tion we use; we chose a common construction SGa from [14], mainly for its ease of

implementation.

A path of a zone automaton Z is much like a run, but it is allowed to start at a

possibly non-initial state. A path r = (s, ν) of a timed automatonA is called an instance

5 In our previous work [32] we used regions [1] in place of zones. Though equivalent in terms

of finiteness, zones give more efficient abstraction than regions.
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Algorithm 3 Our FJS-type algorithm for timed pattern matching, for a target w and a patternA

Ensure: Z is the match setM(w,A) in Def. 2.3.

1: n← 1; ⊲ n is the position in w of the beginning of the current matching trial

2: ν0 ← (the clock valuation that returns 0 for any clock variable)
3: while n ≤ |w| −m+ 2 do

4: while ∀ r ∈ L′. an+m−2 6= a′ (where a′ is such that rm−2
a′

−→ rm−1) do ⊲ Try matching the tail of L′

5: n← n+∆(an+m−1) ⊲ Quick Search-type skipping

6: if n > |w| −m+ 2 then return

7: Z ← Z ∪ {(t, t′) ∈ [τn−1, τt)× (τn−1,∞) | w|(t,t′) ∈ L(A)} ⊲ Try matching from left to right

8: n′ ← max{n′ ∈ [1, |w|] | ∃s0 ∈ S0, s ∈ S, ν ∈ (R≥0)
C . (s0, ν0)

w(n,n′)
−−−−−→ (s, ν)}

9: S′ ← {s ∈ S | ∃s0 ∈ S0, ν ∈ (R≥0)
C . (s0, ν0)

w(n,n′)
−−−−−→ (s, ν)} ⊲ Matching trials stack at the states S′

10: n← n+maxs∈S′ β(s) ⊲ KMP-type skipping

of a path r = (s, α) of a zone automaton Z for A if, for any n ∈ [0, |s| − 1], we have

νn ∈ αn. Conversely, such r is called an abstraction of r. In this paper we rely on

the following preservation property of the specific construction Z = SGa(A) of zone

automata: every run in SGa(A) is an abstraction of some run of A; conversely every

run of A is an instance of some run in SGa (A). See [14] for details.

Our algorithm is in Algorithm 3. The constructs therein are defined as follows.

Definition 4.3 (FJS-type skip values for timed pattern matching) Let r be a path of

the zone automaton SGa(A). The set W(r) of timed words represented by r is:

W(r) = {w ∈ (Σ × R>0)
∗ | there is a path r of A over w that is an instance of r} .

For a set K of paths of SGa(A), the definition naturally extends by W(K) =
⋃

r∈K W(r). Let As = (Σ,S, S0, E, C, {s}) be the modification of A in which s

is the only accepting state. Let ms = min{|w| | w ∈ L(As)} and m = mins∈F ms.

Following the discussion in §3, we define the overapproximations L′′ of L(A) and L′
s.

as follows. Note that L′ and L′
s are in fact sets of runs of SGa(A); L′′ is a set of timed

words.

L′ = {r(0,m− 1) | r is a run of SGa(A), andW(r) ∩ L(A) 6= ∅}

L′′ =W(L′) · (Σ × R>0)
∗

L′
s = {r(0,min{ms,m− 1}) | r is a run of SG

a(A), andW(r) ∩ L(As) 6= ∅}

These are used in the following definition of skip values. Here a ∈ Σ and s ∈ S.

∆(a) = min{n ∈ Z>0 |

∃t ∈ R>0. (Σ × R>0)
n · W(L′) ∩ (Σ × R>0)

m−1 · (a, t) · (Σ × R>0)
∗ 6= ∅}

β(s) = min{n ∈ Z>0 | (Σ × R>0)
n · W(L′) ∩W(L′

s) · (Σ × R>0)
∗ 6= ∅}

(6)

Note the similarity between the last definition and (3).
Explanation is in order how some operations in Algorithm 3 (and in Def. 4.3) can be

implemented. First note that W(r) is an infinite set. The set L′ is finite and computable

nevertheless: due to the preservation property of the zone automaton SGa(A), the con-

dition W(r)∩L(A) 6= ∅ simply means r is accepting. The same goes for L′
s. For ∆, we

realize that the second argument (Σ×R>0)
m−1 · (a, t) · (Σ×R>0)

∗ of the intersection

does not pose any timing constraint. Therefore the timed nonemptiness problem reduces

to an untimed one that is readily solved. Solving the timed nonemptiness problem for β
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in (6) is nontrivial. Here we use emptiness check in SGa(A×A)—the zone automaton

of the product of A with itself, changing its initial state suitably in order to address shift

of words—to check whether the intersection of the two relevant languages is empty.

Finally, the left-to-right matching on Line 7 is done by accumulating constraints on t in

the course of necessary transitions. Further details are in Appendices A–B.

A correctness proof (i.e. our skipping does not affect the output) is in Appendix C.

One important idea in our algorithm is that we use timing constraints—in addition to

character constraints like in Fig. 3 & 7—in calculating skip values. By this we achieve

greater skip values, while keeping the computational overhead minimal by the use of

the zone automaton SGa(A×A).
The way our algorithm (Algorithm 3) operates is very similar to the one in §3 for

(untimed) pattern matching, as we already described earlier. There the zone automa-

ton SGa(A) plays important roles in the calculation of skip values. For the record we

include in Appendix B the illustration of our algorithm using the example in Fig. 1.

Online Properties We claim that the current FJS-type algorithm is much better suited

to online usage scenarios than our previous BM-type one [32]. See Fig. 8. In our FJS-

type algorithm we can sometimes increment n before reading the whole target timed

word w (“unnec.” for “unnecessary” in Fig. 8); this is the case when we observe that

no further transition is possible in the pattern automaton A. (Additionally, thanks to the

skip values ∆ and β, sometimes we can increment n by more than one). For real-world

examples we can assume that matches tend to be much shorter than the whole log w;

this means the “unnec.” parts are often big.
In the BM-type algorithm, in contrast, matching trials start almost at the tail of w,6 and

we have to wait until the arrival of the whole target word. This contrast is witnessed in

our experimental results, specifically on those for memory usage.

5 Experiments

brute-force BM FJS Montre

offline from [32] from [32] new from [29]

online from [32] — new from [29]

We implemented our FJS-type algorithm for

timed pattern matching—its online and of-

fline variations difference between which will

be elaborated later. We compared its perfor-

mance with that of: brute-force algorithms (online and offline); the BM-type algo-

rithm [32]; and the tool Montre [29] for timed pattern matching.

The BM- and FJS-type algorithms employ zone-based abstraction; it is implemented

using difference bound matrices, following [9]. Zone construction and calculation of

skip values are done in the preprocessing stage, where the most expensive is the empti-

ness checking for β(s) (see (6)). We optimized this part, memorizing parts of zone

automata and reusing them in computing β(s) for different s. As a result the prepro-

cessing stage takes a fraction of a second for each of our benchmark problems. See

Appendix E for details.

For brute-force and FJS, the algorithms are the same in their online and offline

implementations. In the online implementations, a target timed word is read lazily and

6 To be precise we can start without the last m−1 characters, where m is the length of a shortest

word accepted by A. Usually m is by magnitude smaller than |w|.
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a memory cell is deallocated as soon as we realize it is no longer needed. In the offline

implementations, the whole target timed word is read and stored in memory in the

beginning, and the memory cells are not deallocated until the end. The tool Montre

employs different algorithms in its online and offline usage modes. See [29] for details.

In our current implementations, we hardcode a pattern timed automaton in the code.

Developing a parser for user-defined timed automata should not be hard.

The benchmark problems we used are in Fig. 9–14 (the pattern automata A and the

set W of target words). They are from automotive scenarios except for the first two.

5.1 Comparison with the Brute Force and BM-Type Algorithms

We implemented the brute-force, BM, FJS algorithms in C++ [33] and we compiled

them by clang-800.0.42.1. All the experiments are done on MacBook Pro Early 2013

with 2.6 GHz Intel Core i5 processor and 8 GB 1600MHz DDR3 RAM.

Speed (i.e. Permissible Density in Online Usage) In Fig. 15–20 are the comparison

of the offline implementations of the brute-force, BM and FJS algorithms, respectively

(average of five runs). Preprocessing time is excluded (it is anyway negligible, see Ap-

pendix E). We also exclude time of loading the input timed word in memory; this is

because in many deployment scenarios like embedded ones, I/O is pipelined by, for

example, DMA.
The pattern automata for the benchmarks TORQUE, SETTING, and GEAR look sim-

ilar to each other. However their input timed words—generated by a suitable Simulink

model for each benchmark—exhibit different characteristics, such as how often the

characters in the pattern automaton occur in the input timed words. Accordingly the

performance of the timed pattern matching algorithms varies, as we see in Fig. 17–19.

We observe that our FJS algorithm generally outperforms the BM and brute-force

ones. For SETTLING and ACCEL the performance gap is roughly twice, and it possibly

makes a big practical difference e.g. when a data set is huge and the monitoring task

takes hours. For LARGE CONSTRAINTS it seems to depend on specific words which

algorithm performs better. The advantage in performance is as we expected, given that

the FJS algorithm combines the KMP-type skipping (that works well roughly when

the BM-type one does) and the Quick Search-type skipping (that complements KMP).

After all, it is encouraging to observe that our FJS algorithm performs better in the

automotive examples, where our motivation is drawn.

In every benchmark except for LARGE CONSTRAINT, the execution time grows

roughly linearly on the length of the input word. This is a pleasant property for moni-

toring algorithms for which an input word can be very long.

These results for offline implementations also support our claim of FJS’s superiority

in online usage scenarios. In online usage we must process an input word faster than

the speed with which the word arrives; otherwise the word eventually floods memory.

Thus running twice as fast means that our algorithm can handle twice as dense input—

or that we can use cheaper hardware to conduct the same monitoring task. Note that

the difference between our online and offline implementations is only in the memory

management and I/O. Thus their speed should be similar.

Memory Usage In Table 6 is the memory consumption of our online FJS implemen-

tation and that of BM, for the SETTLING benchmark (the tendency is the same for the
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Fig. 8. How matching trials proceed: our previous BM-type algorithm (on the left) and our current

FJS-type algorithm (on the right).

s0start s1 s2 s3
a, true b, true $, true

Fig. 9. SIMPLE from [32]. The set W consists

of alternations of a and b whose length is from

20 to 1,024,000. Timing is random.

〈( (

〈p · ¬p〉(0,10]
)∗
∧
(

〈q · ¬q〉(0,10]
)∗ )
· $

〉

(0,80]

Fig. 10. LARGE CONSTRAINTS from [32].

The pattern A is a translation of the above

timed regular expression (5 states and 9 tran-

sitions). The set W consists of superposi-

tions of the alternations p,¬p, p,¬p, . . . and

q,¬q, q,¬q, . . . whose timing follows a cer-

tain exponential distribution. The length of

words in W is from 1,934 to 31,935. The pat-

tern A is in Fig. 24

s0start s1 s2 s3

s4s5s6s7

low, true
/x := 0

high,
0 < x < 1

high,
0 < x < 1

high,
0 < x < 1high,

0 < x < 1
high,
1 < x

high, true

$, true

Fig. 11. TORQUE, an automotive example

from [32]. It monitors for five or more con-

secutive occurrences of high in one second.

The target words in W (length 242,808–

4,873,207) are generated by the model

sldemo enginewc.slx in the Simulink

Demo palette [23] with random input.

start nml unstl ✓
normal/x := 0 unsettled $, x > 100

Fig. 12. SETTLING. The set W (length 472–

47,200,000) is generated by the Simulink pow-

ertrain model in [17]. The pattern (Requirement

(32) in [17]) is for an event in which the system

remains unsettled for 100 seconds after moving

to the normal mode.

start g1 g2 ✓

g1/x := 0 g2, x < 2 $

Fig. 13. GEAR. The set W (length 307–

1,011,427) is generated by the automatic trans-

mission system model in [16]. The pattern, from

φAT
5 in [16], is for an event in which gear shift

occurs too quickly (from the 1st to 2nd).

?start

g1

?

g2

g1

g3

g2

g4

g3 g4

✓

g1, true

g2, true g3, true

g4, x ≤ 10
/x := 0

rpmHigh, true rpmHigh, true rpmHigh, true rpmHigh, true

g1, true g2, true g3, true

g4, x ≤ 10
/x := 0

rpmHigh, true

$, x > 1

Fig. 14. ACCEL. The set W (length 25,002–

17,280,002) is generated by the same automatic

transmission system model as in GEAR. The pat-

tern is from φAT
8 in [16]: although the gear shifts

from 1st to 4th and RPM is high enough some-

where in its course, the vehicle velocity is not

high enough (i.e. the character veloHigh is ab-

sent).



14

0

20

40

60

80

100

120

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

T
im

e
[m

s]

Number of Events [×10000]

brute-force
BM
FJS

Fig. 15. SIMPLE: exec. time
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Fig. 16. LARGE CONSTRAINTS: exec. time
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Fig. 17. TORQUE: exec. time
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Fig. 18. SETTLING: exec. time
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Fig. 19. GEAR: exec. time
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Fig. 20. ACCEL: exec. time

Table 2. SIMPLE (sec.)

|w|
FJS

(online)

Montre

(offline)

Montre

(online)

32,000 0.01 0.05 3.00
64,000 0.02 0.10 6.06
100,000 0.03 0.16 9.41
128,000 0.04 0.20 12.54
200,000 0.07 0.31 18.89
256,000 0.09 0.40 23.76
300,000 0.10 0.48 28.19
400,000 0.14 0.63 38.24
500,000 0.18 0.78 46.33
512,000 0.18 0.81 48.77
600,000 0.21 0.96 56.76
700,000 0.25 1.13 66.53
800,000 0.28 1.28 74.91
900,000 0.32 1.43 84.58
1,000,000 0.36 1.60 93.52
1,024,000 0.37 1.62 95.62

Table 3. SETTLING (sec.)

|w|
FJS

(online)

Montre

(offline)

Montre

(online)

300 0.00 0.01 0.01
30,000 0.01 0.01 0.01
300,000 0.11 0.01 0.01
3,000,000 1.11 3.85 299.85
6,000,000 2.23 7.74 600.66
9,000,000 3.34 11.66 893.88
12,000,000 4.46 15.65 1,188.02
15,000,000 5.58 19.75 1,475.89
18,000,000 6.72 24.48 1,788.18
21,000,000 9.27 27.80 Timeout

24,000,000 8.96 31.78 Timeout

27,000,000 10.09 37.10 Timeout

30,000,000 11.21 41.10 Timeout

Table 4. GEAR (sec.)

|w|
FJS

(online)

Montre

(offline)

Montre

(online)

1,000 0.00 0.01 0.04
86,400 0.04 0.15 11.63
172,800 0.08 0.29 23.48
259,200 0.13 0.42 37.51
345,600 0.17 0.54 47.20
432,000 0.21 0.67 57.99
518,400 0.25 0.85 69.76
604,800 0.30 0.96 87.59
691,200 0.34 1.09 90.36

Table 5. ACCEL (sec.)

|w|
FJS

(online)

Montre

(offline)

Montre

(online)

1,000 0.00 0.01 69.05
86,400 0.06 0.63 Timeout

172,800 0.13 1.25 Timeout

259,200 0.20 1.88 Timeout

345,600 0.26 2.50 Timeout

432,000 0.33 3.12 Timeout

518,400 0.40 3.75 Timeout

604,800 0.46 4.38 Timeout

691,200 0.53 4.99 Timeout

Table 6. Memory

consumption of FJS

(online) and BM
|w| BM (MB) FJS (MB)

300 1.16 1.16
30,000 2.61 1.16
300,000 15.55 1.16
3,000,000 145.21 1.16
6,000,000 289.25 1.16
9,000,000 433.31 1.16
12,000,000 577.32 1.19
15,000,000 721.37 1.18
18,000,000 865.42 1.19
21,000,000 1,009.46 1.16
24,000,000 1,153.50 1.16
27,000,000 1,297.57 1.16
30,000,000 1,441.61 1.16
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other benchmarks). The absolute values are not very important because they include

our program and dynamically linked libraries; what matters is the tendency that mem-

ory consumption is almost constant for online FJS while it increases for BM. Constant

memory consumption is an important property for monitoring algorithms, especially in

online usage. The results here also concurs with our theoretical observation at the end

of §4 (see Fig. 8).

5.2 Comparison with Montre

Here we compare with Montre, a recent tool for (both online and offline) timed pattern

matching [29]. Montre’s online and offline algorithms differ from each other; both of

them are quite different from our FJS algorithm, too. Montre’s emphasis is on the alge-

braic structure of timed regular expressions and compositional reasoning thereby, while

our algorithm features automata-theoretic views on the problem.

Since we had difficulty running Montre in the same environment as in §5.1, we

instead used GCC 4.9.3 as a compiler, and conducted experiments on an Amazon EC2

c4.xlarge instance (April 2017, 4 vCPUs and 7.5 GB RAM) that runs Ubuntu 14.04

LTS (64 bit). The timeout is set to thirty minutes.

In Tables 2–5 are the results. Here we use the benchmarks SIMPLE, SETTLING,

GEAR, and ACCEL, for which the translation between timed words (our input) and sig-

nals (Montre’s input) makes sense. Our (online) FJS implementation is about 3 to 8

times faster than offline Montre and about 250 times faster than online Montre. The

big performance advantage over online Montre can be attributed to various reasons, in-

cluding: 1) online Montre needs to frequently compute derivatives of TREs; 2) online

Montre is comparable to our brute-force algorithm in that there is no skipping involved;

and 3) Montre is implemented in a functional language (Pure [25]) that is in general

slower. The reason for the advantage over offline Montre is yet to be seen: given that the

algorithms are very different, the advantage may well be solely attributed to implemen-

tation details. We claim however that good online performance of our FJS algorithm is

a big advantage for monitoring applications.

6 Conclusions and Future Work

We continued [32] and presented an algorithm for timed pattern matching. Based on the

FJS algorithm [13] it exhibits better online properties, as witnessed in our experiments.

As future work we wish to implement an interface of our experimental implementation

and distribute as a tool. We also wish to try the algorithm in actual embedded hardware,

like [18].
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automata. In T. Touili, B. Cook and P.B. Jackson, editors, Computer Aided Verification,

22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,

vol. 6174 of Lecture Notes in Computer Science, pp. 148–161. Springer, 2010.

15. H. Ho, J. Ouaknine and J. Worrell. Online monitoring of metric temporal logic. In

B. Bonakdarpour and S.A. Smolka, editors, RV 2014, Toronto, ON, Canada, September

22-25, 2014. Proceedings, vol. 8734 of Lecture Notes in Computer Science, pp. 178–192.

Springer, 2014.

16. B. Hoxha, H. Abbas and G.E. Fainekos. Benchmarks for temporal logic requirements for

automotive systems. In G. Frehse and M. Althoff, editors, 1st and 2nd International Work-

shop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014,

Berlin, Germany, April 14, 2014 / ARCH@CPSWeek 2015, Seattle, WA, USA, April 13,

2015., vol. 34 of EPiC Series in Computing, pp. 25–30. EasyChair, 2014.



17

17. X. Jin, J.V. Deshmukh, J. Kapinski, K. Ueda and K.R. Butts. Powertrain control verification

benchmark. In M. Fränzle and J. Lygeros, editors, HSCC’14, Berlin, Germany, April 15-17,

2014, pp. 253–262. ACM, 2014.

18. A. Kane. Runtime monitoring for safety-critical embedded systems. PhD thesis, PhD thesis,

Carnegie Mellon University, USA, 2015.

19. A. Kane, O. Chowdhury, A. Datta and P. Koopman. A case study on runtime monitoring of

an autonomous research vehicle (ARV) system. In E. Bartocci and R. Majumdar, editors,

RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, vol. 9333 of Lecture Notes

in Computer Science, pp. 102–117. Springer, 2015.

20. D.R. Kini, S.N. Krishna and P.K. Pandya. On construction of safety signal automata for

mitl[U , S ] using temporal projections. In U. Fahrenberg and S. Tripakis, editors, FORMATS

2011, Aalborg, Denmark, September 21-23, 2011. Proceedings, vol. 6919 of Lecture Notes

in Computer Science, pp. 225–239. Springer, 2011.

21. D.E. Knuth, J.H.M. Jr. and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comput.,

6(2):323–350, 1977.

22. O. Maler, D. Nickovic and A. Pnueli. From MITL to timed automata. In E. Asarin and

P. Bouyer, editors, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings,

vol. 4202 of Lecture Notes in Computer Science, pp. 274–289. Springer, 2006.

23. The MathWorks, Inc., Natick, MA, USA. Simulink User’s Guide, 2015.

24. D. Nickovic and N. Piterman. From mtl to deterministic timed automata. In K. Chatterjee and

T.A. Henzinger, editors, FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010.

Proceedings, vol. 6246 of Lecture Notes in Computer Science, pp. 152–167. Springer, 2010.

25. Pure Programming Language. https://purelang.bitbucket.io.

26. F. Raimondi, J. Skene and W. Emmerich. Efficient online monitoring of web-service slas.

In M.J. Harrold and G.C. Murphy, editors, Proceedings of the 16th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA,

November 9-14, 2008, pp. 170–180. ACM, 2008.
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Algorithm 4 Detail of our FJS-type algorithm for timed pattern matching

Require: A timed word w = (a, τ ), and a timed automaton A = (Σ,S, S0, C,E, F ).
Ensure:

⋃

Z is the match setM(w,A) in Def. 2.3.

1: n← 1 ⊲ n is the position in w of the head of the current matching trial

2: CurrConf ← ∅; Z ← ∅
3: while n ≤ |w| −m+ 2 do

4: while ∀ r ∈ L′. an+m−2 6= a′ where rm−2
a′

−→ rm−1 do ⊲ Try to match the tail of L′

5: n← n+∆(an+m−1) ⊲ Quick Search-type skipping

6: if n > |w| −m+ 2 then return

7: CurrConf ← {(s, ρ∅, [τn−1, τn)) | s ∈ S0}
8: for n′ ∈ {n, n+ 1, · · · , |w|} do ⊲ We try matching in the same way as [32]

9: NextConf ← ∅
10: for (s, ρ, T ) ∈ CurrConf do

11: for (s, s′, an, λ, δ) ∈ E do

12: T ′ ← {t0 ∈ T | eval(ρ, τn, t0) |= δ}
13: if T ′ 6= ∅ then

14: ρ′ ← ρ
15: for x ∈ λ do

16: ρ′ ← reset(ρ′, x, τn)
17: NextConf ← NextConf ∪ (s′, ρ′, T ′)
18: for sf ∈ F, (s′, sf , $, λ

′, δ′) ∈ E do

19: T ′′ ← (τn′ , τn′+1]
20: Z ← Z ∪ solConstr(T ′, T ′′, ρ′, δ′)
21: if NextConf = ∅ then break

22: CurrConf ← NextConf

23: for k ∈ {n+ 1, · · · , n+max{β(s) | (s, ρ, T ) ∈ CurrConf } − 1} do

24: ⊲ Matching trial stacks at the states {s | (s, ρ, T ) ∈ CurrConf }
25: for s ∈ S0, sf ∈ F, (s, sf , $, ρ, δ) ∈ E do

26: Z ← Z ∪ solConstr([τk−1, τk), (τk−1, τk], ρ, δ)
27: n← n+max{β(s) | (s, ρ, T ) ∈ CurrConf } ⊲ KMP-type skipping

A Detailed Pseudocode of Our FJS-type Algorithm for Timed

Pattern Matching

Definition A.1 (eval, reset, solConstr) Let a pattern timed automaton beA = (Σ,S, S0, C,E, F ).
For a partial function ρ : C ⇀ R>0 and t, t0 ∈ R>0, the clock interpretation eval(ρ, t, t0) : C →
R≥0 is eval(ρ, t, t0)(x) = t − ρ(x) (if ρ(x) is defined) and eval(ρ, t, t0)(x) = t − t0
(otherwise). For a partial function ρ : C ⇀ R>0, tr ∈ R>0 and x ∈ C, reset(ρ, x, tr) : C ⇀

R>0 is the following partial function : reset(ρ, x, tr)(x) = tr; and reset(ρ, x, tr)(y) =
ρ(y) for each y ∈ C \ {x}. (The latter is Kleene’s equality between partial functions,

to be precise.) For intervals T, T ′ ⊆ R>0, a partial function ρ : C ⇀ R≥0, and a clock

constraint δ ∈ Φ(C) (§2.1), we define solConstr(T, T ′, ρ, δ) =
{

(t, t′)
∣

∣ t ∈ T, t′ ∈

T ′, eval(ρ, t′, t) |= δ
}

.

The detail of our FJS-type algorithm for timed pattern matching is in Algorithm 4.
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Fig. 21. Our FJS-type algorithm for pattern matching, for the example in Fig. 1
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Fig. 22. The zone automaton SGa(A) for A in
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Fig. 23. Table for β(s2) = 2

B Our FJS-Type Timed Pattern Matching Problem, Illustrated

Let up look at the example in Fig. 1. The zone automaton SGa(A) is in Fig. 22; the

execution of our algorithm is illustrated in Fig. 21.

The first configuration in Fig. 21 means we are after possible matches that start at

t ∈ [0, 0.5). With m = 4 (the length of the shortest accepted word), we try matching

of the third target character am−1 = a3 = b with the tail of every length-3 prefix

of L(A) using the zone automaton SGa(A) in Fig. 22. The trial fails and we invoke

Quick Search-type skipping ∆(a4 = b). Since a4 = b does not appear in any transition

of SGa(A), we can skip four events and reach the second configuration where we look

for potential matches that start at t ∈ [1.7, 2.8).

We again try matching form the tail. This time it succeeds because a7 = a appears

in the third character of a word accepted by SGa(A). Then we move to Line 7 of

Algorithm 4 where we try matching from left to right. After the trial stacks at s2 ∈ S,

we invoke the KMP-type skipping.

The KMP-type skip value β(s2) is computed as shown in Fig. 23. Here it is much

more intricate how to decide ✓ or ✗, i.e. if the “prefix” on the top (L′
s2

) matches the

shifts of L′ below. Previously for string or (untimed) pattern matching we just compared

characters (Fig. 3 & 7); here the question is if there exists a timed word that causes both

a transition in the prefix (on the top) and the corresponding transition in a shift (below).

For this purpose we employ the zone automaton SGa(A × A) of the product timed

automaton A×A. For example, the shift by one position does not match (✗) in Fig. 23

because there is no transition (s0, s1)
x = x′ = 0

(s1, s2)
x = x′ = 0

a in SGa(A×A).

In the fourth configuration, we try matching from t ∈ [3.7, 4.9). We again try match-

ing from the tail; it succeeds; we try matching from left to right; and we find a matching

{(t, t′) | t ∈ [3.7, 3.9), t′ ∈ (6.0,∞)}.
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C Correctness of Our FJS-Type Timed Pattern Matching

Algorithm

Theorem C.1 (Correctness of ∆ and β) Let Opt(n) = min{i ∈ Z>0 | ∃t ∈ [τn+i−1, τn+i), t
′ ∈

(t,∞). (t, t′) ∈ M(w,A)}. For n ∈ [1, |w|], we have both Opt(n) ≥ ∆(an+m−1) and

Opt(n) ≥ maxs∈S′ β(s) where ν0 is the clock valuation assigning 0 for any x ∈ C,

n′ = max{n′ ∈ [1, |w|] | ∃s0 ∈ S0, s ∈ S, ν ∈ (R≥0)
C . (s0, ν0)

w(n,n′)
−−−−−→ (s, ν)} and

S′ = {s ∈ S | ∃s0 ∈ S0, ν ∈ (R≥0)
C . (s0, ν0)

w(n,n′)
−−−−−→ (s, ν)}.

Proof. When Opt(i) > m, both Opt(i) ≥ ∆(w(i+m−1)) and Opt(i) ≥ max{β(s) |
(s, ρ, T ) ∈ Conf (i, j)} hold because for any a ∈ Σ and s ∈ S, we have m + 1 ≥
∆(a) and m + 1 ≥ β(s). Assume Opt(i) ≤ m in the following. Let L−$(A) be

{w(1, |w| − 1) | w ∈ L(A)}.

The membership of a timed word segment leads the membership in the approxi-

mated languages, as follows.

∃t ∈ [i+ n− 1, i+ n), t′ ∈ (t,∞). (t, t′) ∈ M(w,A)

⇐⇒ ∃t ∈ [i+ n− 1, i+ n), t′ ∈ (t,∞). w|(t,t′) ∈ L(A)

⇒∃t ∈ [i+ n− 1, i+ n), t′ ∈ (t,∞), k ∈ [i+ n− 1, |w|].

(w(i + n, k)− t) ◦ ($, t′) ∈ L(A)

⇒∃t ∈ [i+ n− 1, i+ n), k ∈ [i + n− 1, |w|].

(w(i + n, k)− t) ∈ L−$(A)

⇒∃t ∈ [i+ n− 1, i+ n). (w(i + n, |w|) − t) ∈ L−$(A) · (Σ × R>0)
∗

⇒(w(i, |w|) − τi) ∈ (Σ × R>0)
n · L−$(A) · (Σ × R>0)

∗

⇒(w(i, |w|) − τi) ∈ (Σ × R>0)
n · W(L′) · (Σ × R>0)

∗

We have Opt(i) ≥ ∆(w(i +m− 1)) because of the follows.

(w(i, |w|) − τi) ∈ (Σ × R>0)
n · W(L′) · (Σ × R>0)

∗

⇒(w(i, i +m− 1)− τi) · (Σ × R>0)
∗∩

(Σ × R>0)
n · W(L′) · (Σ × R>0)

∗ 6= ∅

⇒(Σ × R>0)
m · w(i +m− 1) · (Σ × R>0)

∗∩

(Σ × R>0)
n · W(L′) · (Σ × R>0)

∗ 6= ∅

Similarly, we have Opt(i) ≥ max{β(s) | (s, ρ, T ) ∈ Conf (i, j)} because of the

follows.

(w(i, |w|) − τi) ∈ (Σ × R>0)
n · W(L′) · (Σ × R>0)

∗

⇒∀(s, ρ, T ).W(Ls) · (Σ × R>0)
∗ ∩ (Σ × R>0)

n · W(L′) · (Σ × R>0)
∗

⊓⊔
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Table 7. The duration of preprocessing (ms). The timeout is set to three minutes.

BM (region) BM (zone) FJS (zone)

SIMPLE 1.09e-03 2.53e-03 3.46e-03

LARGE CONSTRAINTS Timeout 1.02e-03 1.05e-03

TORQUE 1.74e+00 4.25e-01 2.09e-01

SETTLING 1.69e+04 4.60e-03 5.40e-03

GEAR 1.00e-03 4.47e-03 1.00e-03

ACCEL Timeout 2.95e-02 1.00e-03

D The pattern timed automaton in LARGE CONSTRAINTS

s0start s1

s2 s3

s4

p, true

¬p, 0 < x ≤ 10/x := 0

q, true¬q, 0 < y ≤ 10/y := 0 q, true ¬q, 0 < y ≤ 10/y := 0

p, true

¬p, 0 < x ≤ 10/x := 0

$, 80 ≤ t

Fig. 24. The pattern timed automaton in LARGE CONSTRAINTS

E Optimization of Preprocessing for Zone Abstraction and Skip

Value Computation

In Table 7 is how long our preprocessing takes for each of our benchmark problems. We

see that our implementation is efficient in the preprocessing stage; this is largely due to

our memorization technique in which we reuse parts of zone automata.

For reference we also present results for region-based abstraction [1]: though equiv-

alent in terms of finiteness, zones give more efficient abstraction than regions. In our

previous work [32] we used regions in place of zones, and that posed a bottleneck, as

we can see in Table 7.


