Multi-view Consistency in UML

Alexander Knapp® and Till Mossakowski?

! Universitit Augsburg, Germany
2 Otto-von-Guericke Universitit Magdeburg, Germany

Abstract. We study the question of consistency of multi-view models in UML
and OCL. We first critically survey the large amount of literature that already
exists. We find that only limited subsets of the UML/OCL have been covered so
far and that consistency checks mostly only cover structural aspects, whereas only
few methods also address behaviour. We also give a classification of different
techniques for multi-view UML/OCL consistency: consistency rules, the system
model approach, dynamic meta-modelling, universal logic, and heterogeneous
transformation. Finally, we elaborate cornerstones of a comprehensive distributed
semantics approach to consistency using OMG’s Distributed Ontology, Model and
Specification Language (DOL).

1 Introduction

Hartmut Ehrig was a researcher whose broad scope of interests ranged from category
and automata theory through algebraic specifications and graph grammars to models of
concurrency, and in all these fields he achieved fundamental results and contributed far-
reaching and novel ideas. It is sad that such a great researcher passed away far too early
after his retirement.

One of the many themes of Hartmut Ehrig’s research has been the multi-viewpoint
integration in the specification of complex systems [12]. We here address this problem
more specifically in the context of the “Unified Modeling Language” (UML [34]).
UML is a complex visual language featuring 14 different diagram types which may be
complemented by textual annotations in the “Object Constraint Language” (OCL [33]);
both languages are standardised by the Object Management Group (OMG). Already for
UML 1.1 van Emde Boas observed “that UML is not a single language but a hybrid of
several languages” [11] and Cook et al. [7] coined the notion of UML as ““a family of
languages”. The multitude of diagram types and sub-languages offered by the UML/OCL
allows the modeller to reduce the complexity of a model by specifying a system from
different viewpoints: data, behaviour, interaction, component architecture, etc. Multi-
view modelling and the necessity to integrate views devised from different viewpoints
has been intensively discussed in the literature in general by Hartmut Ehrig et al. [12] and
others [4], in the software architecture community [8, 21, 22], in the UML community
[5], in the SysML community [32, 39], and also in other communities [2, 17, 35].

A central question in multi-view modelling is whether such a family of UML/OCL
diagrams and annotations is still consistent, i.e., conjointly instantiable such that all
views from all viewpoints are satisfied w.r.t. their (well-defined) semantics [c46]>. This

3 References prefixed with a ‘c’ refer to the multi-view UML/OCL consistency bibliography
assembled in a separate list.

consistency problem has already been stated in the early UML days [5, 13, 14], and has
been addressed quite intensively in the literature. In particular, several categorisations for
partitioning the consistency problem have been designed: Engels et al. [c26] suggest to
distinguish between horizontal (or intra-model) and vertical (or inter-model) consistency,
i.e., whether the views are on the same level of abstraction; as well as syntactic (struc-
tural well-formedness of the abstract syntax) and semantic consistency (compatibility of
behaviour). Mens et al. [29] focus more on the intention of sub-languages and give a
classification into structural vs. behavioral diagrams and their use on the specification vs.
instance level. Allaki et al. [1] combine these schemes into a typological frame of mono-
vs. multi-diagram, specification vs. instance, and syntactic vs. semantic, and furthermore
add a taxonomy of consistency problems in a terminological dimension, mentioning
incompleteness, ambiguity, contradiction, incompatibility, and anomaly. From a verifica-
tion perspective, Hilken et al. [18] present a list of structural and behavioural verification
tasks for UML models considering besides consistency the categories of consequence,
independence, executability, and reachability. A structural verification task considers a
single (integrated) system state only, whereas a behavioural task pertains to a sequence
of states. In contrast to [c46], here “[c]onsistency problems are structural problems and
do not involve behaviour” [18, p. 122].

The large number of approaches to multi-view consistency in the literature has also
been reviewed and summarised [3, 20, 28, 40, 41, 42]. In particular, Torre et al. [40, 41]
systematically survey existing consistency rules. They find that most rules are syntactic
(88.21% in [40] and 81.89% according to the more comprehensive [41]), and that most of
the rules are related to class diagrams (71.58%), sequence diagrams (47.37%), and state
machine diagrams (42.11%). Moreover, they deplore that “it appears that researchers
tend to discuss very similar consistency rules, over and over again”, and conclude that
“much more work is needed to develop consistency rules for all 14 UML diagrams, in
all dimensions of consistency (e.g., semantic and syntactic on the one hand, horizontal,
vertical and evolution on the other hand)” [40].

In this paper, we want to take up the challenge posed by Torre et al.: What is needed
to develop a notion of multi-view consistency for a multitude of the (and ideally all)
14 UML diagrams and the OCL? We first give a comprehensive overview over the
existing approaches to multi-view UML/OCL consistency in the literature both for
UML 1 and UML 2 starting from the surveys mentioned above. We list which diagram
types and sub-languages of UML/OCL are covered by each approach, which consistency
technique it applies, whether it tackles structural or behavioural consistency, and which
formalism and tool it uses. Our main contribution here is to point out and survey the
variety of techniques to a grip on consistency for a heterogeneous, multi-view language
like UML/OCL, ranging from syntactic consistency rules over an overarching, semantic
system model to heterogeneous transformations. We find that structural consistency is
considered more often by far and that either structural, syntactic consistency rules or an
encoding into a system model or some universal logic prevails.

Purely syntactic approaches, however, do not help in ensuring behavioural consis-
tency, and having to encode all UML/OCL sub-languages into a single semantic model
or formalism, somewhat neglects the inherent heterogeneity of this multi-view language
and almost necessarily leads to a certain unnaturalness. More often than not, it would be

preferrable to represent the structural and behavioural semantics of a sub-language in an
appropriate semantic domain of its own and only to relate these sub-languages and their
semantic domains by translations. We therefore outline, extending our previous work
on a truly heterogeneous approach to UML/OCL semantics [c11, c42], a consistency
approach based on distributed heterogeneity in the “Distributed Ontology, Model and
Specification Language” (DOL), also standardised by the OMG.

2 Review of Approaches to Multi-view Consistency in UML

Tables 1 and 2 contain an overview of existing approaches to multi-view consistency
both for UML/OCL 1 (up to 2004) and UML/OCL 2 (starting in 2005), roughly ordered
by their date of appearance. While the literature on UML abounds, for our topic, our
literature review is sound and also comprehensive. Our starting points were the surveys [3,

Reference CD OD SM ID AD OCL cons. class. Form./Tool

* Egyed [c18, c19] >0 O T s VIEWINTEGRA

* GroBe-Rhode [c32, ¢33] D > 0 S b transf. syst.
Reggio et al. [c66] > D U (s/b) CASL-LTL
McUmber, Cheng [c56] > > U b SPIN

* krtUML [c14] > O S s/b symb. trans. syst.
Bernardi et al. [c7] (OO U (b) Petrinets

* XUML [¢57] ® O ® S (s) Exec. UML

* Kiister et al. [c23, c26] >0 OO0 18] b CSP/FDR

* Hausmann et al. [c25] (OO D b Graph transf.
Spanoudakis, Kim [¢70] > J U s Dempster-Shafer
Litvak et al. [c51] e O U b BVUML
Rasch, Wehrheim [c64] > D U s/b Z,CSP/FDR

* Wirsing, Knapp [c75] > > O T s/b univ. alg.
Kyas et al. [c47] > > ® U s/b PVS
van der Straeten [c71, c72] @ (OO U s Desc. Logic
Amalio et al. [c2] > O O U s Z
Kim, Carrington [c41] €] €] U s Object-Z
Diethers, Huhn [c16] Q) U b UPPAAL
Yang et al. [c76] > [] U s rCOS
Yeung [c78] D D U b CSP,B

Table 1. Overview of UML/OCL 1 consistency approaches. CD means class diagrams, OD object
diagrams, SM state machines, ID interaction diagrams (e.g, sequence diagrams), AD activity
diagrams (as a special case of state machines), and OCL the Object Constraint Language. A @
means support for at least a substantial subset of the diagram/sub-language type, a @ indicates that
the diagram/sub-language is supported but only for a limited subset. The consistency technique
of the approach is indicated by an S for “system model”, D for “dynamic meta-modelling”, U
for “universal logic”, or T for “heterogeneous transformation”. An entry “s” in the class(ification)
column means that structural, static consistency checks are supported, a “b” that behavioural,
dynamic consistency is checked; if the indicator is set into parentheses, the consistency support is
quite restricted. The last column shows the used formalisms and tools. An asterisk in front of the
reference indicates that more information is given in Sect. 2.1.

Reference CD OD CMP CSD SM ID AD OCL cons. class. Form./Tool

Lam, Padget [c49] O] U b m-calculus
Long et al. [c54] D > U s rCOS
Lucas et al. [¢55]) > U s Maude
Okalas et al. [c61] U U U s/ B
Rasch, Wehrheim [c65] D o () U s/b Z, CSP/FDR
Wang et al. [c74] [Q) U b LTSA
Bellur, Vallieswaran [c6] O o [CIC U s meta-model
Li et al. [¢50, ¢53] > @ > @ U s/(b) UTP
O’Keefe [c62] [[INQ) U b Dynamic Logic
Shinkawa [c68] D >0 0 U b CPN
Yao, Shatz [c77] (G U b Petri nets
Zhao et al. [c79] [CNQ) U b SPIN
Anastasakis et al. [c3] [] ® U s/(b) Alloy
* Gogolla et al. [c29] [I) (G ® U s/(b) USE
Knapp, Wuttke [c43] | [BN U b Hugo/RT
Sapna, Mohanty [c67] (] >0 0 U s SQL
Brandshgi [c8] > 0 U b impl.
Banerjee et al. [c4, c5] | [U b Rhapsody/LTL
* Cengarle et al. [c11] o D) T s/b institutions
* Alanazi [c1] (G U (b) impl
Hammal [c34] () U (b) Petrinets
Laleau, Polack [c48] o [U s meta-model
* Broy et al. [¢9, c10] o o [) S s/b settheory
* Kuske et al. [c44] (O [Q) U (s/b) graph. transf.
* Gronniger [c31] (IR [) S s/b Isabelle/HOL
Nimiya et al. [c58] [Q) U b Alloy
Khai [¢39] D > U s Prolog
Ober, Dragomir [c59] e O O U s/b OMEGA2
Puczynski [c63] Q [CQ) U s/b impl
Gerlinger et al. [c28] [] [] [] U s Common Logic
El Miloudi et al. [c21, c22] O [U s Z
Khan, Porres [c40] o O o o U s Desc. Logic
* fUML [c60] [) [] S s/b Common Logic

Table 2. Overview of UML/OCL 2 consistency approaches. The abbreviations are as in Tab. 1
extended by CMP for component diagrams and CSD for composite structure diagrams. Activity
diagrams (AD) have an independent semantics in UML 2. Protocol state machines are not equipped
with a diagram type of their own in UML 2; still, [c29] considers them independently.

20, 28, 41, 42], the information of which we aligned, adapted, and extended by search
queries on the Internet and personal experiences.

From the 14 different UML diagram types (structural: profile, class, composite
structure, component, deployment, object, package; behavioural: activity, sequence,
communication, interaction overview, timing, use case, state machine [34, p. 681]), we
combined, as usual, the sequence, communication, interaction overview and timing
diagram into the single type of interaction diagram for conciseness; and we omitted
the profile, deployment, package, and use case diagram. Package diagrams provide a

means for namespace modularisation and the package structure may most of the time
be resolved statically using fully qualified names; still, also the meaning of packages
and their relationships has been discussed [9, 38]. Use case diagrams, though besides
class diagrams the most used diagram type of the UML [10, 26], convey rather little
semantics on their own [19, 23]. Deployment diagrams, assigning software artefacts to
system elements, also show quite limited semantic content (but cf. [30]). Finally, profile
diagrams are used to define a domain-specific UML extension, thus every instance would
add a viewpoint of its own.

Our survey thus covers 11 sub-languages of the UML/OCL family, where the entry
for interactions condenses the information on four diagram sub-types. Since we aim at
multi-view consistency involving several viewpoints, we do not list approaches here that
only consider a single diagram type. In particular, we leave out the consistency of class
diagrams, possibly accompanied by object diagrams (see [6] for an overview) or state
machines [27, 36, 37]. Class diagrams, however, have been, in fact, the first instance of
UML consistency investigations [13, 14, 24].

We now first review the variety of techniques enabling consistency checking in the
listed multi-view approaches, and then report on our general observations and findings.

2.1 Consistency Techniques

The most immediate and direct approach to consistency checking of UML diagrams and
models uses consistency rules, mostly on the concrete or abstract syntax. These rules
extend the well-formedness rules of the UML specification given in OCL [c13]. Another
option for such rules is to use other kinds of logics, like description logics [c40, c71,
c72]. Many modelling tools incorporate their own rule sets [c17, c20, c52, c73]. The
survey by Torre et al. [41] lists 116 consistency rules studied in the literature, where 95
are syntactic (structural).

Syntactic checks are indispensable in any approach to consistency, but they do not
suffice to uncover the more intricate behavioural consistency problems, e.g., whether
a network of state machines admits a trace specified by an interaction. Advanced con-
sistency approaches thus have to develop and rely on a behavioural semantics of the
UML/OCL diagrams and sub-languages of discourse. The degree of integration of these
semantics varies considerably with the proposed approaches in the literature. Though
the borders can not be always drawn with full accuracy, we suggest a categorisation w.r.t.
the emphasis which is given to the semantic heterogeneity of UML/OCL. In the “system
model” approach a uniform realisation frame is built, into which all sub-language aspects
are encoded. The “dynamic meta-modelling” approach dispenses with the encoding, but
enriches the meta-model, i.e., the abstract syntax of the UML, by semantic information.
The “universal logic” approaches still use an encoding, though now to a uniform formal-
ism. Finally, “heterogeneous transformations” approaches aim at employing families of
translations for relating sub-languages.

System Model. The “system model” approach, best exemplified by Broy, Groenniger et
al. [c9, c10, c¢31], builds on a uniform semantic basis for covering all aspects of state
and state change present in any UML sub-language to be considered. By representing
every facet of a model, expressed in various diagrams, in one and the same instance of

the system model, static as well as dynamic checks can be performed. The “Executable
UML” (xUML [c57]) as well as the “Foundational Subset of the UML” (fUML [c60])
use such system models for comprehensive and integrated execution.

For states, the system model in [c9, c10], contains a data store built from classes,
their attributes, and the inheritance relationship as well as the instances; a control store
consisting of operations and stacked method calls; and an event store holding also
messages. For state changes, it comprises control-flow and event-based state transitions
systems enriched by time. This system model, though with some modifications, e.g.,
specialising the event store to a message store, has later on been encoded in Isabelle/HOL
and parts of UML class and object diagrams, state machines, and sequence diagrams,
as well as a subset of OCL have been represented in this system model [c31]. With
the help of the Isabelle prover then both static consistency checks, like whether an
inheritance relationship is acyclic, and dynamic consistency checks, like whether a
sequence diagrams is realisable by a state machine, can be done.

The manual effort to write down these checks and perform them in an interactive
theorem prover seems quite substantial, however. Not to the least part, this is owed to the
necessary complexity of the system model. Automation of various consistency checks
has not been the primary goal of the approach. Still, the approach supports a certain
degree of variability by exchanging sub-theories of the encoded system model, and other
languages, a programming language, for instance, can be integrated [c31] if they can
also be represented adequately in the system model.

The “krtUML” approach by Damm et al. [c14] uses symbolic transition systems as
its system model for a comprehensive semantics. Their choice of class diagrams and
state machines targets real-time systems. Consistency checks are not the main goal but
behavioural consistency may be added on the basis of this system model. They stress
that “[b]ecause all diagrams are only views on one and the same model, the attempts to
give semantics for separated UML diagrams fail in producing the right semantics for the
entire UML” (p. 94), though this valid observation somewhat neglects the possiblity to
integrate the relations between the UML diagrams and sub-languages as done, e.g., in
the heterogeneous transformation approaches.

Dynamic Meta-modelling. Inspired by attribute grammars that extend the abstract syntax
tree of a (textual) language by synthesised and inherited attributes for semantic and
contextual analysis, the “dynamic meta-modelling” approach by Hausmann, Engels, et
al. [c12, c24, c25, c¢27, c35, c69] extends the abstract syntax of the UML, i.e., its meta-
model, by semantic concepts on this very meta level. In fact, the UML meta-model
shows several concepts that serve as links between the various sub-languages, like
Event originating from, e.g., operation calls, used in state machines and activities for
triggering behavioural effects or Message used in interactions for referring to operations
and signals. By adding extra semantic concepts, the linkage between the sub-languages
can be enhanced and, in particular, lifted to the behavioural, dynamic level. For example,
the UML meta-class StateMachine is extended by a new meta-class EventPool for holding
instances of the already existing meta-class Event that the instance of StateMachine then
can react to; or the meta-class ControlFlow of activities is extended by a new meta-class
ControlToken representing the possiblity that a control flow activity edge may carry a
control token. Using the extensions, an operational semantics based on the extended

meta-model and thus covering several UML sub-languages in concert is defined using
(typed) graph transformations with negative application conditions, most prominently in
the GROOVE tool [c35, c69] applying state space exploration. The graph transformation
rules are separated into local small-step rules and transactional big-step rules that call
the local rules.

This intriguing idea, combining attribute grammars and structural operational se-
mantics, has mainly been applied to activities [c35] and to a limited degree to state
machines [c69] and OCL [c12]. For consistency checks proper, the dynamic relation be-
tween sequence diagrams and state machines has been considered as an example, though
without tool support [c25]. The overall design of dynamic meta-modelling somewhat
resembles the “system model” approach as it builds a single domain of interpretation.
By contrast, however, dynamic meta-modelling does not rely on an external semantic
domain, but reuses the existing UML concepts and adds those features directly to the
meta-model that are missing for behavioural interpretation. The use of a reference model
for relating views that are then embedded and integrated into system model has already
been advocated by Ehrig et al. [12]; the use of graph transformations on the meta-model
level has also been used by Kuske et al. [c44]. Still, the complexity of the UML meta-
model itself, let alone the necessary extensions, and respecting all semantic interconnec-
tions in local and global graph transformation rules present a major obstacle for the use
of dynamic meta-modelling in comprehensive multi-view consistency checking.

Universal Logic. The system model approach builds a uniform semantic domain offering
the necessary mechanism to interpret the different UML sub-languages and diagrams. By
contrast, a “universal logic” approach does not rely on a single domain of interpretation,
but just uses a uniform logical technique, like transition systems, for expressing the
semantics of all UML diagrams to be checked for consistency. However, as in the
system model approach, having to use a single encoding technique may sometimes yield
unnecessary and unnatural complexity.

Grofle-Rhode [c32, c33] uses “transformation systems”, i.e., extended labelled tran-
sition systems, where both states and transitions are labelled. The (control) states offer
observations and synchronisation points, the transitions model the atomic steps of an
entity and may be executed synchronously with other system parts. The semantics of
class diagrams, state machines as well as their composition, and sequence diagrams
are represented as classes of such transformation systems. Consistency can then be
expressed by checking that the intersection of model classes (modulo some projections
for adapting labels) are not empty. In a similar vein, though not as elaborated, the “super-
state analysis” of Alanazi [c1] relies on nets of transition systems which allows to check
the consistency of state machines and interactions.

The “Consistency Workbench” by Kiister, Engels, et al. [c23, ¢26, c45] is based on a
“partial translation of models into a formal language (called semantic domain) that pro-
vides a language and tool support to formulate and verify consistency conditions” [c23,
p. 158]. In principle, the employed semantic domain is not fixed for all installments of
the general approach and may vary with the consistency checks and the information
extracted from the models by partial translation. The Consistency Workbench itself relies
exclusively on the algebraic process language CSP and failure-divergence refinement
(FDR). Still, it does not aim to construct an overarching system model, but is param-

eterised in the consistency problem type. In this sense, it is bordering at an approach
using heterogeneous transformation.

In the “film-stripping” approach by Gogolla et al. [c30, c36] a uniform technique
for representing behavioural system evolution is used: System behaviour is captured by
sequences of snapshots of system states, i.e., object diagrams, linked together by change
information in particular recording how the objects evolve. Consistency checks could
then be performed, e.g., in the USE tool [c29]. Even for automated analysis, like model
checking, however, the general scaling of the technique without appropriate compression
or abstraction of the snapshots remains unclear. The approach is complemented by model
transformations from full-fledged UML to a simpler “base model” [c37, ¢38]: Complex
modelling constructs, like association classes, are replaced with simpler modelling ex-
pressions, though possibly at the expense of having to use OCL. This technique is mainly
exemplified by transformations on class diagrams and OCL itself, though, ultimately
“[a]ll diagrams conjoined are transformed and combined into a base model” [c38, p. 60].
Thus, there are quite some similiarities with the system model approach.

Heterogeneous Transformation. Approaches based on “heterogeneous transformation”
(coined by [c19]) focus on the several sub-languages and diagrams of the UML used in
different forms at different development stages, from different viewpoints by different
stakeholders [21, 22]. Such an approach has in particular been advocated by Derrick et
al. [c15] for UML from their experiences with “Open Distributed Processing” (ODP)
using Z and LOTOS, though not elaborated in detail. In their terminology a set of
viewpoint specifcations is consistent “if there exists a specification that is a refinement
of each of the viewpoint specifications with respect to the identified refinement relations
and the correspondences between viewpoints” (p. 35).

Egyed’s VIEWINTEGRA [c18, c19] defines transformations between the different
UML diagram types on the very diagram level. In principle, all eleven diagram types of
UML 1 could be covered, but only class diagrams, object diagrams, state machines, and
interaction diagrams, i.e., sequence and collaboration diagrams (which, as in UML 2,
are mere visual variants), are discussed in [c19]. The transformations are categorised
into generalisation, e.g., object to class diagram; structuralisation, e.g., state machine to
class diagram; translation, e.g., sequence into collaboration diagram; and abstraction,
e.g., class diagram to class diagram. The last class of transformations, abstraction, is
employed to relate diagrams and different development and refinement stages. Since
the transformations map diagrams to diagrams, the supported consistency checks are
structural; neither a static nor a dynamic semantics are provided. The classification of
transformations is also used to reduce the number of necessary comparison transforma-
tions, which for eleven diagram types would otherwise be 55. However, when employing
this design, not all transformations are possible any more, and a common denominator
sometimes is needed, e.g., for comparing an object diagram with a state machine both
are, perhaps somewhat arbitrarily, transformed into a class diagram.

An effort to formalise the relation of views and viewpoints on a semantic level
is provided in [c75], where viewpoints are captured by a formal language category
equipped with a model functor to a semantic domain category and views are language
expressions in a viewpoint. Consistency is expressed by translations on the syntactic and
semantic level; for semantic consistency a “viewpoint of comparison” has to be given.

Consistency checks, though only pair-wise, are exemplified for class diagrams, state
machines, and sequence diagrams. The scheme by Cengarle et al. [c11] is similar, but
uses the established theory of institutions as its foundation.

2.2 Observations and Results

Not all 53 approaches listed in Tabs. 1 and 2 are of the same quality w.r.t. elaboration
and comprehensiveness with a kind of feasability study [c34, c58] and detailed accounts
involving comprehensive semantics, tools, and larger case studies [c29, c43, c47, c59]
as the ends. Tool support is similarly diverse and ranges from prototypical proprietary
implementation over model checking and model finders to interactive theorem proving.
In line with the survey results by Torre et al. [40], we also find that the diagram types most
often covered are the class diagram (40 out of 53), the state machine diagram (44), and the
interaction diagram (in one of its forms, 38); that according to our survey state machines
have been considered more frequently than class diagrams may be accounted by our
judicious choice of omitting single-view consistency approaches. Activity diagrams have
rarely been integrated (5), but this may change with the broader adoption of f{UML [c60].
The combination of state machines and interactions is considered most often (32). They
are mainly considered in the context of class diagrams, rarely in combination with
component diagrams and composite structure diagrams (3).

Among the approaches listed covering many different diagram types, the top four
are the following ones:

— xUML [c57] covers five diagram types. However, for three of them, only a limited
subset is covered, and only synactic, structural checks are provided.

— Gogolla et al. [c29] cover six diagram types, three of them to a substantial portion,
and at least partially semantic, behavioural checks are provided.

— Broy et al. [c9, c10] define a comprehensive, though complex system model capturing
substantial subsets of four diagram types of UML; however, tool support is not
provided.

— Gronniger [c31], based on [c9, c10], integrates a fragment of the UML (partially
covering class diagrams, object diagrams, interactions, state machines, and OCL)
semantically by an encoding to the interactive theorem prover Isabelle/HOL.

All these either follow the system model or the universal logic approach. In accordance
with the survey by Lucas et al. [28] we also find, that these encoding techniques (system
model: 6, universal logic: 43) are currently by far prevailing for consistency. One
major drawback of the encoding approaches, which may have prevented the further
integration of other UML/OCL diagram types and sub-languages into them, is their lack
of extensibility: A new viewpoint really extending the realm of expressivity inevitably
calls for a considerable amount of work in expanding and adapting the already established
semantic or logical domain.

3 Distributed Semantics for Multi-view Consistency

The previous section has shown that we are still quite far away from a comprehensive
approach to multi-view consistency for UML. One reason is the complexity inherent in

the diversity of UML models and their interaction. In [31], we have distinguished three
different approaches to handle semantic heterogeneity:

— encoding of heterogeneous languages into some “universal” language. This approach
is applied by both the system model, the dynamic meta-modelling and the univeral
logic approaches described in Sect. 2;

— focused heterogeneity, i.e. languages are not per se encoded into some “universal”
language, and complex models may involve parts written in different languages. Still,
via translations, the end result is formulated in one language. This roughly corresponds
to the heterogeneous transformation approach described in Sect. 2;

— distributed heterogeneity, i.e. truely decentralised networks of models formulated in
different languages. This is a heterogeneous transformation approach that we propose
to use.

Note that the existing heterogeneous transformation approaches are not distributed: they
fall short in leveraging the translations to build up a distributed system of viewpoints.
Therefore, they fail to handle the complexity of multi-view models in a comprehensive
way. Such a comprehensive and semantic treatment is only possible with a decentralised
approach, namely the distributed heterogeneous transformation approach. This means the
provision of formal models for the involved UML/OCL diagram types and sub-languages
that directly follow the intended semantics as specified in the UML/OCL standards. Here,
the usual semi-formal language of mathematics is used, instead of casting the formal
model into some predefined formal language. For a semantics distributed heterogeneity,
these different formal models have to be linked, of course.

3.1 An institutional approach to distributed heterogeneous transformation

A useful meta notion for carrying out this formalisation is the notion of institution
[15], an abstract formalisation of the notion of logical system. See [c56] for an early
mentioning of institutions in the context of UML. The integration of different UML/OCL
sub-languages (class diagrams, OCL, interactions) formalised as institutions has been
started by Cengarle et al. [c11]. We have sketched the extension to further UML diagram
types and a general vision in [c42].

A central feature of institutions is the provision of a notion of realisation of a
model. Note that in institution-theoretic terms, this is called a model (in the sense of
model theory) of a logical theory. However, this terminology can lead to confusion in the
domain of model-driven engineering (MDE), where MDE models play the roles of logical
theories. That is why we prefer the term “realisation” (of an MDE model) here. [18] speak
of instantiation; however, this is tailored towards class diagrams. Realisations of models
also exist for state machines (these are certain transition systems), sequence diagrams
(there, they are trace sets), etc. They can differ greatly from institution to institution. The
central point is that the notion of realisation provides a notion of consistency: a (single-
view) model is consistent iff it has at least one realisation. Thus, the different notions of
consistency from [18] can be captured by using different institutions. Moreover, these
notions of realisation and consistency can be extended from the horizontal (or intra-
model) case (i.e., living within one sub-language resp. institution) to the vertical (or
inter-model) case of multi-view models, using so-called networks, see below.

10

We here describe general methods how to address the problem of multi-view consis-
tency in this setting. Central tool is the Distributed Ontology, Model and Specification
Language (DOL)*, which recently has been adopted as a standard by the Object Man-
agement Group (OMG). DOL is not yet another modeling language, but rather a meta
language for the specification of relation between different existing models. That is,
UML diagrams can be referenced in DOL as-is, without the need of an encoding into
some other language. The only need is to specify a formal semantics for the involved
UML diagram types in the form of an institution. For UML class diagrams, this has been
done in an informative appendix of the DOL standard itself.> For other UML diagram
types, this has been partially done, see [c42] for an overview.

Translations between institutions can be formalised as so-called institution mor-
phisms and comorphisms [16]. An institution morphism roughly corresponds to a pro-
jection from a “richer” to a “poorer” logic, expressing that the “richer” logic has some
more features, which are forgotten by the morphism. The main purpose of the institution
morphisms is the ability to express, e.g., that an interaction diagram and a state machine
are compatible because they are expressed over the same class diagram. By contrast,
institution comorphisms are often more complex. Roughly, a comorphism corresponds
to an encoding of one logic into another one.

We now illustrate this framework with a few DOL examples.

3.2 ATM Example

In order to illustrate our approach to a heterogeneous institutions-based UML semantics
in general and the institutions for UML state machines in particular, we use as a small
example the design of a traditional automatic teller machine (ATM) connected to a bank.
For simplicity, we only describe the handling of entering a card and a PIN with the
ATM. After entering the card, one has three trials for entering the correct PIN (which is
checked by the bank). After three unsuccessful trials the card is kept.

Let us assume that an institution morphism sd2cd from UML sequence diagrams
to UML class diagrams has been defined. It extracts the classes, attributes, operations,
signals etc. used in the sequence diagram and forms them into a class diagram. Given
a sequence diagram ATM_Bank_Interaction, the DOL declaration for extracting its
underlying class diagram is then

model ATM_BRank_Interaction_cd =
ATM_Bank_Interaction hide along sd2cd
end

We now can express that a class diagram User_Interface refines to the sequence
diagram ATM_Bank_Interaction in DOL:

refinement rl =
{ User_Interface reveal ATM Bank_Interaction_cd }
refined to ATM_Bank_Interaction_cd

‘http://dol-omg.org

> This is the first semantics of UML class diagrams that has been reviewed by co-designers of
UML.

11

http://dol-omg.org

sd ATM2Bank Scenario)

atm : ATM ‘
verify(17, 4711)

‘ bank : Bank ‘

reenterPIN()
verify(17, 4242)

verified()

userCom

[] am:ATM []

cmp System

«component»

bankCom

(a) Interaction

«interface»
UserOut

card(in c : Integer)
PIN(in p : Integer)

(b) Composite structure

stm ATM2Bank { protocol })

marklinvalid /

verify /

«component»
|| bank : Bank

[trialsNum < 3]/
trialsNum++

[trialsNum >= 3] /

«interface»
Userln - w Verifying
«precondition»
keepCard() ~ =~~~ - - ﬁ
ejectCard() {{OCL} trialsNum >= 3} reenterPIN /
(c) Interfaces (d) Protocol state machine
stm ATM Behaviour)
userCom.card(c) / userCom.PIN(p) /
Idle CardEntered — PINEntered
cardld =c pin=p

/ bankCom.verify(cardld, pin)

bankCom.reenterPIN /

userCom.keepCard();
bankCom.markinvalid(cardld);
trialsNum = 0

=

Verifyin
(_vent |

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0 (

Verified

end

(e) State machine

Fig. 1. ATM example

The semantics of such a refinement is inclusion of realisation. In this case, it means that
each realisation of ATM_Bank_Interaction_cd is also a realisation of

{ User_Interface reveal ATM Bank_Interaction_cd }

More specifically, this mean that each realisation of ATM_Bank_Interaction (which
is a set of traces), when organised into a transition system of snapshots, is a transition
system of the class diagram User_Interface (when the latter is restricted to those
symbols that actually occur in ATM_Bank_Interaction).

Using a comorphism cd2stm, we can express that a state machine is built over some

class diagram as follows:

model ATM_stm =

User_Interface with translation cd2stm
then

ATM_stm _definition
end

Now suppose that we have a second state machine (over the same class diagram, but
typically not associated to the same class):

model Bank_stm =

User_Interface with translation cd2stm
then

Bank_stm_definition
end

and we have a system of these two state machines linked by a composite structure
diagram within a component that we call System. This could be expressed as follows,
using a comorphism stm2cmp linking state machines and composite structure diagrams:

model System =

ATM_stm with translation stm2cmp with cid |-> atm
and

Bank_stm with translation stm2cmp with cid |-> bank
then

cmp
end

We now express that this system can realise the interactions expressed in sequence
diagram ATM_Bank_Interaction as follows:

refinement r2 =
ATM_Bank_Interaction refined to { System hide along cmp2sd }
end

Multi-view models can be expressed as so-called networks in DOL. A network consists of
a number of component models (the views), plus some links (e.g. refinements) between
these. So we obtain a network of the above UML diagrams and state its consistency as
follows:

network N = %consistent
User_Interface, ATM_stm, Bank_stm, System,
ATM_BRank_Interaction, rl, r2

end

A realisation of the network consists of a family of realisations for each of the different
components (views) of the network that is compatible along the links.® Consistency
of the network means existence of at least one realisation. Note that consistency of a
network is more than pairwise consistency of each pair of models involved.

6 See [31] and the DOL standard at ht tp: //dol-omg. org for details.

13

http://dol-omg.org

ATM_Bank_Interaction User_lInterface

User_Interface_small

Fig. 2. Development graph for the ATM/Bank system

An important question is how to check consistency of such a heterogeneous multi-
view network. One possibility follows the system model paradigm: using comorphisms,
all involved models are translated into one formalism (e.g. first-order logic or Is-
abelle/HOL), and then consistency is checked there. This amounts to checking the
consistency of a (homogeneous) logical theory, which can be done using standard
realisation finders’.

A second option is more decentralised and starts with separate realisations of all the
involved models. Such realisations generally can be expressed in DOL: for example, for
a class diagram, a realisation can be expressed as an object diagram. For a state machine,
a so-called free DOL expression can be used to specify a particular DOL realisation. In
order to check that such a family of realisations is a realisation of the network, pairwise
compatility of these realisations needs to be checked. Of course, this will generally fail
if the invididual realisations have been randomly produced by a realisation finder. This
means that the realisations need to be carefully designed in a manual way having in mind
that they must compose into a realisation of the overall network.

This decentralised approach of finding a realisation is largely manual. More automa-
tion can be obtained using an incremental approach. Starting with class diagrams, OCL
expressions and object diagrams, realisations for the static parts are obtained, e.g. using
a realisation finder for first-order logic. In the next step composite structure diagrams
and state machines are considered, and then sequence diagrams.

7 Usually, these are called model finders, e.g. for first-order logic. However, in our terminology,

a first-order model of a logical theory would be a realisation of (the translation) of an MDE
model.

14

The use of realisation finders needed for consistency checking in all these approaches
quickly comes to its limits when large models (or logical theories, after e.g. translation
to first-order logic) are involved. In [25], we have developed an approach of decompos-
ing large consistency problems into smaller ones, using so-called CASL architectural
specifications.

4 Conclusion and Future work

UML/OCL is a language for multi-view and multi-viewpoint models, and the detection
of view consistency at an early stage of the development is important for avoiding
costly redesign. We have classified 53 existing approaches to UML/OCL multi-view
consistency. Even the best approaches cover only five of the 14 UML diagram types,
and most of these only partially. Moreover, a “universal logic” approach is predominant,
where all UML/OCL diagram types and sub-languages are embedded into one system
model or one logic. We have argued that this is not suitable for handling the involved
complexity.

We propose a new approach to UML multi-view consistency, following a “heteroge-
neous transformation” paradigm. We use institutions for formalising the different UML
diagram types and their semantics, and institution (co-)morphisms for formalising the
transformations. Then UML multi-viewpoint models can be formalised as so-called
networks in the OMG-standardised Distributed Ontology, Model, and Specification
Language (DOL). This provides a framework where eventually all semantically relevant
diagram types can be covered.

In order to use this framework for checking consistency of UML multi-viewpoint
models, there is still a considerable way to go: while some UML diagram types have
been formalised as institutions, this needs to be completed to a more comprehensive
treatment of both diagram types and their features. Formalisation of transformations as
institution (co-)morphisms has just started. In order to make this practically useful in
connection with DOL, all these institutions and (co-)morphisms need to be integrated into
the Heterogeneous Tool Set (Hets) and interfaced with suitable proof and model finding
tools. Finally, suitable consistency strategies need to be developed and implemented.

Of course, writing down DOL expressions for large families of UML diagrams will
be tedious. Hence, we aim at some graphical interface that can generate the needed DOL
expressions automatically from a user’s selection of those UML diagrams that should
be interlinked to a network, plus a specification of the involved refinements. Such a
specification of both networks and refinements adds the extra information to a given
family of UML diagrams that is needed when checking multi-view consistency.

Multi-view UML Consistency Approaches

cl. M. N. Alanazi. “Consistency Checking in Multiple UML State Diagrams Using Super State
Analysis”. PhD thesis. Kansas State University, 2008.

2. N. Amilio, S. Stepney, and F. Polack. “Formal Proof from UML Models”. In: Proc. 6" Intl.
Conf. Formal Methods and Software Engineering (ICFEM’04). Ed. by J. Davies, W. Schulte,
and M. Barnett. Lect. Notes Comp. Sci. 3308. Springer, 2004, pp. 418-433.

15

c3

c4.

c5.

c6.

c7.

c8.

c9.

cl0.

cll.

cl2.

cl3.

cl4.

cl5.

clé.

cl7.

. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. “UML2Alloy: A Challenging Model
Transformation”. In: Proc. 10™ Intl. Conf. Model Driven Engineering Languages and Systems
(MoDELS’07). Ed. by G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil. Lect. Notes Comp.
Sci. 4735. Springer, 2007, pp. 436-450.

A. Banerjee, S. Ray, P. Dasgupta, P. P. Chakrabarti, S. Ramesh, and P. V. V. Ganesan. “A
Dynamic Assertion-based Verification Platform for Validation of UML Designs”. In: Proc.
6™ Intl. Symp. Automated Technology for Verification and Analysis (ATVA’08). Ed. by S. Cha,
J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan. Lect. Notes Comp. Sci. 5311. Springer,
2008, pp. 222-227.

A. Banerjee, S. Ray, P. Dasgupta, P. P. Chakrabarti, S. Ramesh, and P. V. V. Ganesan. “A
Dynamic Assertion-based Verification Platform for Validation of UML Designs”. In: ACM
SIGSOFT Softw. Eng. Notes 37.1 (2012), pp. 1-14.

U. Bellur and V. Vallieswaran. “On OO Design Consistency in Iterative Development”. In:
Proc. 3" Intl. Conf. Information Technology: New Generations (ITNG’06). TEEE. 2006,
pp. 46-51.

S. Bernardi, S. Donatelli, and J. Merseguer. “From UML Sequence Diagrams and State-
charts to Analysable Petri Net Models”. In: Proc. 3" Intl. Ws. Software and Performance
(WSOP’02). ACM. 2002, pp. 35-45.

B. Brendshgi. “Consistency Checking UML Interactions and State Machines”. Master
thesis. Universitetet i Oslo, 2008. URL: https://www.duo.uio.no/bitstream/
handle/10852/9992/bjornbra.pdf.

M. Broy, M. V. Cengarle, H. Gronniger, and B. Rumpe. “Considerations and Rationale for a
UML System Model”. In: UML 2 — Semantics and Applications. Ed. by K. Lano. Wiley,
2009. Chap. 3, pp. 43-60.

M. Broy, M. V. Cengarle, H. Gronniger, and B. Rumpe. “Definition of the System Model”.
In: UML 2 — Semantics and Applications. Ed. by K. Lano. Wiley, 2009. Chap. 4, pp. 61-93.
M. V. Cengarle, A. Knapp, A. Tarlecki, and M. Wirsing. “A Heterogeneous Approach to
UML Semantics”. In: Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday. Ed. by P. Degano, R. De Nicola, and J. Meseguer.
Lect. Notes Comp. Sci. 5065. Springer, 2008, pp. 383—402.

J. M. Chiaradia and C. Pons. “Improving the OCL Semantics Definition by Applying
Dynamic Meta Modeling and Design Patterns”. In: Proc. 6" OCL Ws. (OCL’06). OCL
for (Meta-)Models in Multiple Application Domains. Ed. by D. Chiorean, B. Demuth, M.
Gogolla, and J. Warmer. Electr. Comm. EASST 5. 2006.

D. Chiorean, M. Pasca, A. Carcu, C. Botiza, and S. Moldovan. “Ensuring UML Models
Consistency Using the OCL Environment”. In: Proc. 3 OCL Ws. (OCL’03). OCL 2.0.
Ed. by P. H. Schmitt. Electr. Notes Theo. Comp. Sci. 102. Elsevier, 2004, pp. 99-110.

W. Damm, B. Josko, A. Pnueli, and A. Votintseva. “Understanding UML: A Formal Se-
mantics of Concurrency and Communication in Real-Time UML”. In: Rev. Lect. 1 Intl.
Symp. Formal Methods for Components and Objects (FMCO’02). Ed. by F. S. de Boer,
M. M. Bonsangue, S. Graf, and W.-P. de Roever. Lect. Notes Comp. Sci. 2852. Springer,
2003, pp. 71-98.

J. Derrick, D. Akehurst, and E. Boiten. “A Framework for UML Consistency”. In: Proc. Ws.
Consistency Problems in UML-based Software Development. 2002, pp. 30—45.

K. Diethers and M. Huhn. “Vooduu: Verification of Object-Oriented Designs Using UP-
PAAL”. In: Proc. 10" Intl. Conf. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’04). Ed. by K. Jensen and A. Podelski. Lect. Notes Comp. Sci. 2988.
Springer, 2004, pp. 139-143.

R. Dubauskaite and O. Vasilecas. “Method on Specifying Consistency Rules among Different
Aspect Models, expressed in UML”. In: Elektr. Elektrotechn. 19.3 (2013), pp. 77-81.

16

https://www.duo.uio.no/bitstream/handle/10852/9992/bjornbra.pdf
https://www.duo.uio.no/bitstream/handle/10852/9992/bjornbra.pdf

cl8.

cl9.

c20.

c21.

c22.

c23.

c24.

c25.

c26.

c27.

c28.

c29.

c30.

c31.

c32.

c33.

A. Egyed. “Heterogenous View Integration and its Automation”. PhD thesis. University of
Southern California, 2000.

A. Egyed. “Scalable Consistency Checking between Diagrams — The VIEWINTEGRA
Approach”. In: Proc. 16" IEEE Intl. Conf. Automated Software Engineering (ASE’01). IEEE.
2001, pp. 387-390.

A. Egyed. “UML/Analyzer: A Tool for the Instant Consistency Checking of UML Models”.
In: Proc. 29™ Intl. Conf. Software Engineering (ICSE’07). IEEE. 2007, pp. 793-796.

K. El Miloudi, Y. E. Amrani, and A. Ettouhami. “An Automated Translation of UML Class
Diagrams into a Formal Specification to Detect UML Inconsistencies”. In: Proc. 6™ Intl.
Conf. Software Engineering Advances (ICSEA’11). 2011, pp. 432-438.

K. El Miloudi and A. Ettouhami. “A Multi-View Approach for Formalizing UML State
Machine Diagrams Using Z Notation”. In: WSEAS Trans. Comp. 14 (2015), pp. 72-78.

G. Engels, R. Heckel, and J. M. Kiister. “The Consistency Workbench: A Tool for Consistency
Management in UML-Based Development”. In: Proc. 6™ Intl. Conf. Unified Modeling
Language (UML’03). Ed. by P. Stevens, J. Whittle, and G. Booch. Lect. Notes Comp. Sci.
2863. Springer, 2003, pp. 356-359.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. “Dynamic Meta Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML”. In: Proc. 3" Intl.
Conf. Unified Modeling Language (UML’00). Ed. by A. Evans, S. Kent, and B. Selic. Lect.
Notes Comp. Sci. 1939. Springer, 2000, pp. 323-337.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. “Testing the Consistency of Dy-
namic UML Diagrams”. In: Proc. 6" World Conf. Integrated Design & Process Technology
(IDPT’02). 2002.

G. Engels, R. Heckel, and J. M. Kiister. “Rule-based Specification of Behavioral Consistency
Based on the UML Meta-model”. In: Proc. 3" Intl. Conf. Unified Modeling Language
(UML’01). Ed. by M. Gogolla and C. Kobryn. Lect. Notes Comp. Sci. 2185. Springer, 2001,
pp. 272-286.

G. Engels, C. Soltenborn, and H. Wehrheim. “Analysis of UML Activities Using Dynamic
Meta Modeling”. In: Proc. 9" IFIP WG 6.1 Intl. Conf. Formal Methods for Open Object-
Based Distributed Systems (FMOODS’07). Ed. by M. M. Bonsangue and E. B. Johnsen.
Lect. Notes Comp. Sci. 4468. Springer, 2007, pp. 76-90.

A. Gerlinger Romero, K. Schneider, and M. Gongalves Vieira Ferreira. “Integrating UML
Composite Structures and f{UML”. In: Proc. 40™ Conf. Current Trends in Theory and Practice
of Computer Science (SOFSEM’14). Ed. by V. Geffert, B. Preneel, B. Rovan, J. Stuller, and
A. M. Tjoa. Lect. Notes Comp. Sci. 8327. Springer, 2014, pp. 269-280.

M. Gogolla, F. Biittner, and M. Richters. “USE: A UML-based Specification Environment
for Validating UML and OCL”. In: Sci. Comput. Program. 69.1-3 (2007), pp. 27-34.

M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France. “From Application
Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamics”.
In: Proc. Modellierung 2014. Ed. by H.-G. Fill, D. Karagiannis, and U. Reimer. Lect. Notes
Inf. 225. GI, 2014, pp. 273-288.

H. Gronniger. “Systemmodell-basierte Definition objektbasierter Modellierungssprachen
mit semantischen Variationspunkten”. PhD thesis. RWTH Aachen, 2010.

M. GroBe-Rhode. “Integrating Semantics for Object-Oriented System Models”. In: Proc.
28™ Intl. Coll. Automata, Languages and Programming (ICALP’01). Ed. by F. Orejas, P. G.
Spirakis, and J. van Leeuwen. Lect. Notes Comp. Sci. 2076. Springer, 2001, pp. 40-60.

M. GroBle-Rhode. Semantic Integration of Heterogeneous Software Specifications. Mono-
graphs in Theoretical Computer Science. Springer, 2004.

17

c34.

c35.

c36.

c37.

c38.

c39.

c40.

c41.

c42.

c43.

c44.

c45.

c46.

c47.

c48.

Y. Hammal. “A Modular State Exploration and Compatibility Checking of UML Dy-
namic Diagrams”. In: Proc. 6" ACS/IEEE Intl. Conf. Computer Systems and Applications
(AICCSA’08). IEEE. 2008, pp. 793-800.

J. H. Hausmann. “Dynamic Meta Modeling. A Semantics Description Technique for Visual
Modeling Languages”. PhD thesis. Universitit Paderborn, 2005.

F. Hilken, P. Niemann, M. Gogolla, and R. Wille. “Filmstripping and Unrolling: A Compari-
son of Verification Approaches for UML and OCL Behavioral Models”. In: Proc. 8" Intl.
Conf. Tests and Proofs (TAP’14). Ed. by M. Seidl and N. Tillmann. Lect. Notes Comp. Sci.
8570. Springer, 2014, pp. 99-116.

F. Hilken, P. Niemann, M. Gogolla, and R. Wille. “From UML/OCL to Base Models:
Transformation Concepts for Generic Validation and Verification”. In: Proc. 8" Intl. Conf.
Theory and Practice of Model Transformations (ICMT’15). Ed. by D. S. Kolovos and M.
Wimmer. Lect. Notes Comp. Sci. 9152. Springer, 2015, pp. 149-165.

F. Hilken, P. Niemann, R. Wille, and M. Gogolla. “Towards a Base Model for UML and
OCL Verification”. In: Proc. 11™ Ws. Model-Driven Engineering, Verification and Validation
(MoDEVVA’14). Ed. by F. Boulanger, M. Famelis, and D. Ratiu. CEUR Ws. Proc. 1235.
2014, pp. 59-68.

Z. Khai, A. Nadeem, and G.-s. Lee. “A Prolog Based Approach to Consistency Checking
of UML Class and Sequence Diagrams”. In: Proc. Intl. Conf.s ASEA, DRBC, EL as part of
Future Generation Information Technology Conf. (FGIT’11). Ed. by T.-H. Kim, H. Adeli,
H.-K. Kim, H.-J. Kang, K. J. Kim, K. Akingbehin, and B. H. Kang. Comm. Comp. Inf. Sci.
257. Springer, 2011, pp. 85-96.

A. H. Khan and I. Porres. “Consistency of UML Class, Object and Statechart Diagrams
Using Ontology Reasoners”. In: J. Vis. Lang. Comp. 26 (2015), pp. 42-65.

S.-K. Kim and D. Carrington. “A Formal Object-oriented Approach to Defining Consis-
tency Constraints for UML Models”. In: Proc. 15™ Austral. Software Engineering Conf.
(ASWEC’04). IEEE. 2004, pp. 87-94.

A. Knapp, T. Mossakowski, and M. Roggenbach. “An Institutional Framework for Heteroge-
neous Formal Development in UML. A Position Paper”. In: Software, Services, and Systems.
Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from the Chair of
Programming and Software Engineering. Ed. by R. D. Nicola and R. Hennicker. Lect. Notes
Comp. Sci. 8950. Springer, 2015, pp. 215-230.

A. Knapp and J. Wuttke. “Model Checking of UML 2.0 Interactions”. In: Reports Rev. Sel.
Papers Ws.s Symp.s MoDELS 2006. Ed. by T. Kiihne. Lect. Notes Comp. Sci. 4364. Springer,
2007, pp. 42-51.

S. Kuske, M. Gogolla, H.-J. Kreowski, and P. Ziemann. “Towards an Integrated Graph-based
Semantics for UML”. In: Softw. Syst. Model. 8.3 (2009), pp. 403-422.

J. M. Kiister. “Consistency Management of Object-Oriented Behavioral Models”. PhD thesis.
Universitéit Paderborn, 2004.

J. M. Kiister and G. Engels. “Consistency Management Within Model-Based Object-Oriented
Development of Components™. In: Rev. Lect. 2" Intl. Symp. Formal Methods for Components
and Objects (FMCO’03). Ed. by F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de
Roever. Lect. Notes Comp. Sci. 3188. Springer, 2004, pp. 157-176.

M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag, T. Arons,
and H. Kugler. “Formalizing UML Models and OCL Constraints in PVS”. In: Proc. Ws.
Semantic Foundations of Engineering Design Languages (SFEDL’04). Ed. by G. Liittgen
and M. Mendler. Electr. Notes Theo. Comp. Sci. 115. Elsevier, 2005, pp. 39—-47.

R. Laleau and F. Polack. “Using Formal Metamodels to Check Consistency of Functional
Views in Information Systems Specification”. In: J. Inf. Softw. Techn. 50.7-8 (2008), pp. 797—
814.

18

c49.

c50.

c51.

c52.

c53.

c54.

c55.

c56.

c57.

c58.

c59.

c60.

c61.

c62.

c63.

c64.

V. S. W. Lam and J. Padget. “Consistency Checking of Sequence Diagrams and Statechart Di-
agrams Using the w-calculus”. In: Proc. 5™ Intl. Conf. Integrated Formal Methods (IFM’05).
Ed. by J. Romijn, G. Smith, and J. van de Pol. Lect. Notes Comp. Sci. 3771. Springer, 2005,
pp. 347-365.

X. Li. “A Characterization of UML Diagrams and their Consistency”. In: Proc. 11" IEEE
Intl. Conf. Engineering of Complex Computer Systems (ICECCS’06). IEEE. 2006, pp. 67-76.
B. Litvak, S. S. Tyszberowicz, and A. Yehudai. “Behavioral Consistency Validation of UML
Diagrams”. In: Proc. 1" Intl. Conf. Software Engineering and Formal Methods (SEFM’03).
IEEE. 2003, pp. 118-125.

W. Liu, S. Easterbrook, and J. Mylopoulos. “Rule-based Detection of Inconsistency in UML
Models”. In: Proc. Ws. Consistency Problems in UML-based Software Development. 2002,
pp. 106-123.

Z. Liu, J. He, and X. Li. “Towards a Rigorous Approach to UML-based Development”. In:
Proc. 7" Brazilian Symp. Formal Methods (SBMF’04). Ed. by A. Mota and A. Moura. Electr.
Notes Theo. Comp. Sci. 130. Elsevier, 2005, pp. 57-77.

Q. Long, Z. Liu, X. Li, and J. He. “Consistent Code Generation from UML Models”. In:
Proc. 16™ Austral. Software Engineering Conf. (ASWEC’05). IEEE. 2005, pp. 23-30.

E. J. Lucas Martinez and J. A. Toval Alvarez. “A Precise Approach for the Analysis of the
UML Models Consistency”. In: Proc. Perspectives in Conceptual Modeling (ER’05) Ws.s.
Ed. by J. Akoka, S. W. Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, S. S.-S. Cherfi,
W.-J. van den Heuvel, B. Thalheim, M. Kolp, P. Bresciani, J. Trujillo, C. Kop, and H. C.
Mayr. Lect. Notes Comp. Sci. 3770. Springer, 2005, pp. 74-84.

W. E. McUmber and B. H. Cheng. “A General Framework for Formalizing UML with
Formal Languages”. In: Proc. 23" Intl. Conf. Software Engineering (ICSE’01). IEEE. 2001,
pp. 433-442.

S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model-driven Architecture.
Addison-Wesley, 2002.

A. Nimiya, T. Yokogawa, H. Miyazaki, S. Amasaki, Y. Sato, and M. Hayase. “Model
Checking Consistency of UML Diagrams using Alloy”. In: WASET Intl. J. Comp., Electr.,
Autom., Contr., Inf. Eng. 4.11 (2010), pp. 1696-1699.

I. Ober and I. Dragomir. “Unambiguous UML Composite Structures: The OMEGA?2 Expe-
rience”. In: Proc. 37" Conf. Current Trends in Theory and Practice of Computer Science
(SOFSEM’11). Ed. by L. Cernd, T. Gyiméthy, J. Hromkovic, K. G. Jeffery, R. Krélovic,
M. Vukolic, and S. Wolf. Lect. Notes Comp. Sci. 6543. Springer, 2011, pp. 418-430.
Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML). Standard formal/2016-01-05. Version 1.2.1. OMG, 2016. URL: http :
//www.omg.org/spec/FUML/1.2.1.

D. D. Okalas Ossami, J.-P. Jacquot, and J. Souquieres. “Consistency in UML and B Multi-
view Specifications”. In: Proc. 5" Intl. Conf. Integrated Formal Methods (IFM’05). Ed. by J.
Romijn, G. Smith, and J. van de Pol. Lect. Notes Comp. Sci. 3771. Springer, 2005, pp. 386—
405.

G. O’Keefe. “Dynamic Logic Semantics for UML Consistency”. In: Proc. 2" Europ. Conf.
Model Driven Architecture — Foundations and Applications (ECMDA-FA’06). Ed. by A.
Rensink and J. Warmer. Lect. Notes Comp. Sci. 4066. Springer, 2006, pp. 113-127.

P. J. Puczynski. “Checking Consistency between Interaction Diagrams and State Machines
in UML Models”. Master thesis. Danmarks Tekniske Universitet, 2012.

H. Rasch and H. Wehrheim. “Checking Consistency in UML Diagrams: Classes and State
Machines”. In: Proc. 6™ IFIP WG 6.1 Intl. Conf. Formal Methods for Open Object-Based
Distributed Systems (FMOODS’03). Ed. by E. Najm, U. Nestmann, and P. Stevens. Lect.
Notes Comp. Sci. 2884. Springer, 2003, pp. 229-243.

19

http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/FUML/1.2.1

c65.

c66.

c67.

c68.

c69.

c70.

c71.

c72.

c73.

c74.

c75.

c76.

c77.

c78.

c79.

H. Rasch and H. Wehrheim. “Checking the Validity of Scenarios in UML Models”. In: Proc.
7" IFIP WG 6.1 Intl. Conf. Formal Methods for Open Object-Based Distributed Systems
(FMOODS’05). Ed. by M. Steffen and G. Zavattaro. Lect. Notes Comp. Sci. 3535. Springer,
2005, pp. 67-82.

G. Reggio, M. Cerioli, and E. Astesiano. “Towards a Rigorous Semantics of UML Supporting
Its Multiview Approach”. In: Proc. 4™ Intl. Conf. Fundamental Approaches to Software
Engineering (FASE’01). Ed. by H. HuBmann. Lect. Notes Comp. Sci. 2029. Springer, 2001,
pp- 171-186.

P. G. Sapna and H. Mohanty. “Ensuring Consistency in Relational Repository of UML
Models”. In: Proc. 10™ Intl. Conf. Information Technology (ICIT’07). IEEE. 2007, pp. 217~
222.

Y. Shinkawa. “Inter-model Consistency in UML Based on CPN Formalism”. In: Proc. 13"
Asia Pacific Software Engineering Conf. (APSEC’06). IEEE. 2006, pp. 411-418.

C. Soltenborn. “Quality Assurance with Dynamic Meta Modeling”. PhD thesis. Universitit
Paderborn, 2013.

G. Spanoudakis and H. Kim. “Diagnosis of the Significance of Inconsistencies in Object-
oriented Designs: A Framework and Its Experimental Evaluation”. In: J. Syst. Softw. 64.1
(2002), pp. 3-22.

R. van der Straeten. “Inconsistency Detection between UML Models Using RACER and
nRQL”. In: Proc. 3 Intl. Ws. Applications of Description Logics (KI'04). Ed. by S. Bech-
hofer, V. Haarslev, C. Lutz, and R. Moeller. CEUR Ws. Proc. 115. 2004.

R. van der Straeten, J. Simmonds, and T. Mens. “Detecting Inconsistencies between UML
Models Using Description Logic”. In: Proc. Intl. Ws. Description Logics (DL’03). Ed. by
D. Calvanese, G. D. Giacomo, and E. Franconi. CEUR Ws. Proc. 81. 2003.

R. Wagner, H. Giese, and U. A. Nickel. “A Plug-In for Flexible and Incremental Consistency
Management”. In: Proc. 3" Ws. Consistency Problems in UML-based Software Development.
Ed. by L. Kuzniarz, G. Reggio, J.-L. Sourrouille, Z. Huzar, and M. Staron. Blekinge Inst.
Techn. Research Report 2003:06. 2003.

H. Wang, T. Feng, J. Zhang, and K. Zhang. “Consistency Check between Behaviour Models”.
In: Proc. 5™ IEEE Intl. Symp. Communications and Information Technology (ISCIT’05).
IEEE. 2005, pp. 486-489.

M. Wirsing and A. Knapp. “View Consistency in Software Development”. In: Rev. Papers 9"
Intl. Monterey Ws. Radical Innovations of Software and Systems Engineering in the Future.
Ed. by M. Wirsing, A. Knapp, and S. Balsamo. Lect. Notes Comp. Sci. 2941. Springer, 2004,
pp. 341-357.

J. Yang, Q. Long, Z. Liu, and X. Li. “A Predicative Semantic Model for Integrating UML
Models”. In: Rev. Sel. Papers 1" Intl. Coll. Theoretical Aspects of Computing (ICTAC’04).
Ed. by Z. Liu and K. Araki. Lect. Notes Comp. Sci. 3407. Springer, 2005, pp. 170-186.

S. Yao and S. M. Shatz. “Consistency Checking of UML Dynamic Models Based on Petri
Net Techniques”. In: Proc. 15" Intl. Conf. Computing (CIC’06). IEEE. 2006.

W. L. Yeung. “Checking Consistency between UML Class and State Models Based on CSP
and B”. In: J. Univ. Comp. Sci. 10.11 (2004), pp. 1540-1559.

X. Zhao, Q. Long, and Z. Qiu. “Model Checking Dynamic UML Consistency”. In: Proc. 8"
Intl. Conf. Formal Engineering Methods (ICFEM’06). Ed. by Z. Liu and J. He. Lect. Notes
Comp. Sci. 4260. Springer, 2006, pp. 440-459.

20

References

1.

10.

11.

12.

13.

14.

15.

16.

D. Allaki, M. Dahchour, and A. En-Nouaary. “A New Taxonomy of Inconsistencies in UML
Models with their Detection Methods for Better MDE”. In: Intl. J. Comp. Sci. Appl. 12.1
(2015), pp. 48-65.

. P. Amaya, C. Gonzalez, and J. M. Murillo. “Towards a Subject-Oriented Model-Driven

Framework™. In: Proc. 1" Ws. Aspect-Based and Model-Based Separation of Concerns in
Software Systems (ABMB’05). Ed. by M. Aksit and E. Roubtsova. Electr. Notes Theo. Comp.
Sci. 163. 2006, pp. 31-44.

. R. S. Bashir, S. P. Lee, S. U. R. Khan, S. Farid, and V. Chang. “UML Models Consis-

tency Management: Guidelines for Software Quality Manager”. In: Intl. J. Information
Management 36.6, Part A (2016), pp. 883-899.

. A. Boronat, A. Knapp, J. Meseguer, and M. Wirsing. “What Is a Multi-modeling Language?”

In: Rev. Sel. Papers 19" Intl. Ws. Recent Trends in Algebraic Development Techniques
(WADT’08). Ed. by A. Corradini and U. Montanari. Lect. Notes Comp. Sci. 5486. Springer,
2008, pp. 71-87.

. R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. “Systems, Views and Models

of UML”. In: Unified Modeling Language, Technical Aspects and Applications. Ed. by M.
Schader and A. Korthaus. Physica Verlag, 1998.

. J. Cabot, R. Clarisé, and D. Riera. “On the Verification of UML/OCL Class Diagrams Using

Constraint Programming”. In: J. Syst. Softw. 93 (2014), pp. 1-23.

. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. C. Wills. “Defining UML

Family Members Using Prefaces”. In: Proc. 32" Intl. Conf. Technology of Object-Oriented
Languages (TOOLS’99). Ed. by C. Mingins and B. Meyer. IEEE. 1999, pp. 102-114.

. R. M. Dijkman. “Consistency in Multi-Viewpoint Architectural Design”. PhD thesis. Univer-

siteit Twente, 2006.

. J. Dingel, Z. Diskin, and A. Zito. “Understanding and Improving UML Package Merge”. In:

Softw. Syst. Model. 7.4 (2008), pp. 443-467.

B. Dobing and J. Parsons. “Dimensions of UML Diagram Use: Practitioner Survey and
Research Agenda”. In: Principle Advancements in Database Management Technologies:
New Applications and Frameworks. Ed. by K. Siau and J. Erickson. IGI Publishing, 2010,
pp- 271-290.

P. van Emde Boas. “Formalizing UML: Mission Impossible?” In: Proc. OOPSLA’98 Ws.
Formalizing UML: Why? How? Ed. by L. Andrade, A. Moreira, A. Deshpande, and S. Kent.
1998.

G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. “A Combined Reference Model- and
View-Based Approach to System Specification”. In: Intl. J. Softw. Eng. Knowl. Eng. 7.4
(1997), pp. 457-477.

A. Evans, K. Lano, R. France, and B. Rumpe. “Meta-Modeling Semantics of UML”. In:
Behavioral Specifications of Businesses and Systems. Ed. by H. Kilov, B. Rumpe, and 1.
Simmonds. Kluver Academic Publisher, 1999. Chap. 4, pp. 45-60.

A. Evans, K. Lano, R. France, and B. Rumpe. “The UML as a Formal Modeling Notation”.
In: Sel. Papers 1° Intl. Ws. Unified Modeling Language (UML’98). Ed. by J. Bézivin and
P.-A. Muller. Lect. Notes Comp. Sci. 1618. Springer, 1999, pp. 336-348.

J. A. Goguen and R. M. Burstall. “Institutions: Abstract Model Theory for Specification and
Programming”. In: J. ACM 39 (1992), pp. 95-146.

J. A. Goguen and G. Rosu. “Institution Morphisms”. In: Formal Asp. Comp. 13 (2002),
pp. 274-307.

21

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

. R. von Hanxleden, E. A. Lee, C. Motika, and H. Fuhrmann. “Multi-View Modeling and
Pragmatics in 2020”. In: Rev. Sel. Papers 17" Monterey Ws. Ed. by R. Calinescu and D.
Garlan. Lect. Notes Comp. Sci. 7539. Springer, 2012, pp. 209-223.

F. Hilken, P. Niemann, M. Gogolla, and R. Wille. “Towards a Catalog of Structural and
Behavioral Verification Tasks for UML/OCL Models”. In: Proc. Modellierung 2016. Ed. by
A. Oberweis and R. H. Reussner. Lect. Notes Inf. 254. GI, 2016, pp. 117-124.

V. Hoffmann, H. Lichter, A. NyBen, and A. Walter. “Towards the Integration of UML and
Textual Use Case Modeling”. In: J. Obj. Techn. 8.3 (2009), pp. 85-100.

Z. Huzar, L. Kuzniarz, G. Reggio, and J.-L. Sourrouille. “Consistency Problems in UML-
Based Software Development”. In: Rev. Sel. Papers UML’04 Satellite Activities. Ed. by
N. J. Nunes, B. Selic, A. R. da Silva, and J. A. T. Alvarez. Lect. Notes Comp. Sci. 3297.
Springer, 2005, pp. 1-12.

IEEE Standards Association. Recommended Practice for Architectural Description for
Software-Intensive Systems. Standard 1471-2000. IEEE Computer Society, 2000.
International Organization for Standardization. Systems and Software engineering — Archi-
tecture description. Standard 42010:2011. ISO/IEC/IEEE, 2011.

D. Kholkar, G. M. Krishna, U. Shrotri, and R. Venkatesh. “Visual Specification and Analysis
of Use Cases”. In: Proc. ACM Symp. Software Visualization (SOFTVIS’05). Ed. by T. L.
Naps and W. D. Pauw. ACM. 2005, pp. 77-85.

S.-K. Kim and D. Carrington. “Formalizing the UML Class Diagram Using Object-Z”. In:
Proc. 2" Intl. Conf. Unified Modeling Language (UML’99). Ed. by R. France and B. Rumpe.
Lect. Notes Comp. Sci. 1723. Springer, 1999, pp. 83-98.

0. Kutz and T. Mossakowski. “A Modular Consistency Proof for Dolce”. In: Proc. 25™ AAAI
Conf. Artificial Intelligence and 23" Innovative Applications of Artificial Intelligence Conf.
Ed. by W. Burgard and D. Roth. AAAI Press, 2011, pp. 227-234.

P. Langer, T. Mayerhofer, M. Wimmer, and G. Kappel. “On the Usage of UML.: Initial
Results of Analyzing Open UML Models”. In: Proc. Modellierung 2014. Ed. by H.-G. Fill,
D. Karagiannis, and U. Reimer. Lect. Notes Inf. 225. GI, 2014, pp. 289-304.

D. Latella, I. Majzik, and M. Massink. “Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams Using the SPIN Model-checker”. In: Formal Asp. Comput. 11.6
(1999), pp. 637-664.

F. J. Lucas, F. Molina, and A. Toval. “A Systematic Review of UML Model Consistency
Management”. In: J. Inf. Softw. Techn. 51.12 (2009), pp. 1631-1645.

T. Mens, R. van der Straeten, and J. Simmonds. “A Framework for Managing Consistency
of Evolving UML Models”. In: Software Evolution with UML and XML. Ed. by H. Yang.
Idea Group, 2005. Chap. 1, pp. 1-30.

R. G. Mohammadi and A. A. Barforoush. “Enforcing Component Dependency in UML
Deployment Diagram for Cloud Applications”. In: Proc. 7" Intl. Symp. Telecommunications
(IST’14). IEEE. 2014, pp. 412-417.

T. Mossakowski and A. Tarlecki. “Heterogeneous Logical Environments for Distributed
Specifications”. In: Rev. Sel. Papers 19" Intl. Ws. Recent Trends in Algebraic Development
Techniques (WADT’08). Ed. by A. Corradini and U. Montanari. Lect. Notes Comp. Sci. 5486.
Springer, 2009, pp. 266—289.

F. Munker, A. Albers, D. Wagner, and M. Behrendt. “Multi-View Modeling in SysML:
Thematic Structuring for Multiple Thematic Views”. In: Proc. Conf. Systems Engineering
Research (CSER’14). Ed. by A. M. Madni, B. Boehm, M. Sievers, and M. Wheaton. Procedia
Comp. Sci. 28. Elsevier, 2014, pp. 531-538.

Object Management Group. Object Constraint Language. Standard formal/2014-02-03.
Version 2.4. OMG, 2014. URL: http://www.omg.org/spec/OCL/2.4.

22

http://www.omg.org/spec/OCL/2.4

34.

35.

36.

37.

38.

39.

40.

41.

42.

Object Management Group. Unified Modeling Language. Standard formal/2015-03-01.
Version 2.5. OMG, 2015. URL: http://www.omg.org/spec/UML/2.5.

R. F. Paige, P. J. Brooke, and J. S. Ostroff. “Metamodel-based Model Conformance and
Multiview Consistency”. In: ACM Trans. Softw. Eng. Meth. 16.3, 11 (2007).

Z. Pap, 1. Majzik, A. Pataricza, and A. Szegi. “Completeness and Consistency Analysis of
UML Statechart Specifications”. In: Proc. IEEE Ws. Design and Diagnostics of Electronic
Circuits and Systems (DDECS’01). IEEE. 2001, pp. 83-90.

Z. Pap, I. Majzik, A. Pataricza, and A. Szegi. “Methods of Checking General Safety Criteria
in UML Statechart Specifications”. In: Rel. Eng. & Sys. Safety 87.1 (2005), pp. 89-107.

A. Schiirr and A. J. Winter. “Formal Definition and Refinement of UML’s Module/Package
Concept”. In: ECOOP’97 Ws. Reader. Ed. by J. Bosch and S. Mitchell. Lect. Notes Comp.
Sci. 1357. Springer, 1998, pp. 211-215.

A. A. Shah, A. A. Kerzhner, D. Schaefer, and C. J. J. Paredis. “Multi-View Modeling
to Support Embedded Systems Engineering in SysML”. In: Graph Transformations and
Model-Driven Engineering. Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday. Ed. by G. Engels, C. Lewerentz, W. Schéfer, A. Schiirr, and B. Westfechtel. Lect.
Notes Comp. Sci. 5765. Springer, 2010, pp. 580-601.

D. Torre, Y. Labiche, and M. Genero. “UML Consistency Rules: A Systematic Mapping
Study”. In: Proc. 18" Intl. Conf. Evaluation and Assessment in Software Engineering (EA-
SE’14). ACM. 2014.

D. Torre, Y. Labiche, M. Genero, and M. Elaasar. A Systematic Identification of Consistency
Rules for UML Diagrams. Technical Report SCE-15-01. Carleton University, 2016.

M. Usman, A. Nadeem, T.-h. Kim, and E.-s. Cho. “A Survey of Consistency Checking
Techniques for UML Models”. In: Proc. Advanced Software Engineering and Its Applications
(ASEA’08). IEEE. 2008, pp. 57-62.

23

http://www.omg.org/spec/UML/2.5

	Multi-view Consistency in UML

